用户名: 密码: 验证码:
嗜热单孢菌角质酶的基因鉴定、高效表达及分子改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
角质酶是一种可以降解角质并产生大量脂肪酸单体的水解酶。角质酶是一种多功能酶,可水解可溶性酯、不溶性甘油三酯和各种聚酯,同时还能催化酸与醇的酯化、脂肪酸盐与醇的转酯化反应,因此在食品工业、化工工业等诸多领域都具有广泛的应用。近年来研究发现,角质酶可实现棉纤维的生物精练和合成纤维的生物改性,是推动纺织工业清洁生产的关键酶制剂。
     国外对真菌角质酶进行了深入的研究,但由于存在基因工程异源表达时表达量低和稳定性差等问题,至今没有实现工业化生产。与真菌角质酶相比,细菌角质酶具有催化效率高、基因工程异源表达技术成熟等方面的优势,但是国内外关于细菌角质酶的报道很少,迄今为止没有细菌角质酶基因鉴定的报道,因此细菌角质酶的研究受到限制。
     本论文完成了嗜热放线菌Thermobifida fusca角质酶的基因鉴定,实现了其在大肠杆菌中的高效表达及分子改造,主要结果如下:
     1.依次经过硫酸铵沉淀,Phenyl HP Sepharose FF疏水色谱,DEAE Sepharose FF阴离子交换色谱,从角质诱导的T. fusca发酵液中纯化得到电泳纯pNPB水解酶,比酶活由52.3 U/mg提高至398.6 U/mg,纯化倍数为7.6,回收率为9.3%。此外,通过硫酸铵沉淀,Phenyl HP Sepharose FF疏水色谱,CM Sepharose FF阳离子交换色谱,从重组Bacillus subtilis发酵液中纯化得到电泳纯Fusarium solani pisi角质酶。以F. solani pisi角质酶为对照品,苹果角质为底物,采用GC/MS分析,鉴定纯化得到的pNPB水解酶与F. solani pisi角质酶类似,能水解苹果角质并产生特征性产物,具有角质酶功能。
     2.纯化得到的T. fusca pNPB水解酶经肽指纹图谱鉴定,与数据库中Tfu_0882和Tfu_0883两个甘油三酯酶相符。通过N端测序得到纯化的蛋白N端前九个氨基酸为:ANPYERGPN。以T. fusca总DNA为模板,设计引物PCR得到编码Tfu_0882和Tfu_0883成熟蛋白的基因,并和具有PelB信号肽和6-His纯化标记的pET20b(+)质粒相连,使Tfu_0882和Tfu_0883在E. coli BL21(DE3)中过量表达。通过IPTG诱导,重组菌发酵上清液pNPB水解酶酶活Tfu_0882为52.5 U/mL,Tfu_0883为90.6 U/mL,分别是T. fusca诱导发酵液的4.37和7.56倍。采用Ni亲和柱对重组Tfu_0882和Tfu_0883进行分离纯化,纯化后重组蛋白达到电泳纯,重组Tfu_0882和Tfu_0883的pNPB水解酶比活力分别为223.1 U/mg、458.2 U/mg,并且两者均能水解角质并产生特异性产物,由此可确定,Tfu_0882和Tfu_0883是编码T. fusca角质酶基因。
     3.考察IPTG浓度和温度对重组大肠杆菌发酵生产Tfu_0883的影响,发现不添加IPTG和25°C恒温培养效果较好,发酵80 h培养基中pNPB水解酶酶活达130.5 U/ml。在该条件下发酵生产Tfu_0883,周质空间有大量重组蛋白积累,跨外膜转运成为重组蛋白向培养基中分泌的限速步骤。通过添加膜透性增强剂和改变环境条件加速重组Tfu_0883从周质空间向培养基中分泌。研究表明,在对数生长中期,添加100 mM甘氨酸、1 mM表面活性剂TDOC均可将酶活最高点从80 h提前至54 h;采取重组大肠杆菌在25°C发酵至24 h时将培养温度提高至37°C的变温策略对重组蛋白的分泌有促进作用,酶活最高点出现于62 h,比不变温的对照提前了18 h。
     4.重组Tfu_0882、Tfu_0883和F. solani pisi角质酶在水溶液中均以单体形式存在。重组Tfu_0882、Tfu_0883的最适温度为60°C,并具有良好的热稳定性;重组F. solani pisi角质酶的最适温度为40°C,热稳定性较差。三种角质酶的最适pH均为8.0,pH稳定范围为6.0-9.0。三种角质酶均能够水解可溶性酯、不溶性甘油三酯和聚酯,并倾向于水解短链底物,没有位置特异性。F. solani pisi角质酶对pNPB底物的亲和力最大,催化效率最高;F. solani pisi角质酶水解PET能力最强,Tfu_0883次之,Tfu_0882对PET仅有微弱水解。三种角质酶都没有界面活化现象,不需要二价金属离子作为辅助因子,Mn2+对三者有激活作用,Cr2+和Hg2+对三种角质酶有强烈抑制作用。Triton X-100和Tween 20抑制Tfu_0882和Tfu_0883的活性,对F. solani pisi角质酶无明显作用;SDS对三种角质酶均有竞争性抑制,Tfu_0882抑制最弱;TDOC对F. solani pisi角质酶有明显激活作用。重组Tfu_0882和Tfu_0883在甲醇、乙醇等多种有机溶剂中具有良好的稳定性,F. solani pisi角质酶在有机溶剂中的稳定性较差。
     5.以Streptomyces exfoliates脂肪酶晶体结构为模板,通过SWISS-MODEL软件模拟得到Tfu_0883和Tfu_0882结构模型。模型显示,T. fusca角质酶具有典型的α/β水解酶结构,Tfu_0883的活性中心由S170-H248-D216催化三角组成,Tfu_0882的活性中心由S188- H266-D234催化三角组成。T. fusca角质酶活性中心上方没有盖子结构,活性中心暴露于溶剂中。角质酶基因Tfu_0882和Tfu_0883在基因组中处在相邻位置,并处于两个不同的操纵子中,受到不同的调控。Tfu_0882和Tfu_0883在水解角质过程中没有协同作用。在结构模拟的基础上进行理性分析,并成功构建了角质酶突变体Tfu_0883-I218A、Tfu_0883-W195A/F249A和Tfu_0883-Q132A/T101A,催化性质研究表明,突变体对小分子底物的催化没有明显影响;突变体Tfu_0883-I218A和Tfu_0883-Q132A/T101A水解角质能力明显提高;突变体Tfu_0883-Q132A/T101A水解PET聚酯的能力也得到明显提高。
Cutinase is a kind of hydrolase capable catalyzing the cleavage of ester bonds of cutin to release fatty acid. They display hydrolytic activity not only toward cutin but also a variety of soluble synthetic esters, insoluble triglycerides and polyesters. Except for hydrolytic activity, cutinase also shows synthetic activity and transester activity. Therefore cutinase has been evaluated as a versatile lipolytic enzyme used in food and chemical industry. Rcently, it was found that cutinase has potential use in cotton bioscouring and synthetic fibers modification. Cutinase is the important enzyme in textile industry clean production.
     Fungal cutinase has been extensively investigated for many years. However, because of its low expression level and poor stability, recombinant fungal cutinase has not been produced in industry. In contrast to fungal cutinase, bacterial cutinase is more efficient in catalysis and easy to homologous expression. But there are just a few reports of bacterial cutinases. Most critically, no cutinase open reading frame has been identified in bacteria, thus it is impossible to study it in depth.
     In present paper, the gene of bacterial cutinase from Thermobifida fusca has been identified and high-efficient expressed in E. coli. And the recombinant T. fusca cutinase has also been molecular modified. The main results as follows:
     1. The pNPB hydrolase was purified from cutin-induced culture supernatant of T. fusca through ammonium sulfate precipitation, hydrophobic interaction (Phenyl Sepharose) and anion exchange (DEAE Sepharose) chromatography. The purified enzyme exhibited a high specific activity of 398.6 units/mg for pNPB. The purification fold is 7.6 and recovery yield is 9.3%. F. solani pisi cutinase was purified from supernatant of recombinant Bacillus subtilis through ammonium sulfate precipitation, hydrophobic interaction (Phenyl Sepharose) and cation exchange (CM Sepharose) chromatography. Two purified enzymes were used to hydrolyze apple cutin and the production were determined by GC/MS. It was found that both enzymes exhibited activity for cutin hydrolysis, yielding comparable fatty acid monomers.
     2. The purified T. fusca pNPB hydrolase was identified by Peptide Mass Fingerprinting Analysis, resulting in two significant matches, Tfu_0883 and Tfu_0882. The N-terminal amino acids were ANPYERGPN by sequencing. The gene encoding the mature form of Tfu_0882 and Tfu_0883 were amplified from T. fusca genomic DNA by PCR. The vector pET-20b(+) were chosen for expression, which contains a C-terminal His6-tag and a signal peptide PelB allowing the heterologously expressed proteins to be secreted. The constructed plasmid pET-20b/cutinase were expressed in E. coli BL21(DE3). The pNPB hydrolase activity of recombinant Tfu_0882 and Tfu_0883 in culture supernatant were 52.5 U/ml and 90.6 U/ml, which were 4.37 and 7.56-fold higher than that of cutin-induced T. fusca cells. The recombinant enzymes were purified to homogeneity in a single step by nickel affinity chromatography and exhibited a specific activity of 458.21 units/mg for Tfu_0883 and 223.13 units/mg for Tfu_0882. Both recombinant enzymes can hydrolyze cutin to release monomers. Tfu_0883 and Tfu_0882 is the encoding gene of T. fusca cutinase
     3. The effect of IPTG induction concentration and temperature on the production of recombinant Tfu_0883 were determined. It was found that without IPTG induction and culture cell at 25°C for 80 h, the pNPB hydrolase activity in the culture supernatant was 130.52 U/ml. In addition, there was a lot amount of recombinant protein accumulated in periplasm. So that the transformation of recombinant protein out of outer membrane became the limiting-step of secretion. Adding additives and changing the environment condition to accelerate the secretion of recombinant protein is effective. The study showed that, adding 100 mM glycine and 1mM TDOC at mid-log growth phase could advance the peak of activity from 80 h to 54 h. Culturing the cell at 25°C until late-log growth phase, then increased the temperature to 37°C, in this way, the peak of activity can be advanced from 80 h to 62 h.
     4. Recombinant Tfu_0882, Tfu_0883 and F. solani pisi cutinase were all determined to be monomeric in solution. Tfu_0882 and Tfu_0883 exhibited an optimal temperature at 60°C and superior thermostability, while F. solani pisi cutinase displayed an optimal temperature at 40°C and significantly less stable. Furthermore, all three enzymes exhibited a pH optimum of about 8.0 and pH stability range is 6.0-9.0. Three enzymes can hydrolyze soluble synthetic esters, insoluble triglycerides and polyesters. They all prefered short chain substrate and showed no substrate position specificity. F. solani pisi cutinase exhibiting the highest affinity and the highest catalytic efficiency for pNPB. In addition, F. solani pisi cutinase exhibited the highest activity toward PET, while Tfu_0883 exhibited less activity. Three enzymes did not possess interfacial activation phenomenon, did not require divalent cations for activity. Mn active the three enzymes while Cr and Hg inhibited enzyme activity intensely. Triton X-100 and Tween 20 inhibited the activity of Tfu_0882 and Tfu_0883 while SDS inhibited all the three enzymes in competitive way. TDOC active the F. solani pisi cutinase greatly. Tfu_0882 and Tfu_0883 demonstrated great stability in many organic solvents such as mathol and ethnol while F. solani pisi cutinase is less stable in organic solvents.
     5. A homology model of Tfu_0882 and Tfu_0883 based on Streptomyces exfoliates lipase structure was constructed by the SWISS-MODEL homology-modeling web server. The predicted structure exhibits anα/βhydrolase fold of both two enzymes. In addition, it revealed a S170-H248-D216 catalytic triad for Tfu_0883 and S188- H266-D234 catalytic triad for Tfu_0882. Both two enzymes do not contain a lid insertion which resulting in a nucleophilic serine exposed to the solvent. The Tfu_0882 and Tfu_0883 genes are sequential in the genome and belong to separate operons. There is no synergism between the two enzymes in the degradation of cutin. Based on the structure model and rational analysis, the mutation enzymes Tfu_0883-I218A, Tfu_0883-W195A/F249A and Tfu_0883-Q132A/T101A were constructed. The study of catalysis properties showed that mutants exhibited no significant effect on low molecular weigh substrate. Mutants Tfu_0883-I218A and Tfu_0883-Q132A/T101A showed higher ability in hydrolyzing cutin. Tfu_0883-Q132A/ T101A exhibited obviously higher hydrolysis ability on PET polymer.
引文
[1] Kolattukudy P E. Biopolyester Membranes of Plants: Cutin and Suberin[J]. Science, 1980,208:990-1000.
    [2] Hull H M. Leaf structure as related to absorption of pesticides and other compounds[J]. Residue Rev, 1970,31:1-150.
    [3] Walton T J, Kolattukudy P E. Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry[J]. Biochemistry, 1972,11:1885-1896.
    [4] Osman S F, Irwin P, Fett W F, et al. Preparation, isolation, and characterization of cutin monomers and oligomers from tomato peels[J]. J Agric Food Chem, 1999,47:799-802.
    [5] Kolattukudy P E. Structure, biosynthesis, and biodegradation of cutin and suberin.[J]. Ann Rev Plant Physiol, 1981,32:539-567.
    [6] Himmelsbach D S, Akin D E, Ian Hardin J K. Chemical structural investigation of the cotton fiber base and associated seed coat: Fourier-transform infrared mapping and histochemistry[J]. Text Res J, 2003,73
    [7] Csiszár E, Szakács G, Koczka B. Biopreparation of cotton fabric with enzymes produced by solid-state fermentation. [J]. Enzyme Microb Technol, 2007,40:1765-1771.
    [8] Nardini M, Dijkstra B W. Alpha/beta hydrolase fold enzymes: the family keeps growing[J]. Curr Opin Struct Biol, 1999,9:732-737.
    [9] Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms[J]. Curr Protein Pept Sci, 2000,1:209-235.
    [10] Kolattukudy P E, Purdy R E, Maiti I B. cutinases from fungi and pollen[J]. Methods in Enzymology, 1981,71:652-664.
    [11] Purdy R E, Kolattukudy P E. Hydrolysis of plant cuticle by plant pathogens. Properties of cutinase I, cutinase II, and a nonspecific esterase isolated from Fusarium solani pisi[J]. Biochemistry, 1975,14:2832-2840.
    [12] Maiti I B, Kolattukudy P E. Prevention of Fungal Infection of Plants by Specific Inhibition of Cutinase[J]. Science, 1979,205:507-508.
    [13] Shaykh M, Soliday C, Kolattukudy P E. Proof for the Production of Cutinase by Fusarium solani f. pisi during Penetration into Its Host, Pisum sativum[J]. Plant Physiol, 1977,60:170-172.
    [14] Shayk M, Kolattukudy P E. Production of a Novel Extracellular Cutinase by the Pollen and the Chemical Composition and Ultrastructure of the Stigma Cuticle of Nasturtium (Tropaeolum majus)[J]. Plant Physiol, 1977,60:907-915.
    [15] Heslop-Harrison J. The physiology of the pollen grain surface[J]. Proc R Soc Lond B Biol Sci, 1975,190:275-299.
    [16] Lienqueo M E, Salazar O, Henriquez K, et al. Prediction of retention time of cutinases tagged with hydrophobic peptides in hydrophobic interaction chromatography[J]. J Chromatogr A, 2007,1154:460-463.
    [17] Gindro K, Pezet R. Purification and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers.: Fr[J]. FEMS Microbiol Lett, 1999,171:239-243.
    [18] Chen Z, Franco C F, Baptista R P, et al. Purification and identification of cutinases from Colletotrichum kahawae and Colletotrichum gloeosporioides[J]. Appl Microbiol Biotechnol, 2007,73:1306-1313.
    [19] Purdy R E, Kolattukudy P E. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme[J]. Arch Biochem Biophys, 1973,159:61-69.
    [20] Pio T F, Macedo G A. Cutinase production by Fusarium oxysporum in liquid medium using central composite design[J]. J Ind Microbiol Biotechnol, 2008,35:59-67.
    [21] Goncalves A P V, Lopes J M, Lemos F, et al. Zeolites as supports for enzymatic hydrolysis reactions. Comparative study of several zeolites.[J]. J Mol Catal B Enzyme, 1996,1:53-60.
    [22] Munoz C I, Bailey A M. A cutinase-encoding gene from Phytophthora capsici isolated by differential-display RT-PCR[J]. Curr Genet, 1998,33:225-230.
    [23] Bonnen A M, Hammerchmidt R. Cutinolytic enzymes from Colletotrichum lagenarium.[J]. Physiol Mol Plant Pathol, 1989,35:463-474.
    [24] Machida M, Asai K, Sano M, et al. Genome sequencing and analysis of Aspergillus oryzae[J]. Nature, 2005,438:1157-1161.
    [25] Maeda H, Yamagata Y, Abe K, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2005,67:778-788.
    [26] Wang G Y, Michailides T J, Hammock B D, et al. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey[J]. Fungal Genet Biol, 2002,35:261-276.
    [27] Koller W, Parker D M. Purification and Characterization of Cutinase from Venturia inaequalis[J].Phytopathology, 1989,79:278-283.
    [28] Koller W, Trail F, Parker D M. Ebelactones inhibit cutinases produced by fungal plant pathogens[J]. J Antibiot (Tokyo), 1990,43:734-735.
    [29] Trail F, Koller W. Diversity of cutinases from plant pathogenic fungi: purification characterization of two cutinases from Alternaria brassicicola[J]. Physiol Mol Plant Pathol, 1993,42:205-220.
    [30] Egmond M R, van Bemmel C J. Impact of structural information on understanding lipolytic function[J]. Methods Enzymol, 1997,284:119-129.
    [31] Tenhaken R, Arnemann M, Kohler G, et al. Characterization and cloning of cutinase from Ascochyta rabiei[J]. Z Naturforsch [C], 1997,52:197-208.
    [32] Daviesa K A, De Loronoa I, Fosterb S J, et al. Evidence for a role of cutinase in pathogenicity of Pyrenopeziza brassicae on brassicas[J]. Physiological and Molecular Plant Pathology, 2000,57:63-75.
    [33] Calado C R, Monteiro S M, Cabral J M, et al. Effect of pre-fermentation on the production of cutinase by a recombinant Saccharomyces cerevisiae[J]. J Biosci Bioeng, 2002,93:354-359.
    [34] Hunsen M, Abul A, Xie W, et al. Humicola insolens cutinase-catalyzed lactone ring-opening polymerizations: kinetic and mechanistic studies[J]. Biomacromolecules, 2008,9:518-522.
    [35] Lin T S, Kolattukudy P E. Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N terminus[J]. Eur J Biochem, 1980:341-351.
    [36] Fett W F, Gerard H C, Moreau R A, et al. Cutinase production by Streptomycs sp.[J]. Curr Microbiol, 1992,25:165-171.
    [37] Sebastian J, Kolattukudy P E. Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere[J]. Arch Biochem Biophys, 1988,263:77–85.
    [38] Sebastian J, Chandra A K, Kolattukudy P E. Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere[J]. J Bacteriol, 1987,169:131-136.
    [39] Kim Y H, Lee J, Moon S H. Uniqueness of microbial cutinases in hydrolysis of pnitrophenyl esters[J]. J Microbiol Biotechnol, 2003,13:57-63.
    [40] Fett W F, Gerard H C, Moreau R A, et al. Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes[J]. Appl Environ Microbiol, 1992,58:2123-2130.
    [41] Fett W F, Wijey C, Moreau R A, et al. Production of cutinase by Thermomonospora fusca ATCC 27730.[J]. J Appl Microbiol, 1999,86:561-568.
    [42] Fett W F, Wijey C, Moreau R A, et al. Production of cutinolytic esterase by filamentous bacteria[J]. Lett Appl Microbiol, 2000,31:25-29.
    [43] Maiti I B, Kolattukudy P E, Shaykh M. Purification and characterization of novel cutinase from nasturtium (Tropaeolum majus) pollen[J]. Arch Biochem Biophys, 1979,196:412-423.
    [44] Wang G Y, Michailides T J, Hammock B D, et al. Affinity purification and characterization of a cutinase from the fungal plant pathogen Monilinia fructicola (Wint.) honey[J]. Arch Biochem Biophys, 2000,382:31-38.
    [45] Arpigny J L, Jaeger K E. Bacterial lipolytic enzymes: classification and properties[J]. Biochem J, 1999,343 Pt 1:177-183.
    [46] Lamare S, Lortie R, Legoy M D. Kinetic studies of Fusarium solani pisi cutinase used in a gas/solid system: Transesterification and hydrolysis reactions[J]. Biotechnol Bioeng, 1997,56:1-8.
    [47] Mannesse M L M, Cox R C, Koops B C, et al. Cutinase from Fusarium solani pisi hydrolyzing triglyceride analogues. Effect of acyl chain length and position in the substrate molecule on activity and enantioselectivity.[J]. Biochemistry, 1995,34:6400-6407.
    [48] Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme[J]. Biochim Biophys Acta, 1999,1441:185-196.
    [49] Longhi S, Czjzek M, Lamzin V, et al. Atomic resolution (1.0 A) crystal structure of Fusarium solani cutinase: stereochemical analysis[J]. J Mol Biol, 1997,268:779-799.
    [50] Longhi S, Nicolas A, Creveld L, et al. Dynamics of Fusarium solani cutinase investigated through structural comparison among different crystal forms of its variants[J]. Proteins, 1996,26:442-458.
    [51] Longhi S, Mannesse M, Verheij H M, et al. Crystal structure of cutinase covalently inhibited by a triglyceride analogue[J]. Protein Sci, 1997,6:275-286.
    [52] Martinez C, De Geus P, Lauwereys M, et al. Fusarium solani cutinase is a lipolytic enzyme with a catalytic serine accessible to solvent[J]. Nature, 1992,356:615-618.
    [53] Jelsch C, Longhi S, Cambillau C. Packing forces in nine crystal forms of cutinase[J]. Proteins, 1998,31:320-333.
    [54] Martinez C, de Geus P, Stanssens P, et al. Engineering cysteine mutants to obtain crystallographic phases with a cutinase from Fusarium solani pisi[J]. Protein Eng, 1993,6:157-165.
    [55] Martinez C, Nicolas A, van Tilbeurgh H, et al. Cutinase, a lipolytic enzyme with a preformed oxyanion hole[J]. Biochemistry, 1994,33:83-89.
    [56] Prange T, Schiltz M, Pernot L, et al. Exploring hydrophobic sites in proteins with xenon or krypton[J]. Proteins, 1998,30:61-73.
    [57] Brzozowski A M, Derewenda U, Derewenda Z S, et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex[J]. Nature, 1991,351:491-494.
    [58] Dodson G, Wlodawer A. Catalytic triads and their relatives[J]. Trends Biochem Sci, 1998,23:347-352.
    [59] Flipsen J A, van der Hijden H T, Egmond M R, et al. Action of cutinase at the triolein-water interface. Characterisation of interfacial effects during lipid hydrolysis using the oil-drop tensiometer as a tool to study lipase kinetics[J]. Chem Phys Lipids, 1996,84:105-115.
    [60] Jaeger K E, Ransac S, Dijkstra B W, et al. Bacterial lipases[J]. FEMS Microbiol Rev, 1994,15:29-63.
    [61] Parvaresh F, Robert H, Thomas D, et al. Gas phase transesterification reactions catalyzed by lipolytic enzymes[J]. Biotechnol Bioeng, 1992,39:467-473.
    [62] Chang B V, Yang C M, Cheng C H, et al. Biodegradation of phthalate esters by two bacteria strains[J]. Chemosphere, 2004,55:533-538.
    [63] Barlas N E. Toxicological assessment of biodegraded malathion in albino mice[J]. Bull Environ Contam Toxicol, 1996,57:705-712.
    [64] Kim Y H, Ahn J Y, Moon S H, et al. Biodegradation and detoxification of organophosphate insecticide, malathion by Fusarium oxysporum f. sp. pisi cutinase[J]. Chemosphere, 2005,60:1349–1355.
    [65] Pocalyko D J, Tallman M. Effects of amphipaths on the activity and stability of Fusarium solani pisi cutinase[J]. Enzyme and Microbial Technology, 1998,22:647-651.
    [66] Teles F R R, Cabral J M S, Santos J A L. Enzymatic degreasing of a solid waste from the leather industry by lipases.[J]. Biotechnol Lett, 2001,23:1159–1163.
    [67] Cunnah P J, Aires-Barros M R, Cabral J M S. Esterification and transesterification catalysed by cutinase in reverse micelles of CTAB for the synthesis of short chain esters.[J]. Biocatal Biotransform, 1996:125-146.
    [68] Serralha F N, Lopes J M, Lemos F, et al. Zeolites as supports for an enzymatic alcoholysis reaction[J]. J Mol Catal B Enzyme 1998:303-311.
    [69] Royon D, Daz M, Ellenrieder G, et al. Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent[J]. Bioresour Technol, 2007,98:648-653.
    [70] Carvalho C M L, Serralheiro M L M, Cabral J M S, et al. Application of factorial design to the study of transesterification reactions using cutinase in AOT-reversed micelles.[J]. Enzyme and Microbiological Technology, 1997,21:117-123.
    [71] Degani O, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J]. Appl Biochem Biotechnol, 2002,102-103:277-289.
    [72] Vertommen M A, Nierstrasz V A, Veer M, et al. Enzymatic surface modification of poly(ethyleneterephthalate)[J]. J Biotechnol, 2005,120:376-386.
    [73] Alisch M M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi[J]. Biotechnol Lett, 2006,28:681-685.
    [74] Hooker J, Hinks D, Montero G, et al. Enzyme-catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer[J]. Journal of Applied Polymer Sciences, 2002,89:2545-2552.
    [75] Drablos F, Petersen S B. Identification of conserved residues in family of esterase and lipase sequences[J]. Methods Enzymol, 1997,284:28-61.
    [76] Petersen S B, Drablos F, Petersen M T, et al. Identification of important motifs in protein sequences: program MULTIM and its applications to lipase-related sequences[J]. Methods Enzymol, 1997,284:61-85.
    [77] Weisenborn P C, Meder H, Egmond M R, et al. Photophysics of the single tryptophan residue in Fusarium solani Cutinase: evidence for the occurrence of conformational substates with unusual fluorescence behaviour[J]. Biophys Chem, 1996,58:281-288.
    [78] Lin T S, Kolattukudy P E. Structural studies on cutinase, a glycoprotein containing novel amino acids and glucuronic acid amide at the N terminus[J]. Eur J Biochem, 1980,106:341-351.
    [79] Egmond M R, de Vlieg J. Fusarium solani pisi cutinase[J]. Biochimie, 2000,82:1015-1021.
    [80] van Gemeren I A, Beijersbergen A, van den Hondel C A, et al. Expression and secretion of defined cutinase variants by Aspergillus awamori[J]. Appl Environ Microbiol, 1998,64:2794-2799.
    [81] Nicolas A, Egmond M, Verrips C T, et al. Contribution of cutinase serine 42 side chain to the stabilization of the oxyanion transition state[J]. Biochemistry, 1996,35:398-410.
    [82] Soliday C L, Kolattukudy P E. Primary structure of the active site region of fungal cutinase, an enzyme involved in phytopathogenesis[J]. Biochem Biophys Res Commun, 1983,114:1017-1022.
    [83] Prompers J J, Groenewegen A, Hilbers C W, et al. Backbone dynamics of Fusarium solani pisi cutinase probed by nuclear magnetic resonance: the lack of interfacial activation revisited[J]. Biochemistry, 1999,38:5315-5327.
    [84] Prompers J J, Hilbers C W, Pepermans H A. Tryptophan mediated photoreduction of disulfide bond causes unusual fluorescence behaviour of Fusarium solani pisi cutinase[J]. FEBS Lett, 1999,456:409-416.
    [85] Prompers J J, van Noorloos B, Mannesse M L, et al. NMR studies of Fusarium solani pisi cutinase in complex with phosphonate inhibitors[J]. Biochemistry, 1999,38:5982-5994.
    [86] Egmond M R, Antheunisse W P, Ravestein P, et al. Engineering surface charges in a subtilisin[J]. Adv Exp Med Biol, 1996,379:219-228.
    [87] Petersen M T, Martel P, Petersen E I, et al. Surface and electrostatics of cutinases[J]. Methods Enzymol, 1997,284:130-154.
    [88] van Gemeren I A, Musters W, van den Hondel C A, et al. Construction and heterologous expression of a synthetic copy of the cutinase cDNA from Fusarium solani pisi[J]. J Biotechnol, 1995,40:155-162.
    [89] van Gemeren I A, Beijersbergen A, Musters W, et al. The effect of pre- and pro-sequences and multicopy integration on heterologous expression of the Fusarium solani pisi cutinase gene in Aspergillus awamori[J]. Appl Microbiol Biotechnol, 1996,45:755-763.
    [90] Park S J, Georgiou G, Lee S Y. Secretory Production of Recombinant Protein By a High- Cell Density Culture of a Protease Negative Mutant Escherichia coli[J]. Biotechnol Prog, 1999,15:164-167.
    [91] Calado C R, Mannesse M, Egmond M, et al. Production of wild-type and peptide fusion cutinases by recombinant Saccharomyces cerevisiae MM01 strains[J]. Biotechnol Bioeng, 2002,78:692-698.
    [92] Cunha M T, Costa M J, Calado C R, et al. Integration of production and aqueous two-phase systems extraction of extracellular Fusarium solani pisi cutinase fusion proteins[J]. J Biotechnol, 2003,100:55-64.
    [93] Ferreira B S, Calado C R, van Keulen F, et al. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects[J]. Appl Microbiol Biotechnol, 2003,61:69-76.
    [94] Lienqueo M E, Salazar O, Calado C R, et al. Influence of tryptophan tags on the purification of cutinase, secreted by a recombinant Saccharomyces cerevisiae, using cationic expanded bed adsorption and hydrophobic interaction chromatography[J]. Biotechnol Lett, 2008,30:1353-1358.
    [95] Calado C R, Almeida C, Cabral J M, et al. Development of a fed-batch cultivation strategy for the enhanced production and secretion of cutinase by a recombinant Saccharomyces cerevisiae SU50 strain[J]. J Biosci Bioeng, 2003,96:141-148.
    [96] Calado C R, Ferreira B S, da Fonseca M M, et al. Integration of the production and the purification processes of cutinase secreted by a recombinant Saccharomyces cerevisiae SU50 strain[J]. J Biotechnol, 2004,109:147-158.
    [1] Alisch M M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi[J]. Biotechnol Lett, 2006,28:681-685.
    [2] Degani O, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J]. Appl Biochem Biotechnol, 2002,102-103:277-289.
    [3] Maeda H, Yamagata Y, Abe K, et al. Purification and characterization of a biodegradable plastic-degrading enzyme from Aspergillus oryzae[J]. Appl Microbiol Biotechnol, 2005,67:778-788.
    [4] Vertommen M A, Nierstrasz V A, Veer M, et al. Enzymatic surface modification of poly(ethylene terephthalate)[J]. J Biotechnol, 2005,120:376-386.
    [5] Egmond M R, de Vlieg J. Fusarium solani pisi cutinase[J]. Biochimie, 2000,82:1015-1021.
    [6] Gindro K, Pezet R. Purification and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers.: Fr[J]. FEMS Microbiol Lett, 1999,171:239-243.
    [7] Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme[J]. Biochim Biophys Acta, 1999,1441:185-196.
    [8] Wang G Y, Michailides T J, Hammock B D, et al. Affinity purification and characterization of a cutinase from the fungal plant pathogen Monilinia fructicola (Wint.) honey[J]. Arch Biochem Biophys, 2000,382:31-38.
    [9] Wang G Y, Michailides T J, Hammock B D, et al. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey[J]. Fungal Genet Biol, 2002,35:261-276.
    [10] Fett W F, Gerard H C, Moreau R A, et al. Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes[J]. Appl Environ Microbiol, 1992,58:2123-2130.
    [11] Sebastian J, Chandra A K, Kolattukudy P E. Discovery of a cutinase-producing Pseudomonas sp. cohabiting with an apparently nitrogen-fixing Corynebacterium sp. in the phyllosphere[J]. J Bacteriol, 1987,169:131-136.
    [12] Sebastian J, Kolattukudy P E. Purification and characterization of cutinase from a fluorescent Pseudomonas putida bacterial strain isolated from phyllosphere[J]. Arch Biochem Biophys, 1988,263:77-85.
    [13]毕凤珍,师俊玲,李寅等. Thermobifida fusca产角质酶摇瓶发酵条件研究[J].应用与环境生物学报, 2005,11:608-610.
    [14]张守亮,陈坚,华兆哲等.角质酶产生菌Thermobifida fusca WSH03-11诱变及高产突变株发酵条件优化[J].化工进展, 2006,25:533-537.
    [15] Du G C, Zhang S L, Hua Z Z, et al. Enhanced cutinase production with Thermobifida fusca by two-stage pH control strategy[J]. Biotechnol J, 2007,2:365-369.
    [16] Osman S F, Irwin P, Fett W F, et al. Preparation, isolation, and characterization of cutin monomers and oligomers from tomato peels[J]. J Agric Food Chem, 1999,47:799-802.
    [17] Purdy R E, Kolattukudy P E. Depolymerization of a hydroxy fatty acid biopolymer, cutin, by an extracellular enzyme from Fusarium solani f. pisi: isolation and some properties of the enzyme[J]. Arch Biochem Biophys, 1973,159:61-69.
    [18] Walton T J, Kolattukudy P E. Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry[J]. Biochemistry, 1972,11:1885-1896.
    [1] Degani O, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J]. Appl Biochem Biotechnol, 2002,102-103:277-289.
    [2] Fett W F, Gerard H C, Moreau R A, et al. Screening of Nonfilamentous Bacteria for Production of Cutin-Degrading Enzymes[J]. Appl Environ Microbiol, 1992,58:2123-2130.
    [3] Choi J H, Lee S Y. Secretory and extracellular production of recombinant proteins using Escherichia coli[J]. Appl Microbiol Biotechnol, 2004,64:625-635.
    [4] Sorensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotechnol, 2005,115:113-128.
    [5] Park S J, Georgiou G, Lee S Y. Secretory Production of Recombinant Protein By a High- Cell Density Culture of a Protease Negative Mutant Escherichia coli[J]. Biotechnol Prog, 1999,15:164-167.
    [6] Sambrook J, Frisch E F, Maniatis T. Molecular Cloning : A Laboratory Manual[J]. New York : Cold Spring Harbor Laboratory Press, 1989
    [7] Lykidis A, Mavromatis K, Ivanova N, et al. Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX[J]. J Bacteriol, 2007,189:2477-2486.
    [8] Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms[J]. Curr Protein Pept Sci, 2000,1:209-235.
    [9] Nardini M, Dijkstra B W. Alpha/beta hydrolase fold enzymes: the family keeps growing[J]. Curr Opin Struct Biol, 1999,9:732-737.
    [10] Arpigny J L, Jaeger K E. Bacterial lipolytic enzymes: classification and properties[J]. Biochem J, 1999,343 Pt 1:177-183.
    [11] Jaeger K E, Ransac S, Dijkstra B W, et al. Bacterial lipases[J]. FEMS Microbiol Rev, 1994,15:29-63.
    [12] Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme[J]. Biochim Biophys Acta, 1999,1441:185-196.
    [13] Dresler K, van den Heuvel J, Muller R J, et al. Production of a recombinant polyester-cleaving hydrolase from Thermobifida fusca in Escherichia coli[J]. Bioprocess Biosyst Eng, 2006,29:169-183.
    [14] Kleeberg I, Welzel K, Vandenheuvel J, et al. Characterization of a new extracellular hydrolase from Thermobifida fusca degrading aliphatic-aromatic copolyesters[J]. Biomacromolecules, 2005,6:262-270.
    [15] Zheng L, Baumann U, Reymond J L. An efficient one-step site-directed and site-saturation mutagenesis protocol[J]. Nucleic Acids Res, 2004,32:e115.
    [16] Walton T J, Kolattukudy P E. Determination of the structures of cutin monomers by a novel depolymerization procedure and combined gas chromatography and mass spectrometry[J]. Biochemistry, 1972,11:1885-1896.
    [1] Badyakina A O, Nesmeyanova M A. Biogenesis and secretion of overproduced protein in recombinant strains of Escherichia coli[J]. Process Biochemistry, 2005,40:509–518.
    [2] Jana S, Deb J K. Strategies for efficient production of heterologous proteins in Escherichia coli[J]. Appl Microbiol Biotechnol, 2005,67:289-298.
    [3] Mergulhao F J, Summers D K, Monteiro G A. Recombinant protein secretion in Escherichia coli[J]. Biotechnol Adv, 2005,23:177-202.
    [4] Blight M A, Chervaux C, Holland I B. Protein secretion pathway in Escherichia coli[J]. Curr Opin Biotechnol, 1994,5:468-474.
    [5] Choi J H, Lee S Y. Secretory and extracellular production of recombinant proteins using Escherichia coli[J]. Appl Microbiol Biotechnol, 2004,64:625-635.
    [6] Jena B P. Secretion machinery at the cell plasma membrane[J]. Curr Opin Struct Biol, 2007,17:437-443.
    [7] Makrides S C. Strategies for achieving high-level expression of genes in Escherichia coli[J]. Microbiol Rev, 1996,60:512-538.
    [8] Lehrer R I, Barton A, Ganz T. Concurrent Assessment of Inner and Outer Membrane Permeabilization and Bacteriolysis in E.coli by Multiple-wavelength Spectrophotometry[J]. Immunol Methods, 1988,108:153-158.
    [9] Loh B, Grant C, Hancock R E. Use of the Fluorescent Probe 1-N-Phenylnaphthylamine to Study theInteractions of Aminoglycoside Antibiotics with the Outer Membrane of Pseudomonas aeruginosa[J]. Antimicrob Agents Chemother, 1984,26:546-551.
    [10] Jin H H, Han N S, Kweon D H, et al. Effects of Environmental Factors on In Vivo Folding of Bacillus macerans Cyclodextrin Glycosyltransferase in Recombinant Escherichia coli[J]. J Microbiol Biotechnol, 2001,11:92-96.
    [11] Park S J, Georgiou G, Lee S Y. Secretory Production of Recombinant Protein By a High- Cell Density Culture of a Protease Negative Mutant Escherichia coli[J]. Biotechnol Prog, 1999,15:164-167.
    [12] Sorensen H P, Mortensen K K. Advanced genetic strategies for recombinant protein expression in Escherichia coli[J]. J Biotechnol, 2005,115:113-128.
    [13] Jin W, Takada S. Asymmetry in membrane protein sequence and structure: glycine outside rule[J]. J Mol Biol, 2008,377:74-82.
    [14] Tang J B, Yang H M, Song S L, et al. Effect of Glycine and Triton X-100 on secretion and expression of ZZ–EGFP fusion protein[J]. Food Chemistry, 2008,108:657–662.
    [15] Hammes W, Schleifer K H, Kandler O. Mode of action of glycine on the biosynthesis of peptidoglycan[J]. J Bacteriol, 1973,116:1029-1053.
    [16] Aristidou A A, Yu P, San K Y. Effects of glycine supplement on protein production and release in recombinant Escherichia coli[J]. Biotechnology Letters, 1993,15:331-336.
    [17] Kaderbhai N, Karim A, Hankey W, et al. Glycine-induced extracellular secretion of a recombinant cytochrome expressed in Escherichia coli[J]. Biotechnol Appl Biochem, 1997,25 ( Pt 1):53-61.
    [18] Reese E T, Maguire A. Surfactants as stimulants of enzyme production by microorganisms[J]. Appl Microbiol, 1969,17:242-245.
    [19] Pugsley A P, Francetic O, Possot O M, et al. Recent progress and future directions in studies of the main terminal branch of the general secretory pathway in Gram-negative bacteria--a review[J]. Gene, 1997,192:13-19.
    [20] Yang J, Moyana T, MacKenzie S, et al. One hundred seventy-fold increase in excretion of an FV fragment-tumor necrosis factor alpha fusion protein (sFV/TNF-alpha) from Escherichia coli caused by the synergistic effects of glycine and triton X-100[J]. Appl Environ Microbiol, 1998,64:2869-2874.
    [21] Rinas U, Hoffmann F. Selective leakage of host-cell proteins during high-cell-density cultivation of recombinant and non-recombinant Escherichia coli[J]. Biotechnol Prog, 2004,20:679-687.
    [22] Dominguez D C. Calcium signalling in bacteria[J]. Mol Microbiol, 2004,54:291-297.
    [23] Onoda T, Enokizono J, Kaya H, et al. Effects of calcium and calcium chelators on growth and morphology of Escherichia coli L-form NC-7[J]. J Bacteriol, 2000,182:1419-1422.
    [24] Hauben K J, Bernaerts K, Michiels C W. Protective effect of calcium on inactivation of Escherichia coli by high hydrostatic pressure[J]. J Appl Microbiol, 1998,85:678-684.
    [25] Smith R J. Calcium and bacteria[J]. Adv Microb Physiol, 1995,37:83-133.
    [26] Norris V, Chen M, Goldberg M, et al. Calcium in bacteria: a solution to which problem?[J]. Mol Microbiol, 1991,5:775-778.
    [27] Norris V, Grant S, Freestone P, et al. Calcium signalling in bacteria[J]. J Bacteriol,1996,178:3677-3682.
    [28] Jang K H, Seo J W, Song K B, et al. Extracellular secretion of levansucrase from Zymomonas mobilis in Escherichia coli[J]. Bioprocess and Biosystems Engineering, 1999,21:453-458.
    [1] Gindro K, Pezet R. Purification and characterization of a 40.8-kDa cutinase in ungerminated conidia of Botrytis cinerea Pers.: Fr[J]. FEMS Microbiol Lett, 1999,171:239-243.
    [2] Wang G Y, Michailides T J, Hammock B D, et al. Affinity purification and characterization of a cutinase from the fungal plant pathogen Monilinia fructicola (Wint.) honey[J]. Arch Biochem Biophys, 2000,382:31-38.
    [3] Wang G Y, Michailides T J, Hammock B D, et al. Molecular cloning, characterization, and expression of a redox-responsive cutinase from Monilinia fructicola (Wint.) Honey[J]. Fungal Genet Biol, 2002,35:261-276.
    [4] Egmond M R, de Vlieg J. Fusarium solani pisi cutinase[J]. Biochimie, 2000,82:1015-1021.
    [5] Hooker J, Hinks D, Montero G, et al. Enzyme-catalyzed hydrolysis of poly(ethylene terephthalate) cyclic trimer[J]. Journal of Applied Polymer Sciences, 2002,89:2545-2552.
    [6] Liu J, Lee T, Bobik E, et al. Quantitative determination of monoglycerides and diglycerides by high-performance liquid chromatography and evaporative light-scattering detection [J]. Journal of the American Oil Chemists' Society, 1993,70:343-347.
    [7] Nini L, Sarda L, Comeau L C, et al. Lipase-catalysed hydrolysis of short-chain substrates in solution and in emulsion: a kinetic study[J]. Biochim Biophys Acta, 2001,1534:34-44.
    [8] Degani O, Gepstein S, Dosoretz C G. Potential use of cutinase in enzymatic scouring of cotton fiber cuticle[J]. Appl Biochem Biotechnol, 2002,102-103:277-289.
    [9] Alisch M M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi[J]. Biotechnol Lett, 2006,28:681-685.
    [10] Vertommen M A, Nierstrasz V A, Veer M, et al. Enzymatic surface modification of poly(ethylene terephthalate)[J]. J Biotechnol, 2005,120:376-386.
    [11] Lescica I, Vukelica B, Elenkova M M, et al. Substrate specificity and effects of water-miscible solvents on the activity and stability of extracellular lipase from Streptomyces rimosus[J]. Enzyme and Microbial Technology, 2001,29:548-553.
    [12] Angkawidjaja C, You D J, Matsumura H, et al. Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation[J]. FEBS Lett, 2007,581:5060-5064.
    [13] Ferrato F, Carriere F, Sarda L, et al. A critical reevaluation of the phenomenon of interfacial activation[J]. Methods Enzymol, 1997,286:327-347.
    [14] Brzozowski A M, Derewenda U, Derewenda Z S, et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex[J]. Nature, 1991,351:491-494.
    [15] Brzozowski A M, Savage H, Verma C S, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase[J]. Biochemistry, 2000,39:15071-15082.
    [16] Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme[J]. Biochim Biophys Acta, 1999,1441:185-196.
    [17] Pocalyko D J, Tallman M. Effects of amphipaths on the activity and stability of Fusarium solani pisi cutinase[J]. Enzyme and Microbial Technology, 1998,22:647-651.
    [18] Creveld L D, Meijberg W, Berendsen H J, et al. DSC studies of Fusarium solani pisi cutinase: consequences for stability in the presence of surfactants[J]. Biophys Chem, 2001,92:65-75.
    [19] Cunnah P J, Aires-Barros M R, Cabral J M S. Esterification and transesterification catalysed by cutinase in reverse micelles of CTAB for the synthesis of short chain esters.[J]. Biocatal Biotransform, 1996:125-146.
    [20] Serralha F N, Lopes J M, Lemos F, et al. Zeolites as supports for an enzymatic alcoholysis reaction[J]. J Mol Catal B Enzyme 1998:303-311.
    [1] Holmquist M. Alpha/Beta-hydrolase fold enzymes: structures, functions and mechanisms[J]. Curr Protein Pept Sci, 2000,1:209-235.
    [2] Wei Y, Swenson L, Castro C, et al. Structure of a microbial homologue of mammalian platelet-activating factor acetylhydrolases: Streptomyces exfoliatus lipase at 1.9 A resolution[J]. Structure, 1998,6:511-519.
    [3] Schwede T, Kopp J, Guex N, et al. SWISS-MODEL: An automated protein homology-modeling server[J]. Nucleic Acids Res, 2003,31:3381-3385.
    [4] Longhi S, Mannesse M, Verheij H M, et al. Crystal structure of cutinase covalently inhibited by a triglyceride analogue[J]. Protein Sci, 1997,6:275-286.
    [5] Longhi S, Czjzek M, Lamzin V, et al. Atomic resolution (1.0 A) crystal structure of Fusarium solani cutinase: stereochemical analysis[J]. J Mol Biol, 1997,268:779-799.
    [6] Nardini M, Dijkstra B W. Alpha/beta hydrolase fold enzymes: the family keeps growing[J]. Curr Opin Struct Biol, 1999,9:732-737.
    [7] Carvalho C M L, Aires-Barros M R, Cabral J M S. Cutinase structure, function and biocatalytic applications[J]. ElectronJ Biotechnol, 1998,1:91-113.
    [8] Carvalho C M L, Aires-Barros M R, Cabral J M S. Cutinase: from molecular level to bioprocess development[J]. Biotechnol Bioeng, 1999,66:17-34.
    [9] Dodson G, Wlodawer A. Catalytic triads and their relatives[J]. Trends Biochem Sci, 1998,23:347-352.
    [10] Arpigny J L, Jaeger K E. Bacterial lipolytic enzymes: classification and properties[J]. Biochem J, 1999,343 Pt 1:177-183.
    [11] Brzozowski A M, Derewenda U, Derewenda Z S, et al. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex[J]. Nature, 1991,351:491-494.
    [12] Brzozowski A M, Savage H, Verma C S, et al. Structural origins of the interfacial activation in Thermomyces (Humicola) lanuginosa lipase[J]. Biochemistry, 2000,39:15071-15082.
    [13] Angkawidjaja C, You D J, Matsumura H, et al. Crystal structure of a family I.3 lipase from Pseudomonas sp. MIS38 in a closed conformation[J]. FEBS Lett, 2007,581:5060-5064.
    [14] Longhi S, Cambillau C. Structure-activity of cutinase, a small lipolytic enzyme[J]. Biochim Biophys Acta, 1999,1441:185-196.
    [15] Price M N, Huang K H, Alm E J, et al. A novel method for accurate operon predictions in all sequenced prokaryotes[J]. Nucleic Acids Res, 2005,33:880-892.
    [16] Alisch M M, Herrmann A, Zimmermann W. Increase of the hydrophilicity of polyethylene terephthalate fibres by hydrolases from Thermomonospora fusca and Fusarium solani f. sp. pisi[J]. Biotechnol Lett, 2006,28:681-685.
    [17] Araujo R, Silva C, O'Neill A, et al. Tailoring cutinase activity towards polyethylene terephthalate and polyamide 6,6 fibers[J]. J Biotechnol, 2007,128:849-857.
    [18] Ansaldi M, Lepelletier M, Mejean V. Site-specific mutagenesis by using an accurate recombinant polymerase chain reaction method[J]. Anal Biochem, 1996,234:110-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700