用户名: 密码: 验证码:
甲基营养菌Methylobacterium sp MB200中丝氨酸循环相关基因(glyA、hpr)的研究与应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲基营养菌是一类能利用甲基化合物为唯一碳源和能源的微生物,已有不少研究发现该类微生物能转化甲醇为多种有价值的化合物。前期的工作已从环境中筛选到一株能以甲醇为唯一碳源和能源的甲基营养杆菌菌株M.sp.MB200,该菌株利用丝氨酸循环途径来同化甲基化合物。为了提高其L-丝氨酸和乙醛酸的积累能力,通过研究和利用M.sp.MB200中与丝氨酸循环途径相关的关键基因glyA和hpr建重组菌株,以提高重组菌生物转化甲醇的能力。
     glyA基因是甲基营养型细菌中用于同化单碳化合物的丝氨酸循环中的第一个酶基因,它编码的丝氨酸羟甲基转移酶(SHMT)能可逆地催化甲叉四氢叶酸与甘氨酸结合生成L-丝氨酸。构建M.sp.MB200的部分DNA文库,从文库中的阳性克隆中得到一个带有启动子的glyA基因,该基因的开放阅读框编码434个氨基酸,计算分子量为48.23kDa,与已报道的M.extorquensAM1的glyA基因的核苷酸序列相似性为95%,它的氨基酸序列与M.extorquens AM1的SHMT氨基酸序列相似性为94%。通过pK18mob载体同源单交换构建了glyA基因的突变体MB200gTB,研究发现该突变体不能在以甲醇为唯一碳源的培养基上生长,但在多碳化合物上的生长并不受影响。突变体检测不到SHMT酶活性,也不能利用静息细胞体系产L-丝氨酸。该基因在大肠杆菌中能表达出SHMT酶活性。进一步将该基因连同其启动子一起克隆到广泛宿主载体pLAFR3上,并导入到出发菌株M.SP.MB200中,得到重组菌株M.sp.MB202。研究发现M.sp.MB202中的SHMT活性为野生菌株M.sp.MB200的3.5倍,利用静息细胞产L-丝氨酸的能力达到了11.4±0.6mg/mL,与出发菌株相比提高了约5倍。对重组菌的静息细胞产L-丝氨酸的条件进行进一步优化,结果发现,在50mg/mL湿菌体,甲醇浓度为70mg/mL,甘氨酸浓度为50 mg/mL,pH为8.8,温度为37℃,发酵48小时的条件下,MB202产L-丝氨酸的能力达到最佳,达到24.3±1.0 mg/mL。对固定化MB202细胞产L-丝氨酸也进行了研究,在0.3 g/mL菌体量、3%海藻酸钠、6%的CaCL_2的条件下,能发酵5批次,平均每批次产12.7±0.9mg的L-丝氨酸。实验结果为进一步利用甲醇利用菌和glyA基因生产L-丝氨酸提供了应用依据。
     羟基丙酮酸还原酶基因(hpr)编码的羟基丙酮酸还原酶能催化羟基丙酮酸盐还原成甘油酸,甘油酸进一步被代谢为乙醛酸。通过PCR扩增从M.sp.MB200菌株中得到一个hpr基因,该基因的大小与已报道的细菌中hpr基因大小相似。ORF大小为945bp,编码315个氨基酸的蛋白质,计算分子量约为37 KDa。经过初步的酶学特性分析发现,该HPR以NADPH作为辅酶,最适作用的pH值为5.5,酶的活性随温度的变化影响并不大。通过pK18mob载体同源单交换构建了hpr基因的突变体MB200hTB,研究发现该突变体不能在以甲醇为唯一碳源的培养基上生长,但在多碳化合物上的生长并不受影响,突变体检测不到HPR酶活性。利用广泛宿主载体pLAFR3带上hpr基因,导入到出发菌株MB200中,在lacZ启动子驱动下使得MB200中的hpr基因拷贝数增加,从而提高细胞内HPR的酶活性。实验结果表明重组菌株MB201中HPR的酶活性比野生型菌株MB200的高了2倍。菌株MB200和MB201均在多数生长后期时乙醛酸的含量达到最高,培养33小时后,MB201的乙醛酸含量为14.4±1.1 mg/mL,约为野生菌MB200的2倍。
     在利用微生物转化合成化合物的过程中,提高目标物产量的一个最重要的方法就是调节(提高或降低)基因的表达水平,尤其是通过基因工程的方法,增加菌株相应基因的拷贝数。本实验结果有利于推动进一步利用M.sp.MB200及其基因进行发酵生产。
Methylotrophic bacteria are a group of microorganisms that are able to use compounds containing one-carbon as well as multi-carbons as energy and carbon sources.These organisms can convert methanol to chemicals and materials biologically.A strain named MB200,can utilize methanol as the sole carbon and energy soure,was obtained from environment in our former work.This bacteria pocesses L-serine cycle to assimilate methanol.In order to enhance accumulating L-serine amd glyoxylate by this strain,the improved strains were constructed through increase the expressing level of two key genes (hpr,glyA)involved in L-serine cycle.
     glyA,a gene which encodes serinehydroxy methyltransferase(SHMT)in organisms,SHMT plays an improtant role as the first enzyme in the assimilation of C1 compounds through the transfer of formaldehyde to glycine,thus giving the main intermediate in the pathway,serine.A glyA gene was cloned from the genomic DNA of M.sp MB200,this gene encdes for the 434-amino-acid protein with a calculated molecular mass of 48230 Da.The amino-acid sequence of the enzyme showed identity to the sequence of the enzyme from M.extorquens AM1 (94%).The transfermed E.coli cells could express SHMT which has enzyme activity.With the suicide plasmid pK18mob,a mutant MB200gTB inactivated in glyA gene has been constructed through homologous recombination caused by a single crossover event.The experiments showed that this mutant can't utilize methanol as the sole carbon source and can't accumulate L-serine any more,no SHMT enzyme activity can be detected in the cells,but could grow on the medium with multi-carbon coumpounds.This gene was ligated into the vector pLAFR3 to obtained recombinant plasmid pLAFRg,which was transfered into M.sp.MB200 to generate MB202.The improved strain MB202 was found to exhibit the higher L-serine productivity than the wild strain MB200,11.4±0.6 mg/mL L-serine was produced from 20mg/mL glycine and 70mg/mL methanol in 2d when used a resting cell system of MB202,the yield was about 5-fold of that produced by MB200.After optmizing the fermentation conditions,an optimun conditions for resting cell system were:methanol 70 mg/mL;glycine 50 mg/mL;pH8.8;and 37 degrees C,under the under above conditions,the improved strain MB202 can produce 24.3±1.0 mg/mL L-serine.When use the conditions of 0.3 g/mL of cells(as wet matter),3%sodium alginate and 6% CaCL_2,the average output of L-serine produced by immobilized cells is 12.7±0.9 mg/mL per bacth and can be fermented for 5 bacthes.The results will facilitate enhancing the conversion rate of methanol to L-serine using M.sp strains.
     hpr encodes hydroxypyruvate reductase(HPR),an enzyme catalyzes the reversible conversion of hydroxypyruvate to D(-)glycerate,and D(-)glycerate is further metabolized to glyoxylate in the serine cycle in M.sp bacteria.A hpr gene was amplified from the total DNA of M.sp.MB200,sequenceing analysis showed that an ORF of 945bp was included in this fragment coding 315 amino acids with a molecular weight of approximately 37,000 Da,The purified HPR enzyme was performed to use NADPH as cofactor,the optimal PH for the reduction of hydroxypyruvate is about 5.5,and temprature has litter effect on it's activity.The mutant MB200hTB was construct by the suicide plasmid pK18mob ligated a part of glyA sequence.The result showed that MB200hTB had no HPR activity and lost its ability to grow on C-1 compounds but retained the ability to grow on C-2 compounds and multi-carbon compounds.The gene was ligated into the vector pLAFR3 to obtained the recombinant plasmid pLAFRh,which was transferred into M.sp.MB200 to generate an recombinant strain MB201. Homologous expression of hpr under the control of the lacZ promoter led to the enhanced glyoxylate accumulation in cultures of Methylobacterium sp MB201. The yield of glyoxylate reached 14.4±1.1 mg/mL,representing nearly a two-fold increase when compared with the wild-type strain.
     An important strategy to develop a synthesis method of commercial chemicals and materials by bacteria is to deregulate and increase the levels of gene expression,especially to increase the copy number of genes,by genetic engineering.In this report,a glyA gene with it's promoter was over-expressed in M.sp.MB200 lead to ehance the yield of L-serine,and a hpr gene was over-expressed under the control of lacZ promoter in the pLAFR_3 vector in M. sp.MB200 to produce glyoxylate.The results will facilitate researching and applicating M.sp.MB200 and it's genes to biosynthesize more products.
引文
[1][苏]格鲁什科.工业废水中有害有机化合物手册[M].北京:烃加工出版社,1988.208-211.
    [2]乌锡康主编.有机化工废水治理技术[M].北京:化学工业出社,1998.74-951.
    [3]赵洪波.国内甲醇废水处理技术应用现状[J].化工环保.1998,8(6):154-1571.
    [4]叶燕.甲醇废水的污染防治对策[J].石油与天然气化工.1997,26(4):251-254.
    [5]Novak,et al.Biodegradation of methanol and tertiary butyl alcohol in subsurface systems[J].Water Sci.Technol.1985,17:71-85.
    [6]Anthony,C.The oxidation of methanol in gram- negative bacteria[J].FEMS Microbiology Reviews.1990,87(3-4):209-214.
    [7]Kinagata,K.Systematics of methanol - utilizing bacteria[J].FEMS Microbiology Reviews.1990,87(3 - 4):291-295.
    [8]赵洪波.上流式厌氧污泥床工艺处理甲醇废水[J].化工环保,1989,9(1):6-13.
    [9]Lettinga,G.,Van der Geest,A.T.,Hobma,S.,et al.Anerobic treatment of methanolic wastes[J].Water research.1979,13(8):725-737.
    [10]巫惠湘.186菌生物流化床处理甲醇废水[J].上海环境科学.1992,11(9):2-5.
    [11]方禹之等.环境分析与监测[M].上海,华东师范大学出版社.1987.
    [12]希金斯,I.J.,伯恩斯,R.G.污染的化学和微生物学[M].北京,化学工业出版社.1981.
    [13]郭安然等.环境监测[M].北京,冶金工业出版社.1988.
    [14]龚书椿等.环境化学[M].上海,华东师范大学出版社.1991.
    [15]左雅惹.蒋德群.发酵法开发甲醇蛋白的研究,微生物学杂志.2001.(3):34-44
    [16]韩天玉.乔建芬.甲醇蛋白的开发前景.煤化工 2002.(3):28-30
    [17]郭建华.甲醇蛋白的技术经济分析发展前景.化工技术经济.2003.(6):26-29
    [18]Ekeroth,L.;Villadsen,J.Single cell protein production from C1 compounds.Biotechnology,1991,18:205-231
    [19]Tani Y.Production of useful chemicals by methylotrophs.Biotechnology.1991,18:253-270
    [20]Anthony C.Assimilation of carbon by methylotrophs.Biotechnology.1991,18:79-709
    [21]Lidstrom ME.Genetics of carbon metabolism in methylotrophic bacteria.FEMS Microbiol Rev.1990Dec;7(3-4):431-6
    [22]Barta TM,Hanson RS.Genetics of methane and methanol oxidation in gram-negative methylotrophic bacteria.Antonie Van Leeuwenhoek.1993-1994;64(2):109-20
    [23]Murrell JC.Genetics and molecular biology of methanotrophs.FEMS Microbiol Rev.1992 Jun;8(3-4):233-48
    [24]J.Colby,L.J.Zatman,Trimethylamine metabolism obligate and facultative methylotrophs,Biochem.J.1973,132:101-112.
    [25]T.Urakami,K.Komagata,Emendation of Methylohacillus Yordy and Weaver 1977,a genus for methanol utilizing bacteria,Int.J.Syst.Bacteriol.1986,36:502-511.
    [26]J.R.Yordy,T.Y.Weaver,Methylohacillus,a new genus of obligate methylotrophic bacteria,Int.J.Syst. Bacteriol.1977,27:247-255.
    [27]N.I.Govorukhina,Y.A.Trotsenko,Methylouorus,a new genus of restricted facultatively methylotrophic bacteria,Int.J.Syst.Bacteriol.1991,41:158-162.
    [28]O.Jenkins,D.Byrom,D.Jones,Methylophilu.s:a new genus of methanol-utilizing bacteria,Int.J.Syst.Batter iol.1987(37)446-448.
    [29]Anthony,C.The biochemistry of Methylotrophs[M].London:Academic Press.
    [30]Anthony,C.The biochemistry of methylotrophs[M].Academic Press,London,United Kingdom.1982.
    [31]Chistoserdova,L.V.,Vorholt,J.A.,Thauer,R.K.et al.C1 transfer enzymes and coenzymeslinkong methlotrophic bacteria and nethanogenic archaea[J].Science.1998,281:99-102.
    [32]Kelly,D.,Murrell,J.C.Microbial metabolism of methanesulgonic acid[J].Arch.Microbiol.1999,172:341-348.
    [33]Vannelli,T.,Messmer,M.,Sruder,A.et al.Acorrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane[J].Proc.Natl.Acad.Sci.USA.1999,96:4615-4620.
    [34]Vorholt,J.A.,Chistoserdova,L.,Stolyar,S.M.et al.Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetmhydromethanopterin cyclohydrolases[J].Bacteriol.1999,181:5750-5757.
    [35]宋志文,陈冠雄,马放等.甲醇降解菌的分离及性质研究[J].生物技术.2001,11(3):21-23.
    [36]宋志文,陈冠雄,马放等.固定化生物活性炭处理低浓度甲醇废水[J].城市环境与城市生态.2001,14(5):51-54.
    [37]Komagata,K.Systematics of methanol-utilizing bacteria[J].FEMS Microbiology Review.1990,87(3-4):291-295.
    [38]Anthony,C.The oxidation of methanol in gram-negative bacteria[J].FEMS Microbiology Review.1990,87(3-4):209-214.
    [39]Vannelli,T.,Messmer,M.,Studer,A.et al.A corrinoid-dependent catabolic pathway for growth of a Methylobacterium strain with chloromethane[J].Microbiology.1999,96:4615-4620.
    [40]Studer,A.,Stupperich,E.,Vuilleumier,S.et al.Chloromethane:tetrahydrofolate methylobacterium chloromethanicum strain CM4[J].Eur J Biochem.2001,268:2931-2938.
    [41]Kayser,M.F.,Stumpp,M.T.,Vuilleumier,S.DNA polymerase I is essential for growth of Methylobacterium dichlotomethanicum DM4 with dichloromethane[J].Bacteriol.2000,182:5433-5439.
    [42]La Roche,S.D.,Leisinger,T.Sequence analysis and expression of the bacterial dichloromethane dehalogenase structural gene,a member of the glutathione S-transferase supergene family[J].Bacteriol.1990,172:164-171.
    [43]La Roche,S.D.,Leisinger,T.Identification of dcmR,the regulatory gene governing expression of dichloromethane dehalogenase in Methylobacterium dichlotomethanicum DM4[J].Bacteriol.1991,173:6417-6721.
    [44]Arps,P.J.,Fulton,E.C.Genetics of serine pathway enzymes in Methlobacterium extorquens AM1:phosohoenolpyruvate carboxylase and malyl coenzyme A lyase[J].Bacteriol.1993,175:3776-3783.
    [45]Korotkva,N.,Chidtoserdova,V.,Kuksa,V.et al.Glyoxylate regeneration pathway in the methylotroph Methlobacterium extorquens AM1[J].Bacteriol.2002,184:1750-1758.
    [46]Chistoserdova,L.V.,Mary,E.L.Genetics of the serine cycle in Methlobacterium extorquens AM1:Cloning,sequence,mutation,and physiological effect of glyA,the gene for serine hydroxymethyltrasferase[J].Bacteriol.1994,176:6759-6763.
    [47]Umbarger,H.E.,Umbarger,M.A.Biosynthesis of serine in Escherichia.Coli and Salmonella typhimurium[J].Bacteriol.1963,85:1431-1439.
    [48]Rene,V.,Pieter,D.W.et al.Methylobacterium sp.isolated from a Finnish paper machine produces highly pyruvated galactan exopolysaccharide[J].Carbohydrate Research.2003,385:1851-1859.
    [49]Martin,F.Kayser,Z.U.et al.Dichloromethane metabolism and C1 utilization genes in Methylobacterium strains[J].Microbiology.2003,148:1915-922.
    [50]Devries,G.E.,Kues,U.,Stahl,U.,Physiology and genetics of Methylotrophic bacteria[J].FEMS Microbiol Rev.1990,6(1):57-101.
    [51]Hagishita,T.,Yoshida,T.,Izumi,Y.et al.Cloning and expression of the gene for serine-glyoxylate aminotransferase from an obligate methylotroph Hyphomicrobium methylovorum GM2[J].Biochem.1996,241(1):1-5.
    [52]Chistoserdova,L.,Sung-Wei,C.,Alla,L.et al.Methylotrophy in Methlobacterium extorquens AM1from a Genomic Point of View[J].Bacteriology.2003,185(10):2980-2987.
    [53]Miyata,A.Yoshida,T.Yamaguchi,K.et al.Molecular cloning and expression of the gene for serine hydroxymethyltransferase from an obligate methylotroph Hyphomicrobium methylovorum GM2[J].Biochem.1993,212:745-750.
    [54]Christopher,J.M.,Mary,E.L.Development of an insertional expression vector system for Methlobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch[J].Microbiology.150:9-19.
    [55]Ludmila,V.,Chistoserdova,Mary,E.L.Cloning,Mutagenesis,and Physiological effect of a Hydroxypyruvate reductase gene from Methlobacterium extorquens AM1[J].Journal of Bacteriology.1992,174(1):71-77.
    [56]Meng,Z.,Mary,E.L.Promoters and transcripts for genes involved in methanol oxidstion in Methlobacterium extorquens AM1[J].Microbiology.2003,149:1033-1040.
    [57]Juloa,A.V.,Ludmila,C.,Mary,E.L.et al.The NADP-Dependent methylene tetrahydromethanopterin dehydrogenase in Methlobacterium extorquens AM1[J].Journal of Bacteriology.1998,180(20):5351-5356.
    [58]Ludmila,C.,Markus,L.,Jean-Charles,P.,et al.Multiple formate dehydrogenase enzymes in the facultative Methylotroph Methlobacterium extorquens AM1 are dispensable for growth on methanol[J].Journal of Bacteriology.2004,186(1):22-28.
    [59]Natalia,K.,Ludmila,C.,Vladimir,K.,et al.Glyoxylate regeneration pathway in the Methylotroph Methlobacterium extorquens AM1[J].Journal of Bacteriology.2002,184(6):1750-1758.
    [60]Chistoserdova,L.V.,Mary,E.L.C_1 transfer enzymes and coenzymes linking methylotrophic bacteria and methanogenic Archaea[J].Science.1998,281:99-102.
    [61]Chistoserdova,L.V.,Mary,E.L.Methylotrophy in Methlobacterium extorquens AM1 from a genomic point of view[J].Bacteriol.2003,185:2980-2987.
    [62]Chistoserdova,L.V.,Mary,E.L.Genetics of the serine cycle in Methlobacterium extorquens AM1:identification of sgaA and mtdA and sequences of sgaA,hprA,and mtdA[J].Bacteriol.1994,176:1957-1968.
    [63]Vorholt,J.A.Cofactor-dependent pathways of formaldehude oxidation in methylotrophic bacteria[J].Arch Microbiol.2002,178:239-249.
    [64]Vorholt,J.A.,Marx,C.J.,Mary,E.L.et al.Novel formalde-activating enzyme Methlobacterium extorquens AM1 required for growth on methanol[J].Bacteriol.2000,182:6645-6650.
    [65]Kalyuzhnaya,M.,et al.QscR,a LysR-type transcriptional regulator and CbbR homolog,is involved in regulation of the serine cycle genes in Methylobacterium extorquens AM1[J].Bacteriol.2003,185:1229-125.
    [66]Marx,C.J.,B.N.O'Brien.,J.Breezee.,et al.Novel methylotrophy genes of Methlobacterium extorquens AM1 identified by using transposon mutagenesis including a putative dihydromethanopterin reductase[J]. Bacteriol. 2003,185: 669-673.
    [67] Shively, J.M., G.Van Keulen., W.G. Meijer. Something from almost nothing: carbon dioxide fixation in chemoautotrophs[J]. Annu. Rev. Microbiol. 1998, 52:191-230.
    [68] Hagemeier, C., Chistoserdova, L. Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methlobacterium extorquens AM1[J]. Bacteriol. 2000, 267:3762-3769.
    [69] Fulton, G.L., Nunn, D.N. Molecular cloning of a malyl CoA lyase gene from Pseudomonas AMI, a facultative methylotroph[J]. Bacteriol. 1984,160:718-723.
    [70] Brock B. L. W., Wilkinson D. A.and King J. Can. J. Biochem.48,486
    [71] King J, and Waygood E.R. 1968. Can. J. Biochem. 1970,46:771-779
    [72] Liepman A.H. and Olsen L.J. Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaniana. The Plant Journal, 2001, 25(5): 487-498
    [73] Dwayne W., Rehfeld and N.E. Tolbert, Aminotransferase in Peroxisomes from spinach leaves. The Journal of Biological Chemistry. 1972, 247(15): 4803-4811
    [74] N.A. McHale, E.A. Havir, and Zelitch. Photorespiratory toxicity in autotrophic cell cultures of a mutant of Niotiana sylvestris lacking serine: glyoxylate aminotransferasactivity . Planta, 1989,179:67-72
    [75] Husk, D W and Tolbert, N E, NADH: Hydroxypyruvate reductase and NA DPH: glvcoxylate red uctase in algae: partial purification and characterization from Chlamydomonas reinhardtii. Achievs of Biochemstry and Biophysics 1987,252:396-408.
    [76] Tolbert, N E, Yamazaki, R K and Oeser, A, Localization and properties of hydroxypyruvate and glyoxalate reductase in spinach leaf particles. Journal of Biological Chemistry. 1970,245:5129-36.
    [77] Chistoserdova, L V and Lidstrom, M E, Purification and characterization of hydroxypyruvate reductase from the facultative methylotroph Methylobacterium extorquens AM I. Journal of Bacteriology 1991, 173: 7228-32.
    [78] Izumi, Y, Yoshida, T, Kanzaki, H, Toki, S-I, Miyazaki, S S and Yamada, H, Purification and characterization of hydroxypyruvate reductase from a serine producing methylotroph hyphornicrobium mthylovorum GM2. European Journal of Biochemisstry, 1990,190:279 — 84.
    [79] John M. Utting and Leonard D. Kohn. Structural, kinetic, and renaturation properties of an induced hydroxypyruvate reductase form Pseudomonas acidovorans. The Journal of biol Che, 1975, 250(13):5233-42.
    [80] M. Yakup Arica, Cihan Halicigil, Gurdal Alaeddinoglu, Adil Denizli. Affinity interaction of hydroxypyruvate reductase from Methylophilus sp. with cibacron blue F3GA-derived poly(HEMAEGDMA)microspheres:partial purification and characterization.Process Biochemistry 1999,34:375-381.
    [81] Gill.Rumsby, D.P.Cregeen. Identification and expression of a cDNA for human hydroxypyruvate/glyoxylate reductase. Biochimica et Biophysica Acta 1999,1446:383-388.
    [82] Micheal P.S.Booth, R.conners, Gill.Rumsby and R.Leo Brady. Structural basis of substrate specificity in human glyoxylate reductase/hydroxypyruvate reductase. J Mol Biol. 2006 ,360:178-189.
    [83] RL.Blakley. A spectrophontometric study of the reaction catalysed by serine transhydroxy- methylase. Biochem J, 1960,77:459-465
    [84] RL.Blakley.The interconversion of serine and glycine: role of pteroylglutamic acid and other cofactors [J].Biochem, 1954,58:448-451
    [85] RL.Blakley.Interaction of formaldehyde and tetrahydrofolic acid and its relation to the enzymic syntheses of serine. Nature, 1958,182:1719-1722
    [86] Hsiao. H Y. et al. Enzymatic production of L-serine. Biotech and Bioeng. 1986,28:857
    [87]Mimosine targets serine hydroxymethyltransferase.J Biol Chem.1996 Feb 2;271(5):2548-56.
    [88]F Martini,The primary structure of rabbit liver mitochondrial serine hydroxymethyltransferase J.Biol.Chem.,May 1989,264:8509-8519.
    [89]Girgis.S.Molecular cloning,characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene.Gene.1998 Apr 14;210(2):315-24.
    [90]GV Stauffer,MD Plamann,LT Stauffer.Construction and expression of hydrid plasmids containing the E.coli gly A gene[J].Gene,1981,14:63-72
    [91]MD Plamann,GV Stauffer.Characterization of a cis-acting regulatory mutation that maps at the distal end of the E.coli glyA gene[J],Bacteriol,1985,161(2):650-654
    [92]MD Plamann,GV Stauffer.et al.Complete nucleotide sequence of the E.coli glyA gene.Nuc Acid Res,1983a,11(7):2065-207
    [93]Chan.VL.Cloning and expression of the Campylobacter jejuni glyA gene in Escherichia coli.Gene.1988,73:185-91.
    [94]Chan VL,HL Bingham.Complete sequence of Campylobacter jejuni gly A gene encoding serine hydroxymethyltransferase.Gene,1990,101:51-58
    [95]D.P.Michael,and V.S George.Regulation of the Escherichia coli glyA gene by the metR gene product and homocysteine[J].Journal of Bacteriology,1989,171(9):4958-4962
    [96]G.S.John,J.R.Ronda,Z.Howard,and V.S.George[J],Journal of Bacterio-logy,1990,172(7):3799-38.
    [97]Miyata.A.et al.Molecular cloning and expression of the gene for serine hydroxymethyltransferase from an obligate methylotroph Hyphomicrobium methylovorum GM2.Eur J Biochem.1993 Mar 15;212(3):745-50.
    [98]Chistoserdova.L V.Genetics of the serine cycle in Methylobacterium extorquens AM1:cloning,sequence,mutation,and physiological effect of glyA,the gene for serine hydroxymethyltransferase.J Bacteriol.1994 Nov;176(21):6759-62.
    [99]蔡宇晹,吴梧桐。运用现代生物技术生产L-丝氨酸的研究进展 药学进展,1996(20):16-20
    [100]蔡宇晹,吴梧桐,史燕东。GlyA基因的克隆及检验 药物生物技术,1995(2):1-4
    [101]蔡宇晹,吴梧桐,史燕东。SHMT基因工程菌的构建及高效表达 生物工程学报(增刊),1996(12):28-33
    [102]沈天翔,那淑敏,喻国策等。大肠杆菌丝氨酸羟甲基转移酶基因(glyA)的克隆和表达 微生物学报,1997(37):423-428
    [103]陈志宏,吴梧桐,项冰等。重组丝氨酸羟甲基转移酶活性测定及酶促反应条件的优化研究 药物生物技术,1998(5):75-79
    [104]孙进,吴梧桐,吴震等。SHMT酶促反应液中L-丝氨酸分离和有关组分分析 中国生化药物杂志,2000(21):124-126
    [105]克丽凤,张伟国,钱和,L-Serine的生产及其应用,江苏食品与发酵,2001(105):19-22
    [106]张克旭,氨基酸发酵工艺学,中国轻工业出版社,1993
    [107]张昌军,扬志孝,从煮茧废液中提取L-丝氨酸及丝氨醇,泰山医学院,1991(12):67-68
    [108]K.Kubota.et al.Fermentation of L-Serine from Glycine by Corynebacterium glycinophium.J.Gen.Appl.Microbiol.1971,17:167-172
    [109]K.Kubota et al.Microbial Production of L-Serine from Glycine.J.Gen.Appl.Microbiol.1985,31:2273-2279
    [110]Y.Tannka et al.Strain Improvement of Nocardia butanica for Microbial Conversion of Glycine into L-serine[J].Ferment.Technol.1980,58:163-169
    [111]Masahiro EMA,Toshio Kakimoto and Ichiro Chibata.Prodution of L-serine by Sarcina albida.Applied Enviromental microbiology.June 1979,1053-58
    [112]Y.Morinaga et al.L-serine Production by Methanol-utilizing Bacterium Pseudomonas MS31.Agric.biol.Chem.1981,45:1419-1424
    [113]Izumi,T.Yoshida,S.S.Miyazaki,T.Mitsunaga,T.Ohshiro,M.Shimao,A.Miyata,and T.Tanabe.L-serine production by a methylotroph and its related enzymes.Appl.Microbiol.Biotechnol.1993,39(4-5):427-432
    [114]Hagishita,T.Yoshida,Y.Izumi,and T.Mitsunaga.Efficient L-serine production from methanol and glycine by resting ceils of Methylobacterium sp.strain MN43.Biosci.Biotechnol.Biochem.1996,60(10):1604-1607
    [115]H.Yamada et al.L-Serine Production by a Glycine-resistant Mutant of Methylotrphic Hyphomicrobium methylovorum.Agric.Biol.Chem.,1986,50:17-21
    [116]T.Hagishita et al.Efficient L-Serine production from methanol and glycine by resting cells of methylobacterium sp.Strain MN43.Biosci.Biotech.Biochem.1996,60:1604-1607
    [117]T.Yoshida et al.L-Serine production using a resting cell system of Hyphornicrobium strains.J.Ferment.Bioeng.1993,75:405-408
    [118]T.Yoshida et al.L-Serine synthesis using the resting Hyphornicrobium sp.NCBI10099 cells under suppressive conditions for L-Serine-Degrading activity.J.Ferment.Bioeng.1995,79:181-183
    [119]P.Sirirote et al.L-Serine production from methanol and glycine with an immobilized methylotroph.J.Ferment Technol 60:291-297
    [120]卢发,张伟国,L-丝氨酸产生菌的分离筛选及发酵条件,食品与生物技术学报,2005,24(2):1673-1689。
    [121]高伟,张伟国,L-丝氨酸产生菌的选育与发酵条件的初步研究,发酵科技通讯,2007,36(2):11-15
    [122]付建红,崔春生,谢玉清等,微生物发酵法生产L-丝氨酸的研究,新疆农业科学 2004,41(3):169-172
    [123]张晓娟,窦文芳,许泓瑜等,维生素对谷氨酸棒杆菌SYPS2062直接发酵合成L2丝氨酸的影响,中国生物工程杂志,2007,27(5):50-55
    [124]姚英,李敏,牛宇岚.乙醛酸的合成技术进展.精细与专用化妆品,2006,14(14):6-10。
    [125]张建国,杨 洁,生物法合成乙醛酸,微生物学杂志,2003,23(3):32-36.
    [126]J.E.Seip.S.k.Fanger and J.E.Gavagan et al.Glyoxylic Acid Production Using Microbial Transformant Catalysts.J.Org.Chem,1995,60:3957-3963.
    [127]J.E.Seip.S.k.Fanger and J.E.Gavagan et al.Biocatalytic Production of Glyoxylic Acid.J.Org.Chem,1993,58:2253-2259...
    [128]Seip JE,Fager SK,Gavagan JE,Anton DL,Di Cosimo R.Glyoxylic acid production using immobilized glycolate oxidase and catalase.Bioorg Med Chem.1994 Jun;2(6):371-8.
    [129]Payne MS,Petrillo KL,Gavagan JE,Wagner LW,DiCosimo R,Anton DL.High-level production of spinach glycolate oxidase in the methylotrophic yeast Pichia pastoris:engineering a biocatalyst.Gene.1995 Dec 29;167(1-2):215-9.
    [130]Jin J,Tan T,Wang H,Su G.The expression of spinach glycolate oxidase(GO)in E.coli and the application of GO in the production of glyoxylic acid.Mol Biotechnol.2003 Nov;25(3):207-14.
    [131]G.Gellissen,M.Piontek,U.Dahlems V.Jenzelewski,J.E.Gavagan,R.DiCosimo,D.L.Anton,Z.A.Janowicz.Recombinant Hansenula polymorpha as a biocatalyst:coexpression of the spinach glycolate oxidase(GO)and the S.cerevisiae catalase T(CTT1)gene.Appl Microbiol Biotechnol,1996,46:46-54
    [132]Kimiyasu Isobe,Hiroshi Nishise.A method for glyoxylic acid production using cells of Alcaligenes sp.GOX373.Journal of Biotechnoiogy,1999,75:265-271
    [133]李冀新,张超,高虹.固定化细胞技术应用研究进展.化学与生物工程,2006,23(6):5-7
    [134]Shreve G S,Dwyer D F.Comparison of substrate utilization and growth kinetics between immobilized and suspented pseudmonas cells.Biotechol Bioeng,1993,41:370-378.
    [135]Chert K C,Wu JY,Yang W B et al.Evaluation of efective difusion coefficient and intrinsic kinetic parameters on azo dye biodegradation using PVA -- immobilized cell beads.Biotech Bioeng,2002,83:821-832.
    [136]Atkinson B,Mavittuna F.Immobilized Cell Systems[M].Bio-chem Eng& Bioteeh Handbook,1991:768.
    [137]Bertkau G H,Murphy S M,Sabella F J.Combined immobilized cell bioreactor and pulse column technology as a novel approach to food modification.Process Biochemistry,1999,34(3):221-229
    [138]刘慧,戚敏,固定化细胞包埋载体一海藻酸盐的应用研究介绍,齐鲁药事,2006,25(9):544-546
    [139]C.S.Quan.S.D.Fan- Y.Ohta.Immobilization of Candida krusei cells producing phytase in alginate gel beads:an application of the preparation of myo-inositol phosphates.Appl Mierobiol Biotechnol.2003,62:41-47
    [140]Liu BL,Jong CH,Tzeng YM.Effect of immobilization on pH and thermal stability of Aspergillus ficuum phytase.Enzyme Microb Technol.1999,25:517-521
    [141]Ullah AHJ,Cummins BJ.Immobilization of Aspergillus ficuum extra-cellular phytase on fractogel.Biotechnol Appl Biochem.1987,9:380-388
    [142]Ullah AHJ,Phillippy BQ.Immobilization of Aspergillus ficuum phytase:product characterization of the bioreactor.Prep Biochem.1988,18:483-489
    [143]Hanahan,D.Studies on transformation of Escherichia coli with plasmid[J].Mol Biol.1983,166:557.
    [144]Figurski D,Helinski DR(1979)Replication of an origin-containing derivative of plasmid RK2dependent on a plasmid function provided in trans.Proc Nail Acad Sci USA 76:1648 1652
    [145]Leong S,Ditta G,Helinski D.Heine bisoynthesis in Thizobium.J Biol Chen,1982,257:8724-8730
    [146]Merle Windassen,Andreas Urban,Karl-Erich Jaeger.Rapid gene inactivation in Pseudomonas aeruginosa.FEMS Microbiology Letters.2000,201-205
    [147]J.L.Tang,C.L.Gough,C.E.Barber,J.M.Dow,and M.J.Daniels.Molecular cloning of protease gene(s)from Xanthomonas campestris pv.campestris:Expression in Escherichia coli and role in pathogenicity.Mol Gen Genet,1987,210:443-448
    [148]Sambrook J,Fritsch E F,Maniatis T.Molecular Cloning:A Laboratory Manual.2nd ed.New York:Cold Spring Harbor Laboratory Press,1989
    [149]Izumi,Y.,Takizawa,M.,Tani,Y.et al.An obligate methylotrophic Hyphomicrobium strain identification,growth characteristics and cell composition[J].Ferment Technol,1982,60(4):269-276.
    [150]Bimboim HC,Doly J.Arapid alkaline extraction procedure for screening recombinant plasmid DNA.Nucleic Acids Res.1979,7:1513
    [151]Ish-Horowicz D,Burke JF.Rapid and efficient cosmid cloning.Nucleic Acids Res.1981,9:2989
    [152]Shrp P.A,Sugden B.,Sambrook J.Detetion of two restriction endonuclease activities in Haemophilus Parainfluenzaae using analystical agarose-ethidium bromide clectrophoresis.Biochemistry.1973,12:3055
    [153]卢圣栋,现代分子生物学实验技术,高等教育出版社
    [154]Parker RC,Seed B.Two-dimensional agarose gel electrophoresis "seaplaque" agarose dimension.Methods Enzymol.1980,65:358
    [155]Wieslander L.A simple method to recover intact high molecular weight RNA and DNA after electrophoretic separation in low gelling temperature agarose gels.Anal.Biochem.1979,98:305-307
    [156]Hanahan D.Studies on transformation of Escherichia coli with Plasmids.J.Mol Biol 1983,166:557
    [157]Dower W J,Miller JF,Ragsdale CW.High efficiency transformation of E.coli by high voltage electroporation.Nucleic Acids Res.1988,16:6127
    [158]Hanahan D.Studies on transformation of Escherichia coli with Plasmids.J.Mol Biol 1983,166:557
    [159]van Dillewijn P,Martinez-Abarca F,Toro N.Multicopy vectors carrying the Klebsiella pneumoniae nifA gene do not enhance the nodulation competitiveness of Sinorhizobium meliloti on alfalfa.Mol Plant Microbe Interact.1998 Aug;11(8):839-42.
    [160]Dower W J,Miller JF,Ragsdale CW.High efficiency transformation of E.coli by high voltage electroporation.Nucleic Acids Res.1988,16:6127
    [161]Southern E.M.Detection of specific sequences among DNA fragments separated by gel eclectrophoresis.J.Mol.Biol.1975,98:503
    [162]Beringer J E,Beynon J L,Buchanan-Wollaston A V,et al.Transfer of the drug-resistance transposon Tn5 to Thizobium.Nature.1978,276:633-634
    [163]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem,1976,72:248-254
    [164]Laemmli.UK.Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970,224:680-685
    [165]郭尧君,蛋白质电泳实验技术,科学出版社,北京,1999
    [166]Wieskaw Truszkiewicz and Andrzej Paszkowski.Some structural properties of plant serine:glyoxylate aminotransferase.Acta Biochemica Polonica.2005,52:527-543.
    [167]Leszek A,Kleczkowski D,Douglas,D,Randall.Purification and characterization of a novel NADPH(NADH)-dependent hydroxypyruvate reductase from spinach leaves.Biochem J,1998,250:145-152
    [168]Turner P,Barber C,Daniels MJ.Behaviour of the transposon Tn5 and Tn7 in Xanthomonas campestris pv.Campestris.Mol Gen Genet.1984,195:101-107
    [169]Tairo,H.,Toyokazu,Y.,Yoshikazu,I.et al.Efficient L-serine production from methanol and glycine by resting cells of Methylobacterium sp.strain MN43[J].Biosci.Biotech.Biochem,1996,60(10):1604-1607
    [170]郭勇编著,现代生化技术,华南理工大学出版社,2001
    [171]Zhen-Yu Zuo,Zhong-Liang Zheng,Zhi-Gang Liu,Qing-Ming Yi and Guo-Lin Zou Cloning,DNA shuffling and expression of serine hydroxymethyltransferase gene from Escherichia coli strain AB90054,Enzyme and Microbial Technology,5 March 2007,40:569-577
    [172]Chaturvedi.S and Bhakuni.V.Unusual structural,functional,and stability properties of serine hydroxymethyltransferase from Mycobacterium tuberculosis.J.Biol.Chem.278,42:40793-40805,2003
    [173]Mimosine targets serine hydroxymethyltransferase.J Biol Chem.1996,271(5):2548-56
    [174]F Martini,The primary structure of rabbit liver mitochondrial serine hydroxymethyltransferase J.Biol.Chem.,May 1989;264:8509-8519
    [175]Girgis.S.Molecular cloning,characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene.Gene.1998 Apr 14;210(2):315-24
    [176]Vatsyayan.R and Roy.U.Molecular cloning and biochemical characterization of Leishmania donovani serine hydroxymethyltransferase.Protein Expr.Purif.2007,52(2):433-440
    [177]Mukherjee M,Sievers SA,Brown MT,Johnson PJ.Identification and biochemical characterization of serine hydroxymethyl transferase in the hydrogenosome of Trichomonas vaginalis.Eukaryot Cell.2006 Dec;5(12):2072-8
    [178]Chang WN,Tsai JN,Chen BH,Fu TF.Cloning,expression,purification,and characterization of zebrafish cytosolic serine hydroxymethyltransferase.Protein Expr Purif.2006Apr;46(2):212-20
    [179]Anthony,C.,The commercial exploitation of methylotrophs.In "The Biochemistry of Methylotrophs".Academic Press.London,1982,pp.328-348
    [180]Holloway,B.W.,Keamey,P.P.,and Lyon,B.R.,The molecular genetics of C1 utilizing microorganisms:an overview.Antonie van Leeuwenhoek,1987,53:47-53
    [181]De Vries,C.E.,Kues,U.,and Stahl,U.,Physiology and genetics of methylotrophic bacteria.FEMS microbiology.Rev.,1990,75:57-102
    [182]Schendel,F.J.,Bremmon,C.E.,Flichinger.M.C.,and Hanson,R.S.,L-lysine production at 50 degrees C by mutants of a newly isolated and characterized methylotrophic Bacillus sp.Appl.Environ.Microbiol.,1990,56:963-970
    [183]Lee,G.H.,Hur,W.,Bremmon,C.E.,and Flichinger.M.C.lysine production from methanol at 50 degrees C using Bacillus methanoliculs:modeling and productivity using a tree-phase continuous simulation.Biotechnol.Bioeng.,1996,49:639-653
    [184]Peters-Wendisch,M.Stolz,H.Etterich,N.Kennerknecht,H.Sahrn,and L.Eggeling.Metabolic engineering of Corynebacterium glutamicum for L-serine production.Appl.Environ.Microbiol.2005,71(11):7139-7144
    [185]Omori,T.Kakimoto,and I.Chibata.1-Serine Production by a Mutant of Sarcina albida Defective in l-Serine Degradation.Appl.Environ.Microbiol.1983,45(6):1722-1726

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700