用户名: 密码: 验证码:
谷氨酸棒杆菌高产琥珀酸的代谢工程改造
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕琥珀酸的生物合成,以野生型谷氨酸棒杆菌Corynebacteriumglutamicum ATCC13032为出发菌株进行系统代谢工程改造,构建了一系列能够在厌氧和好氧条件下高效生产琥珀酸的突变株。通过中心碳代谢的比较分析和单基因敲除分析对琥珀酸厌氧合成的途径进行了鉴定。采用干实验基元模式分析和湿实验代谢通量分析相结合的方式鉴定出基因靶点并进行改造,通过发酵和通量分析验证靶点预测的准确性。利用两阶段高密度发酵的方式来提高琥珀酸的浓度。另一方面,通过引入枯草芽孢杆菌的乙酸利用途径减少好氧条件下乙酸的积累。同时过表达柠檬酸合酶减少丙酮酸的积累,增加TCA循环的通量。最后,通过分批补料的培养方式评价好氧生产琥珀酸的可行性。得到的主要结果如下:
     对C. glutamicum ATCC13032进行了厌氧生产琥珀酸的途径鉴定。比较C.glutamicum ATCC13032和自然界中分离的琥珀酸生产菌株的中心代谢途径,通过理性分析得到潜在的影响琥珀酸合成的基因靶点。通过单基因敲除和厌氧发酵,证明了野生型C. glutamicum ATCC13032在厌氧条件下利用TCA还原臂合成琥珀酸。采用组合敲除策略,敲除乳酸脱氢酶、乙酸激酶、磷酸转乙酰酶、丙酮酸氧化还原酶和乙酰辅酶A转移酶后,突变株C. glutamicum SAZ1的乙酸产量显著降低,琥珀酸得率为0.99mol (mol glucose)-1。
     基于基因组尺度规模的谷氨酸棒杆菌模型,构建了一个精简的中心碳代谢网络模型,通过基元模式分析和突变株C. glutamicum SAZ1的代谢通量分析,鉴定出三个基因靶点:回补反应、乙醛酸循环和柠檬酸合酶。根据预测依次改造并发酵验证。进一步过表达琥珀酸输出蛋白得到突变株C. glutamicum SAZ2(pEpycgltAsucE,pXaceAB),琥珀酸得率为1.43mol (mol glucose)-1。它的通量分布与最佳通量分布更为接近。通过胞内代谢物测定分析,发现是由于胞内的琥珀酸含量下降,从而减轻了对乙醛酸循环的抑制作用。采用高密度厌氧发酵,琥珀酸产量达到930mM (110g L-1),得率为1.32mol (mol glucose)-1,生产率为9.48mM h-1。
     失活琥珀酸脱氢酶复合体、乙酸和乳酸生成途径,过表达丙酮酸羧化酶和磷酸烯醇式丙酮酸羧化酶,引入来自于枯草芽孢杆菌的乙酸利用途径,过表达自身的柠檬酸合酶后,突变株C. glutamicum ZX1(pEacsAgltA)在好氧条件下的琥珀酸得率为0.61mol (mol glucose)-1。在分批补料好氧培养过程中,琥珀酸浓度达到241mM (28g L-1),得率为0.63mol (mol glucose)-1。通过引入外源阿拉伯糖利用途径,突变株能够在好氧条件下利用阿拉伯糖为唯一碳源生产琥珀酸。
Starting with the wild-type Corynebacterium glutamicum ATCC13032, a seriesof metabolically engineered C. glutamicum mutants were constructed that couldefficiently produce succinate under anaerobic conditions and aerobic conditions. Withthe comparative analysis of central carbon metabolism and single gene disruptionanalysis, the pathway for anaerobic biosynthesis of succinate was identified. Severalgene targets were predicted by the combination of elementary mode analysis andexperimental metabolic flux analysis, and all of them were genetically engineered stepby step. Subsequently, the designed mutants were experimentally tested via anaerobicfermentation and metabolic flux analysis to confirm the accuracy of the prediction.With the aim at increasing succinate titer, high-cell-density fermentation was carriedout. On the other hand, a pathway from Bacillus subtilis for acetate assimilation wasintroduced into succinate-producing C. glutamicum to recycle wasted carbon underaerobic conditions. The citrate synthase was further overexpressed to reduce pyruvateaccumulation and increase TCA cycle flux. Finally, the feasibility of aerobicproduction of succinate at large scale was evaluated by fed-batch culture. The mainresults were shown as follows:
     Through the comparison of central metabolism of C. glutamicum and naturallyisolated succinate producers and rational analysis, potential targets that involved insuccinate production were recognized. After testing these single gene disruptionstrains, the reductive TCA cycle was identified as the major pathway for anaerobicsuccinate production. Inactivation of the enzymes of pyruvate: quinoneoxidoreductase, acetyltransferase, acetyl-CoA: CoA transferase and L-lactatedehydrogenase, acetate production by strain C. glutamicum SAZ1was significantlyreduced and succinate yield of0.99mol (mol glucose)-1was achieved.
     A refined metabolic network was constructed based on the genome-scalenetwork. Three targets, carboxylation pathway, glyoxylate pathway and citratesynthase were identified by elementary mode analysis and metabolic flux analysis.Based on prediction, metabolic engineering and fermentation were performed. Furtheroverexpression of succinate exporter leading to strain C. glutamicum SAZ2(pEpycgltAsucE,pXaceAB), which produced succinate with a yield of1.43mol (molglucose)-1and had more identical flux distribution to the optimal EMs. The reductionof intracellular succinate alleviated its restriction to glyoxylate pathway. Usingtwo-stage high-cell-density fermentation, succinate titer up to930mM was achieved with a yield of1.32mol (mol glucose)-1and a productivity of9.48mM h-1.
     By inactivating the succinate dehydrogenase complex, the pathways for acetateand lactate formation, replacing the native promoters of pyruvate carboxylase andPEP carboxylase with strong promoter sod, introducing the acetate assimilationpathway from B. subtilis and overexpressing the native citrate synthase, the succinateyield of strain C. glutamicum ZX1(pEacsAgltA) increased to0.61mol (molglucose)-1. In fed-batch culture,241mM succinate with a yied of0.63mol (molglucose)-1was produced. The araBAD operon from Escherichia coli was introducedinto succinate-producing C. glutamicum, which enabled aerobic production ofsuccinate using arabinose as sole carbon source.
引文
[1]. Wieschalka, S.,Blombach, B.,Bott, M., etc.: Bio-based production of organicacids with Corynebacterium glutamicum. Microb Biotechnol2012,6(2):87-102.
    [2].Thakker, C.,Martínez, I.,San, K.-Y., etc.: Succinate production in Escherichia coli.Biotechnol J2012,7:1-12.
    [3]. McKinlay, J. B.,Vieille, C.,Zeikus, J. G.: Prospects for a bio-based succinateindustry. Appl Microbiol Biotechnol2007,76(4):727-740.
    [4]. Beauprez, J. J.,De Mey, M.,Soetaert, W. K.: Microbial succinic acid production:Natural versus metabolic engineered producers. Process Biochem2010,45(7):1103-1114.
    [5]. Zeikus, J. G.,Jain, M. K.,Elankovan, P.: Biotechnology of succinic acidproduction and markets for derived industrial products. Appl Microbiol Biot1999,51(5):545-552.
    [6]. Werpy, T.,Petersen, G.: Top value added chemicals from biomass. Department ofEnergy, Washington, DC, PP.31-33.2004.
    [7]. Willke, T.,Vorlop, K. D.: Industrial bioconversion of renewable resources as analternative to conventional chemistry. Appl Microbiol Biotechnol2004,66(2):131-142.
    [8].郑宗宝:一体化生物加工过程进行大肠杆菌的半纤维素琥珀酸生产,[博士论文],天津大学.2012.
    [9]. Zhang, X.,Wang, X.,Shanmugam, K. T., etc.: L-Malate Production byMetabolically Engineered Escherichia coli. Appl Environ Microb2011,77(2):427-434.
    [10]. Zelle, R. M.,de Hulster, E.,van Winden, W. A., etc.: Malic Acid Productionby Saccharomyces cerevisiae: Engineering of Pyruvate Carboxylation, OxaloacetateReduction, and Malate Export. Appl Environ Microb2008,74(9):2766-2777.
    [11]. Chang, P. L. S. L. S. H. H.: Isolation and characterization of a new succinicacid-producing bacterium Mannheimia succiniciproducens MBEL55E, from bovinerumen. Appl Microbiol Biot2002,58(5):663-668.
    [12]. Lee, S. J.,Song, H.,Lee, S. Y.: Genome-based metabolic engineering ofMannheimia succiniciproducens for succinic acid production. Appl Environ Microbiol2006,72(3):1939-1948.
    [13]. Guettler, M. V.,Rumler, D.,Jain, M. K.: Actinobacillus succinogenes sp. nov.,a novel succinic-acid-producing strain from the bovine rumen. Int J Syst Bacteriol1999,49Pt1:207-216.
    [14]. Guettler M, J. M., and Soni B: Process for making succinicacid,microorganisms for use in the process and methods of obtaining themicroorganisms. US Patent.57233221998.
    [15]. Guettler M V, J. M. K., and Rumler D: Process for making succinic acidmicroorganisms for use in the process and methods of obtaining the microorganism.US Patent.55040041996.
    [16]. Clark, D. P.: The fermentation pathways of Escherichia coli. Fems MicrobiolRev1989,5(3):223-234.
    [17]. Singh, A.,Cher Soh, K.,Hatzimanikatis, V., etc.: Manipulating redox and ATPbalancing for improved production of succinate in E. coli. Metab Eng2010,13(1):76-81.
    [18]. Singh, A.,Lynch, M. D.,Gill, R. T.: Genes restoring redox balance infermentation-deficient E. coli NZN111. Metab Eng2009,11(6):347-354.
    [19]. Stols, L.,Donnelly, M.: Production of succinic acid through overexpression ofNAD(+)-dependent malic enzyme in an Escherichia coli mutant. Appl EnvironMicrob1997,63(7):2695-2701.
    [20]. Chatterjee, R.,Millard, C. S.,Champion, K., etc.: Mutation of the ptsG generesults in increased production of succinate in fermentation of glucose by Escherichiacoli. Appl Environ Microbiol2001,67(1):148-154.
    [21]. Vemuri, G. N.,Eiteman, M. A.,Altman, E.: Effects of Growth Mode andPyruvate Carboxylase on Succinic Acid Production by Metabolically EngineeredStrains of Escherichia coli. Appl Environ Microb2002,68(4):1715-1727.
    [22]. Vemuri, G. N.,Eiteman, M. A.,Altman, E.: Succinate production indual-phase Escherichia coli fermentations depends on the time of transition fromaerobic to anaerobic conditions. J Ind Microbiol Biotechnol2002,28(6):325-332.
    [23]. San, K.-Y.,Bennett, G. N.,J., S., etc.: Metabolic Engineering throughCofactor Manipulation and Its Effects on Metabolic Flux Redistribution inEscherichia coli. Metab Eng2002,4(2):182-192.
    [24]. Sanchez, A. M.,Bennett, G. N.,San, K. Y.: Novel pathway engineering designof the anaerobic central metabolic pathway in Escherichia coli to increase succinateyield and productivity. Metab Eng2005,7(3):229-239.
    [25]. Zhu, J.,Thakker, C.,San, K.-Y., etc.: Effect of culture operating conditions onsuccinate production in a multiphase fed-batch bioreactor using an engineeredEscherichia coli strain. Appl Microbiol Biot2011,92(3):499-508.
    [26]. Martínez, I.,Lee, A.,Bennett, G. N., etc.: Culture conditions' impact onsuccinate production by a high succinate producing Escherichia coli strain.Biotechnol Progr2010,27(5):1225-1231.
    [27]. Wang, J.,Zhu, J.,Bennett, G. N., etc.: Succinate production from differentcarbon sources under anaerobic conditions by metabolic engineered Escherichia colistrains. Metab Eng2011,13(3):328-335.
    [28]. Jantama, K.,Haupt, M. J.,Svoronos, S. A., etc.: Combining metabolicengineering and metabolic evolution to develop nonrecombinant strains ofEscherichia coli C that produce succinate and malate. Biotechnol Bioeng2008,99(5):1140-1153.
    [29]. Jantama, K.,Zhang, X.,Moore, J. C., etc.: Eliminating side products andincreasing succinate yields in engineered strains of Escherichia coli C. BiotechnolBioeng2008,101(5):881-893.
    [30]. Zhang, X.,Jantama, K.,Moore, J. C., etc.: Metabolic evolution ofenergy-conserving pathways for succinate production in Escherichia coli. Proc NatlAcad Sci U S A2009,106(48):20180-20185.
    [31]. Lin, H.,Bennett, G. N.,San, K.-Y.: Genetic reconstruction of the aerobiccentral metabolism in Escherichia coli for the absolute aerobic production ofsuccinate. Biotechnol Bioeng2005,89(2):148-156.
    [32]. Lin, H.,Bennett, G. N.,San, K.-Y.: Metabolic engineering of aerobic succinateproduction systems in Escherichia coli to improve process productivity and achievethe maximum theoretical succinate yield. Metab Eng2005,7(2):116-127.
    [33]. Lin, H.,Bennett, G. N.,San, K.-Y.: Fed-batch culture of a metabolicallyengineered Escherichia coli strain designed for high-level succinate production andyield under aerobic conditions. Biotechnol Bioeng2005,90(6):775-779.
    [34]. Lin, H.,Bennett, G. N.,San, K.-Y.: Chemostat culture characterization ofEscherichia coli mutant strains metabolically engineered for aerobic succinateproduction: A study of the modified metabolic network based on metabolite profile,enzyme activity, and gene expression profile. Metab Eng2009,7(5-6):337-352.
    [35]. Thakker, C.,San, K.-Y.,Bennett, G. N.: Production of succinic acid byengineered E. coli strains using soybean carbohydrates as feedstock under aerobicfermentation conditions. Bioresour Technol2013,130:398-405.
    [36]. Eggeling, L.,Bott, M.: Handbook of Corynebacterium glutamicum. BocaRaton: CRC Press2005.
    [37]. Yamamoto, S.,Sakai, M.,Inui, M., etc.: Diversity of metabolic shift inresponse to oxygen deprivation in Corynebacterium glutamicum and its close relatives.Appl. Microbiol. Biotechnol2011,90(3):1051-1061.
    [38]. Takeno, S.,Ohnishi, J.,Komatsu, T., etc.: Anaerobic growth and potential foramino acid production by nitrate respiration in Corynebacterium glutamicum Appl.Microbiol. Biotechnol2007,75(5):1173-1182.
    [39]. Bona, R.,Moser, A.: Modelling of the L-glutamic acid production withCorynebacterium glutamicum under biotin limitation. Bioprocess and BiosystemsEngineering1997,17(3):139-142.
    [40]. Becker, J.,Wittmann, C.: Bio-based production of chemicals, materials andfuels-Corynebacterium glutamicum as versatile cell factory. Curr Opin Biotechnol2012,23:631-640.
    [41]. Matsumoto, K. i.,Kitagawa, K.,Jo, S.-J., etc.: Production ofpoly(3-hydroxybutyrate-co-3-hydroxyvalerate) in recombinant Corynebacteriumglutamicum using propionate as a precursor. J Biotechnol2011,152(4):144-146.
    [42]. Blombach, B.,Arndt, A.,Auchter, M., etc.: L-valine production during growthof pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum in thepresence of ethanol or by inactivation of the transcriptional regulator SugR. ApplEnviron Microbiol2009,75(4):1197-1200.
    [43]. Krause, F. S.,Henrich, A.,Blombach, B., etc.: Increased Glucose Utilizationin Corynebacterium glutamicum by Use of Maltose, and Its Application for theImprovement of L-Valine Productivity. Appl Environ Microb2010,76(1):370-374.
    [44]. Bartek, T.,Rudolf, C.,Ker en, U., etc.: Studies on substrate utilisation invaline-producing Corynebacterium glutamicum strains deficient in pyruvatedehydrogenase complex. Bioprocess and Biosystems Engineering2010,33(7):873-883.
    [45]. Eikmanns, B. J.,Metzger, M.,Reinscheid, D., etc.: Amplification of threethreonine biosynthesis genes in Corynebacterium glutamicum and its influence oncarbon flux in different strains. Appl Microbiol Biot1991,34(5):617-622.
    [46]. Lai, S.,Zhang, Y.,Liu, S., etc.: Metabolic engineering and flux analysis ofCorynebacterium glutamicum for L-serine production. Science China. Life sciences2012,55(4):283-290.
    [47]. Peters-Wendisch, P.,Stolz, M.,Etterich, H., etc.: Metabolic engineering ofCorynebacterium glutamicum for L-serine production. Appl Environ Microbiol2005,71(11):7139-7144.
    [48]. Yukawa, H.,Omumasaba, C. A.,Nonaka, H., etc.: Comparative analysis of theCorynebacterium glutamicum group and complete genome sequence of strain R.Microbiology+2007,153(Pt4):1042-1058.
    [49]. Dominguez, H.,Nezondet, C.,Lindley, N. D., etc.: Modified carbon fluxduring oxygen limited growth of Corynebacterium glutamicum and the consequencesfor amino acid overproduction. Biotechnol Lett1993,15(5):449-454.
    [50]. Okino, S.,Suda, M.,Fujikura, K., etc.: Production of d-lactic acid byCorynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biot2008,78(3):449-454.
    [51]. Okino, S.,Inui, M.,Yukawa, H.: Production of organic acids byCorynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol2005,68(4):475-480.
    [52]. Inui, M.,Murakami, S.,Okino, S., etc.: Metabolic analysis ofCorynebacterium glutamicum during lactate and succinate productions under oxygendeprivation conditions. J Mol Microbiol Biotechnol2004,7(4):182-196.
    [53]. Inui, M.,Suda, M.,Okino, S., etc.: Transcriptional profiling ofCorynebacterium glutamicum metabolism during organic acid production underoxygen deprivation conditions. Microbiology+2007,153(Pt8):2491-2504.
    [54]. Okino, S.,Noburyu, R.,Suda, M., etc.: An efficient succinic acid productionprocess in a metabolically engineered Corynebacterium glutamicum strain. ApplMicrobiol Biotechnol2008,81(3):459-464.
    [55]. Litsanov, B.,Brocker, M.,Bott, M.: Towards homosuccinate fermentation:metabolic engineering of Corynebacterium glutamicum for anaerobic succinateproduction from glucose and formate. Appl Environ Microbiol2012,78(9):3325-3337.
    [56].郝宁,严明,许晟,李艳等.一种高产琥珀酸的谷氨酸棒杆菌[P].2010.
    [57].郝宁,严明,郝思清,李艳等.一种丁二酸的发酵生产工艺[P].2011.
    [58]. Litsanov, B.,Kabus, A.,Brocker, M., etc.: Efficient aerobic succinateproduction from glucose in minimal medium with Corynebacterium glutamicum.Microb Biotechnol2011,5(1):116-128.
    [59]. Chen, X.,Jiang, S.,Li, X., etc.: Production of succinic acid and lactic acid byCorynebacterium crenatum under anaerobic conditions. Ann Microbiol2012:1-6.
    [60]. Chen, X.,Jiang, S.,Zheng, Z., etc.: Effects of culture redox potential onsuccinic acid production by Corynebacterium crenatum under anaerobic conditions.Process Biochem2012,(0).
    [61]. Petersen, S.,de Graaf, A. A.,Eggeling, L., etc.: In vivo quantification ofparallel and bidirectional fluxes in the anaplerosis of Corynebacterium glutamicum.The Journal of Biological Chemistry2000,275(46):35932-35941.
    [62]. Wendisch, V. F.,Spies, M.,Reinscheid, D. J., etc.: Regulation of acetatemetabolism in Corynebacterium glutamicum: transcriptional control of the isocitratelyase and malate synthase genes. Arch Microbiol1997,168(4):262-269.
    [63]. Reinscheid, D. J.,Eikmanns, B. J.,Sahm, H.: Characterization of the isocitratelyase gene from Corynebacterium glutamicum and biochemical analysis of theenzyme. J Bacteriol1994,176(12):3474-3483.
    [64]. Reinscheid, D. J.,Eikmanns, B. J.,Sahm, H.: Malate synthase fromCorynebacterium glutamicum: sequence analysis of the gene and biochemicalcharacterization of the enzyme. Microbiology+1994,140:3099-3108.
    [65]. Wendisch, V. F.,de Graaf, A. A.,Sahm, H., etc.: Quantitative Determination ofMetabolic Fluxes during Coutilization of Two Carbon Sources: Comparative Analyseswith Corynebacterium glutamicum during Growth on Acetate and/or Glucose. J.Bacteriol2000,182(11):3088-3096.
    [66]. Fan, Y.-T.,Zhang, Y.-H.,Zhang, S.-F., etc.: Efficient conversion of wheatstraw wastes into biohydrogen gas by cow dung compost. Bioresource Technol2006,97(3):500-505.
    [67]. Zhang, M.-L.,Fan, Y.-T.,Xing, Y., etc.: Enhanced biohydrogen productionfrom cornstalk wastes with acidification pretreatment by mixed anaerobic cultures.Biomass and Bioenergy2007,31(4):250-254.
    [68]. Kawaguchi, H.,Vertes, A. A.,Okino, S., etc.: Engineering of a XyloseMetabolic Pathway in Corynebacterium glutamicum. Appl Environ Microb2006,72(5):3418-3428.
    [69]. Kawaguchi, H.,Sasaki, M.,Vertes, A. A., etc.: Engineering of an L-arabinosemetabolic pathway in Corynebacterium glutamicum. Appl Microbiol Biot2008,77(5):1053-1062.
    [70]. Sasaki, M.,Jojima, T.,Kawaguchi, H., etc.: Engineering of pentose transportin Corynebacterium glutamicum to improve simultaneous utilization of mixed sugars.Appl Microbiol Biot2009,85(1):105-115.
    [71]. Schneider, J.,Niermann, K.,Wendisch, V. F.: Production of the amino acidsl-glutamate, l-lysine, l-ornithine and l-arginine from arabinose by recombinantCorynebacterium glutamicum. J Biotechnol2011, In Press, Corrected Proof.
    [72]. Rittmann, D.,Lindner, S. N.,Wendisch, V. F.: Engineering of a GlycerolUtilization Pathway for Amino Acid Production by Corynebacterium glutamicum.Appl Environ Microb2008,74(20):6216-6222.
    [73]. Mazumdar, S.,Clomburg, J. M.,Gonzalez, R.: Escherichia coli StrainsEngineered for Homofermentative Production of D-Lactic Acid from Glycerol. ApplEnviron Microb2010,76(13):4327-4336.
    [74]. Zhang, X.,Shanmugam, K. T.,Ingram, L. O.: Fermentation of Glycerol toSuccinate by Metabolically Engineered Strains of Escherichia coli. Appl EnvironMicrob2010,76(8):2397-2401.
    [75]. Bailey, J. E.: Toward a science of metabolic engineering. Science1991,252(5013):1668-1675.
    [76]. Stephanopoulos, G.,Vallino, J. J.: Network rigidity and metabolic engineeringin metabolite overproduction. Science1991,252(5013):1675-1681.
    [77]. Stephanopoulos, G.,Sinskey, A. J.: Metabolic engineering--methodologiesand future prospects. Trends Biotechnol1993,11(9):392-396.
    [78]. Nielsen, J.: Metabolic engineering. Appl Microbiol Biotechnol2001,55(3):263-283.
    [79]. Nielsen, J.: Metabolic engineering: techniques for analysis of targets forgenetic manipulations. Biotechnol Bioeng1998,58(2-3):125-132.
    [80]. Lee, J. W.,Na, D.,Park, J. M., etc.: Systems metabolic engineering ofmicroorganisms for natural and non-natural chemicals. Nat Chem Biol2012,8(6):536-546.
    [81]. Jang, Y. S.,Park, J. M.,Choi, S., etc.: Engineering of microorganisms for theproduction of biofuels and perspectives based on systems metabolic engineeringapproaches. Biotechnol Adv2012,30(5):989-1000.
    [82]. Park, J. H.,Lee, S. Y.: Towards systems metabolic engineering ofmicroorganisms for amino acid production. Curr Opin Biotechnol2008,19(5):454-460.
    [83]. Lee, S. J.,Lee, D. Y.,Kim, T. Y., etc.: Metabolic engineering of Escherichiacoli for enhanced production of succinic acid, based on genome comparison and insilico gene knockout simulation. Appl Environ Microb2005,71(12):7880-7887.
    [84]. Wang, Q. Z.,Chen, X.,Yang, Y. D., etc.: Genome-scale aided metabolicanalysis and flux comparisons of Escherichia coli to improve succinate production.Appl Microbiol Biotechnol2006,73(4):887-894.
    [85]. Lee, S. Y.,Lee, D.-Y.,Kim, T. Y.: Systems biotechnology for strainimprovement. Trends Biotechnol2005,23(7):349-358.
    [86]. Ro, D. K.,Paradise, E. M.,Ouellet, M., etc.: Production of the antimalarialdrug precursor artemisinic acid in engineered yeast. Nature2006,440(7086):940-943.
    [87]. Ajikumar, P. K.,Xiao, W. H.,Tyo, K. E., etc.: Isoprenoid pathwayoptimization for Taxol precursor overproduction in Escherichia coli. Science2010,330(6000):70-74.
    [88]. Keasling, J. D.: Synthetic biology for synthetic chemistry. ACS Chem Biol2008,3(1):64-76.
    [89]. Tyo, K. E.,Alper, H. S.,Stephanopoulos, G. N.: Expanding the metabolicengineering toolbox: more options to engineer cells. Trends Biotechnol2007,25(3):132-137.
    [90]. Voigt, C. A.: Genetic parts to program bacteria. Curr Opin Biotechnol2006,17(5):548-557.
    [91]. Zheng, Z.,Chen, T.,Zhao, M., etc.: Engineering Escherichia coli for succinateproduction from hemicellulose via consolidated bioprocessing. Microb Cell Fact2012,11:37.
    [92]. Trinh, C. T.,Wlaschin, A.,Srienc, F.: Elementary mode analysis: a usefulmetabolic pathway analysis tool for characterizing cellular metabolism. ApplMicrobiol Biotechnol2009,81(5):813-826.
    [93]. Bai, D. M.,Zhao, X. M.,Li, X. G., etc.: Strain improvement and metabolicflux analysis in the wild-type and a mutant Lactobacillus lactis strain for L(+)-lacticacid production. Biotechnol Bioeng2004,88(6):681-689.
    [94]. Wiechert, W.,Mollney, M.,Petersen, S., etc.: A universal framework for13Cmetabolic flux analysis. Metab Eng2001,3(3):265-283.
    [95]. Zamboni, N.,Fendt, S.-M.,Ruhl, M., etc.:13C-based metabolic flux analysis.Nat. Protocols2009,4(6):878-892.
    [96]. Becker, J.,Zelder, O.,Hner, S., etc.: From zero to hero--Design-based systemsmetabolic engineering of Corynebacterium glutamicum for l-lysine production. Metab.Eng.2011,13(2):159-168.
    [97]. Varman, A. M.,Xiao, Y.,Pakrasi, H. B., etc.: Metabolic engineering ofSynechocystis sp. strain PCC6803for isobutanol production. Appl Environ Microbiol2013,79(3):908-914.
    [98]. Ip, K.,Colijn, C.,Lun, D.: Analysis of complex metabolic behavior throughpathway decomposition. BMC Systems Biology2011,5(1):1-11.
    [99]. Terzer, M.,Stelling, J.: Large-scale computation of elementary flux modeswith bit pattern trees. Bioinformatics2008,24(19):2229-2235.
    [100]. Klamt, S.,Saez-Rodriguez, J.,Gilles, E. D.: Structural and functional analysisof cellular networks with CellNetAnalyzer. BMC. Syst. Biol2007,1:2.
    [101]. Rocha, I.,Maia, P.,Evangelista, P., etc.: OptFlux: an open-source softwareplatform for in silico metabolic engineering. BMC Syst Biol2010,4:45.
    [102]. Schwarz, R.,Liang, C.,Kaleta, C., etc.: Integrated network reconstruction,visualization and analysis using YANAsquare. BMC Bioinformatics2007,8:313.
    [103]. Xavier, D.,Vazquez, S.,Higuera, C., etc.: Tools-4-Metatool (T4M): onlinesuite of web-tools to process stoichiometric network analysis data from Metatool.Biosystems2011,105(2):169-172.
    [104]. Klamt, S.,von Kamp, A.: An application programming interface forCellNetAnalyzer. Biosystems2011,105(2):162-168.
    [105]. Trinh, C. T.,Unrean, P.,Srienc, F.: Minimal Escherichia coli cell for the mostefficient production of ethanol from hexoses and pentoses. Appl Environ Microbiol2008,74(12):3634-3643.
    [106]. Unrean, P.,Trinh, C. T.,Srienc, F.: Rational design and construction of anefficient E. coli for production of diapolycopendioic acid. Metab Eng2010,12(2):112-122.
    [107]. Trinh, C. T.,Li, J.,Blanch, H. W., etc.: Redesigning Escherichia colimetabolism for anaerobic production of isobutanol. Appl Environ Microbiol2011,77(14):4894-4904.
    [108]. Chen, Z.,Liu, H. J.,Zhang, J. A., etc.: Elementary Mode Analysis for theRational Design of Efficient Succinate Conversion from Glycerol by Escherichia coli.Journal of Biomedicine and Biotechnology2010:-.
    [109]. Kirchner, O.,Tauch, A.: Tools for genetic engineering in the aminoacid-producing bacterium Corynebacterium glutamicum. J Biotechnol2003,104(1-3):287-299.
    [110]. Van der Werf, M. J.,Guettler, M. V.,Jain, M. K., etc.: Environmental andphysiological factors affecting the succinate product ratio during carbohydratefermentation by Actinobacillus sp.130Z. Arch. Microbiol1997,167(6):332-342.
    [111]. Zhang, X.,Jantama, K.,Shanmugam, K. T., etc.: Reengineering Escherichiacoli for Succinate Production in Mineral Salts Medium. Appl. Environ. Microbiol2009,75(24):7807-7813.
    [112]. Gerstmeir, R.,Wendisch, V. F.,Schnicke, S., etc.: Acetate metabolism and itsregulation in Corynebacterium glutamicum. J. Biotechnol2003,104(1-3):99-122.
    [113]. Inui, M.,Kawaguchi, H.,Murakami, S., etc.: Metabolic engineering ofCorynebacterium glutamicum for fuel ethanol production under oxygen-deprivationconditions. J Mol Microbiol Biotechnol2004,8(4):243-254.
    [114]. Yasuda, K.,Jojima, T.,Suda, M., etc.: Analyses of the acetate-producingpathways in Corynebacterium glutamicum under oxygen-deprived conditions. ApplMicrobiol Biot2007,77(4):853-860.
    [115]. Skorokhodova, A.,Gulevich, A.,Morzhakova, A., etc.: Anaerobic synthesis ofsuccinic acid by recombinant Escherichia coli strains with activated NAD-reducingpyruvate dehydrogenase complex. Appl. Biochem. Microbiol2011,47(4):373-380.
    [116]. Lee, S. Y.,Kim, H. U.,Park, J. H., etc.: Metabolic engineering ofmicroorganisms: general strategies and drug production. Drug Discov Today2009,14(1–2):78-88.
    [117]. Kim, T. Y.,Sohn, S. B.,Kim, Y. B., etc.: Recent advances in reconstructionand applications of genome-scale metabolic models. Curr Opin Biotechnol2012,23(4):617-623.
    [118]. Melzer, G.,Esfandabadi, M. E.,Franco-Lara, E., etc.: Flux Design: In silicodesign of cell factories based on correlation of pathway fluxes to desired properties.BMC Syst Biol2009,3:120.
    [119]. Segre, D.,Vitkup, D.,Church, G. M.: Analysis of optimality in natural andperturbed metabolic networks. Proc. Natl. Acad. Sci. U. S. A.2002,99(23):15112-15117.
    [120]. Bartek, T.,Blombach, B.,Zonnchen, E., etc.: Importance of NADPH Supplyfor Improved L-Valine Formation in Corynebacterium glutamicum. Biotechnol Progr2010,26(2):361-371.
    [121]. Kind, S.,Jeong, W. K.,Schrer, H., etc.: Systems-wide metabolic pathwayengineering in Corynebacterium glutamicum for bio-based production ofdiaminopentane. Metabolic Engineering2009,12(14):341-351.
    [122]. Trinh, C. T.,Srienc, F.: Metabolic Engineering of Escherichia coli forEfficient Conversion of Glycerol to Ethanol. Appl Environ Microb2009,75(21):6696-6705.
    [123]. Buchholz, A.,Hurlebaus, J.,Wandrey, C., etc.: Metabolomics: quantificationof intracellular metabolite dynamics. Biomol Eng2002,19(1):5-15.
    [124]. Price, N. D.,Papin, J. A.,Schilling, C. H., etc.: Genome-scale microbial insilico models: the constraints-based approach. Trends Biotechnol2003,21(4):162-169.
    [125]. Kjeldsen, K. R.,Nielsen, J.: In silico genome-scale reconstruction andvalidation of the Corynebacterium glutamicum metabolic network. Biotechnol.Bioeng2009,102(2):583-597.
    [126]. Shinfuku, Y.,Sorpitiporn, N.,Sono, M., etc.: Development and experimentalverification of a genome-scale metabolic model for Corynebacterium glutamicum.Microb Cell Fact2009,8:43.
    [127]. Chen, N.,Du, J.,Liu, H., etc.: Elementary mode analysis and metabolic fluxanalysis of L-glutamate biosynthesis by Corynebacterium glutamicum. Ann Microbiol2009,59(2):317-322.
    [128]. Krmer, J. O.,Wittmann, C.,Schrder, H., etc.: Metabolic pathway analysis forrational design of L-methionine production by Escherichia coli and Corynebacteriumglutamicum. Metabolic Engineering2006,8(4):353-369.
    [129]. Radhakrishnan, D.,Rajvanshi, M.,Venkatesh, K. V.: Phenotypiccharacterization of Corynebacterium glutamicum using elementary modes towardssynthesis of amino acids. Systems and synthetic biology2010,4(4):281-291.
    [130]. Unrean, P.,Nguyen, N. H.: Metabolic pathway analysis and kinetic studies forproduction of nattokinase in Bacillus subtilis. Bioprocess Biosyst Eng2013,36(1):45-56.
    [131]. Ne vera, J.,Pátek, M.: Tools for genetic manipulations in Corynebacteriumglutamicum and their applications. Appl Microbiol Biot2011,90(5):1641-1654.
    [132]. Jakoby, M.,Ngouoto-Nkili, C.-E.,Burkovski, A.: Construction and applicationof new Corynebacterium glutamicum vectors. Biotechnol Tech1999,13(6):437-441.
    [133]. Deb, J.,Nath, N.: Plasmids of corynebacteria. Fems Microbiol Lett1999,175(1):11-20.
    [134]. Blombach, B.,Riester, T.,Wieschalka, S., etc.: Corynebacterium glutamicumTailored for Efficient Isobutanol Production. Appl Environ Microbiol2011,77(10):3300-3310.
    [135]. Schez, A. M.,Bennett, G. N.,San, K.-Y.: Batch culture characterization andmetabolic flux analysis of succinate-producing Escherichia coli strains. MetabolicEngineering2006,8(3):209-226.
    [136]. Ehira, S.,Shirai, T.,Teramoto, H., etc.: Group2sigma factor SigB ofCorynebacterium glutamicum positively regulates glucose metabolism underconditions of oxygen deprivation. Appl Environ Microbiol2008,74(16):5146-5152.
    [137]. Reinscheid, D. J.,Eikmanns, B. J.,Sahm, H.: Malate synthase fromCorynebacterium glutamicum: sequence analysis of the gene and biochemicalcharacterization of the enzyme. Microbiology+1994,140(Pt11):3099-3108.
    [138]. Eikmanns, B. J.,Thum-Schmitz, N.,Eggeling, L., etc.: Nucleotide sequence,expression and transcriptional analysis of the Corynebacterium glutamicum gltA geneencoding citrate synthase. Microbiology+1994,140:1817-1828.
    [139]. Snoep, J. L.,de Graef, M. R.,Westphal, A. H., etc.: Differences in sensitivityto NADH of purified pyruvate dehydrogenase complexes of Enterococcus faecalis,Lactococcus lactis, Azotobacter vinelandii and Escherichia coli: Implications for theiractivity in vivo. Fems Microbiol Lett1993,114(3):279-283.
    [140]. Huhn, S.,Jolkver, E.,Kr mer, R., etc.: Identification of the membrane proteinSucE and its role in succinate transport in Corynebacterium glutamicum. ApplMicrobiol Biotechnol2011,89(2):327-335.
    [141]. Fukui, K.,Koseki, C.,Yamamoto, Y., etc.: Identification of succinate exporterin Corynebacterium glutamicum and its physiological roles under anaerobicconditions. J Biotechnol2011,154(1):25-34.
    [142]. Li, S.,Huang, D.,Li, Y., etc.: Rational improvement of the engineeredisobutanol-producing Bacillus subtilis by elementary mode analysis. Microb Cell Fact2012,11:101.
    [143]. Martinez, I.,Bennett, G. N.,San, K. Y.: Metabolic impact of the level ofaeration during cell growth on anaerobic succinate production by an engineeredEscherichia coli strain. Metab. Eng2010,12(6):499-509.
    [144]. Litsanov, B.,Brocker, M.,Bott, M.: Glycerol as a substrate for aerobicsuccinate production in minimal medium with Corynebacterium glutamicum. MicrobBiotechnol2012:doi:10.1111/j.1751-7915.2012.00347.x.
    [145]. Raab, A. M.,Gebhardt, G.,Bolotina, N., etc.: Metabolic engineering ofSaccharomyces cerevisiae for the biotechnological production of succinic acid. MetabEng2010.
    [146]. Zhu, N.,Xia, H.,Wang, Z., etc.: Engineering of Acetate Recycling and CitrateSynthase to Improve Aerobic Succinate Production in Corynebacterium glutamicum.PloS one2013,8(4):e60659.
    [147]. Tsuruta, H.,Paddon, C. J.,Eng, D., etc.: High-level production ofamorpha-4,11-diene, a precursor of the antimalarial agent artemisinin in Escherichiacoli. PloS one2009,4(2):e4489.
    [148]. Lin, H.,Castro, N. M.,Bennett, G. N., etc.: Acetyl-CoA synthetaseoverexpression in Escherichia coli demonstrates more efficient acetate assimilationand lower acetate accumulation: a potential tool in metabolic engineering. ApplMicrobiol Biotechnol2006,71(6):870-874.
    [149]. Veit, A.,Rittmann, D.,Georgi, T., etc.: Pathway identification combiningmetabolic flux and functional genomics analyses: Acetate and propionate activationby Corynebacterium glutamicum. J Biotechnol2009,140(1-2):75-83.
    [150]. Wolfe, A. J.: The acetate switch. Microbiol Mol Biol R2005,69(1):12-50.
    [151]. Chang, D. E.,Shin, S.,Rhee, J. S., etc.: Acetate metabolism in a pta mutant ofEscherichia coli W3110: Importance of maintaining acetyl coenzyme a flux forgrowth and survival. J Bacteriol1999,181(21):6656-6663.
    [152]. Underwood, S. A.,Buszko, M. L.,Shanmugam, K. T., etc.: Flux throughcitrate synthase limits the growth of ethanologenic Escherichia coli KO11duringxylose fermentation. Appl Environ Microb2002,68(3):1071-1081.
    [153]. van Ooyen, J.,Noack, S.,Bott, M., etc.: Improved L-lysine production withCorynebacterium glutamicum and systemic insight into citrate synthase flux andactivity. Biotechnol Bioeng2012,109(8):2070-2081.
    [154]. Youn, J.-W.,Jolkver, E.,Kramer, R., etc.: Identification and characterization ofthe dicarboxylate uptake system DccT in Corynebacterium glutamicum. J Bacteriol2008,190(19):6458-6466.
    [155]. Youn, J.-W.,Jolkver, E.,Kramer, R., etc.: Characterization of thedicarboxylate transporter DctA in Corynebacterium glutamicum. J Bacteriol2009,191(17):5480-5488.
    [156]. Zimmermann, H. F.,Anderlei, T.,Buchs, J., etc.: Oxygen limitation is a pitfallduring screening for industrial strains. Appl Microbiol Biotechnol2006,72(6):1157-1160.
    [157]. Wieschalka, S.,Blombach, B.,Eikmanns, B.: Engineering Corynebacteriumglutamicum for the production of pyruvate. Appl Microbiol Biotechnol2012,94(2):449-459.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700