用户名: 密码: 验证码:
脂肪酶催化吡哆醇区域选择性酯化及其酶学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
设计了一套制备高纯度5-乙酰吡哆醇(5-AcPN)的酶催化反应体系,对产物进行了鉴定,通过对三种脂肪酶的筛选发现非水介质中Novozym 435催化吡哆醇酯化能力最强。为了改善吡哆醇溶解度并提高5-AcPN的产率,采用AOT反胶团、乙腈和离子液[bmim]PF6三种反应介质。发现离子液中的位置选择性不同于其它两种,在[bmim]PF6中吡哆醇的4-位羟基活性最高,而在乙腈和反胶团中5-位羟基活性最高。通过筛选,发现乙腈和AOT反胶团是此反应的潜在优良介质,不同的酰基供体不仅对转化率而且对区域选择率会产生重要影响。
     在乙腈和AOT反胶团中,以乙酸乙烯酯为酰基供体进行Novozym 435催化吡哆醇酯化反应,系统的分析了水含量、温度、底物摩尔比以及酶载量等因素对反应的影响,确定系统的水含量是影响吡哆醇酯化的关键因素。利用响应面法对酶催化5-AcPN合成的反应条件进行了优化,建立了优化模型,并且验证了模型的有效性,确定了三套优化反应条件。结果表明,Novozym 435催化吡哆醇酯化的最大转化率可以达到99%,区域选择率为93%。利用优化条件成功的进行了放大试验,表明该技术具有潜在的工业应用价值。
     以橄榄油水解为模型反应对Candida rugosa lipase (CRL)在新型CB-Span 85/Span 85/n-hexane反胶团中的活性特征进行了表征。结果表明,酶的加入导致了胶团流体力学半径的变化,Span 85和水分子之间发生了重排。发现足够的CB修饰密度对反胶团溶解水的能力和维持较高酶活具有重要意义,CB-Span 85反胶团中酶活与含水量(W0)之间的关系与AOT反胶团中不同。与水溶液中相比,CRL在反胶团中的最适pH保持不变,但其表观活性显著增加。动力学研究表明,CB-Span 85反胶团中酶催化橄榄油水解遵循米氏方程,表观米氏常数随反胶团浓度的增加而减小,说明酶与底物间的亲和力增加了。反胶团中CRL的稳定性与W0呈负相关性。
     将CRL固定到磁性纳米载体上得到磁性固定化酶MIE,考察二糖对酶的保护作用。加入二糖后,MIE在干燥和储存过程中的稳定性增加了,其中海藻糖的保护作用最显著,乳糖其次,蔗糖最差,支持‘玻璃态’假说。采用两步失活动力学模型拟合了酶的失活过程,得到了失活速率常数和半衰期,结果加入海藻糖和乳糖之后,MIE的半衰期分别增长了31和23倍。
A lipase-catalyzed reaction system for the preparation of high-purity 5-O-acetylpyridoxine (5-AcPN) was designed and the products were identified. Three kinds of lipases were screened and Novozym 435 lipase (Candida antarctica lipase B) was found to be the best one to catalyze the esterification of pyridoxine (PN) in nonaqueous media. In order to improve the solubility of PN and to elevate the production of 5-AcPN, three reaction media, including AOT/n-hexane reversed micelles, acetonitrile and [bmim]PF6, were used in the reaction. It was found that the site-selectivity in [bmim]PF6 was different from that of the other two, i.e., the 4-OH of PN had the highest activity in [bmim]PF6, however, the 5-OH had the highest activity in acetonitrile and reversed micelles. Finally, acetonitrile and AOT reversed micelles were chosen as the potential media to perform the reaction. Different acyl donors affected significantly not only the degree of conversion but also the regioselectivity.
     By employing vinyl acetate as acyl donor, Novozym 435-catalyzed esterification of PN was conducted in acetonitrile and AOT reversed micelles. The influence of several parameters such as water content, temperature, substrate mole ratio and enzyme loading on the reaction were analyzed systematically. The analysis confirmed that water content was the most significant factor affecting the esterification of PN. In addition, the response surface methodology (RSM) was used to optimize the reaction conditions for the enzymatic synthesis of 5-AcPN, and the best fitting models were established. The efficiency of the model was experimentally verified. Three sets of optimum reaction conditions were established. As a result, Novozym 435-catalyzed esterification of PN gave a maximum conversion of 99% and the regioselectivity of 93%. Besides, a scale-up experiment was successfully performed based on the optimized condition, indicating the industrial potentials of the technology.
     The CB-Span 85/Span 85/ hexane reversed micellar system was characterized and evaluated by employing Candida rugosa lipase (CRL)-catalyzed hydrolysis of olive oil as a model reaction. The change of micellar hydrodynamic radius reflected the redistribution of Span 85 and water after enzyme addition. An adequate modification density of CB was found to be important for the reversed micelles to retain enough hydration capacity and achieve high enzyme activity. Compared with the results in AOT-based reversed micelles, CRL in this micellar system exhibited different activity behavior vs W0. The optimal pH of the encapsulated lipase kept unchanged, but the apparent activity was significantly higher than that of the enzyme in bulk solution. Kinetic studies indicated that the encapsulated lipase in the reversed micelles of CB-formulated Span 85 followed the Michaelis-Menten equation. The Michaelis constant decreased with increasing the micelles concentration, suggesting an increase of the enzyme affinity for the substrate. Stability of the lipase in the reversed micelles was negatively correlated to W0.
     Magnetic immobilized enzyme, MIE, was prepared by immobilizing CRL onto magnetic nanoparticles. The protection of MIE by disaccharides was investigated. It was shown the stability of MIE increased during drying and storage in the presence of disaccharides. Furthermore, the preservation action of trehalose was the most efficient, secondly was lactose, and sucrose was the worst one, which supported the‘glassy state theory’.‘Two-step deactivation’model was employed to fit the deactivation kinetics of MIE. Also, the deactivation rate constant and the half-life were obtained. In the presence of trehalose and lactose, the MIE half-lives increased 31- and 23-fold, respectively.
引文
[1] 孙彦,生物分离工程,北京:化学工业出版社,1998,3-6.
    [2] Winkler F.K., D’Arcy A. Hunzuker W. Structure of human pancreatic lipase, Nature, 1990, 343: 771-774.
    [3] Malcata F.X., Hector R. Reyes, Hugo S. et al., and Amundson C.H. Kinetics and mechanism of reactions catalysed by immobilized lipases, Enzyme Microb. Technol., 1992, 14: 426-446.
    [4] Zaks A., Klibanov A.M. Enzymatic catalysis in organic media, Science, 1984, 224: 1249-1253.
    [5] Klibanov A.M. Improving enzymes by using them in organic solvents, Nature, 2001, 409: 241-246.
    [6] Koeller K.M., Wong C.-H. Enzymes for chemical synthesis, Nature, 2001, 409: 232-240.
    [7] Anchordoquy T.J., Izutsu K.-I., Randolph T.W. et al. Maintenance of quaternary structure in the frozen state stabilizes lactate dehydrogenase during freeze-drying, Archives of Biochemistry and Biophysics, 2001, 390: 35-41.
    [8] Guiavare’h Y., Sila D., Duvetter T. et al. Influence of sugars and polyols on the thermal stability of purified tomato and cucumber pectinmethylesterases: a basis for TTI development, Enzyme Microb. Technol., 2003, 33: 544-555.
    [9] Arora A., Ha C., Park C.B. Inhibition of insulin amyloid formation by small stress molecules, FEBS Letters, 2004, 564: 121-125.
    [10] George S.P., Ahmad A., Rao M.B. A novel thermostable xylanase from Thermomonospora sp.: influence of additives on thermostability, Bioresource Technology, 2001, 78: 221-224.
    [11] Van Dyck S.M.O., Lemiere G.L.F., Jonckers, T.H.M. et al.Kinetic resolution of a dihydrobenzofuran-type neolignan by lipase-catalysed acetylation, Tetrahedron: Asymmetry, 2001, 12: 785-789.
    [12] Margolin A.L. Enzymes in the synthesis of chiral drugs, Enzyme Microb. Technol., 1993, 15: 266-280.
    [13] Schmidt-Dannert C. Recombinant microbial lipases for biotechnological applications, Bioorg. Med. Chem., 1999, 7: 2123-2130.
    [14] Caro Y., Villeneuve P., Pina M. et al. Investigation of crude latex from various Carica papaya varieties for lipid bioconversions, J. Am. Oil Chem. Soc., 2000, 77: 891-901.
    [15] Winkler F.K., D’Arcy A., Hunzuker W. Structure of human pancreatic lipase, Nature, 1990, 343: 771-774.
    [16] Hermoso J., Pignol D., Kerfelec B. et al. Lipase activation by nonionic detergents: the crystal structure of the porcine lipase-colipase-tetrathylene glycol monooctyl ether complex., J. Biol. Chem., 1996, 271: 18007-18016.
    [17] Grochulski P., Li Y.-g., Schrag J.D. et al. Insights into interfacial activation from an open structure of Candida rugosa lipase, J. Biol. Chem., 1993, 268: 12843-12847.
    [18] Uppenberg J., Hansen M.T., Patkar S. et al. Sequence, crystal-structure determination and refinement of 2 crystal forms of lipase-B from Candida Antarctica, Structure, 1994, 2: 293-308.
    [19] Schrag J.D., Li Y.-g., Wu S. et al. Ser-His-Glu triad forms the catalytic site of the lipase from Geotrichum Candidum, Nature, 1991, 351: 761-764.
    [20] Brady L., Brzozowski A.M., Zygmunt S. et al. Serine protease triad forms the catalytic cengter of a triacylglycerol lipase, Nature, 1990, 343: 767-770.
    [21] Derewenda U., Swenson L., Green R. et al. Current progress in crystallograohic studies of new lipase from filamentous fungi, Protein Eng., 1994, 7: 551-557.
    [22] Lawson D.M., Brzozowski A.M., Rety S. et al. Probing the nature of substrate binding in Humicola lanuginosa lipase through X-ray crystallography and intuitive modeling, Protein Eng., 1994, 7: 543-550.
    [23] Nobel M.E.M., Cleasby A., Johnson L.N. et al. The crystal structure of triacylglycerol lipase from Pseodomonas glumae reveals a partially redundant catalytic aspartate, FEBS Letters, 1993, 331: 123-128.
    [24] Kim K.K., Song H.K., Shin D.H. et al. The crystal structure of a triacylglycerol lipase from Pseodomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor, Structure, 1997, 5: 173-185.
    [25] Lang D., Hofmann B., Haalck L. et al. Crystal structure of a bacterial lipase from chromobacterium viscosum ATCC 6918 refined at 1.6 resolution, J. Mol. Biol., 1996, 259: 704-717.
    [26] Huang A.H.C., Lin Y.-H., Wang S.-M. Characteristic and biosynthesis of seed lipase in Maize and other plant species, J. Am. Oil Chem. Soc., 1988, 65: 897-899.
    [27] Dartois V., Baulard A., Schanck K. et al. Cloning, Nucleotide and expression of a lipase gene from Bacillus subtillis 168, Biochem. Biophys. Acta., 1992, 131: 253-260.
    [28] Van Tilbeurg H., Egloff M.P., Martinez C. et al. Interfacial activation of the lipase-procolipase complex by mixed micelles revealed by X-ray crystallography, Nature, 1993, 362: 814-820.
    [29] Brzozowski A.M., Derewenda U., Derewenda Z.S. et al. Model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex, Nature, 1991, 351: 491-494.
    [30] 邬敏辰,王曙,黄伟达等,圆弧青霉碱性脂肪酶的分离纯化和特性,生物化学与生物物理学报,1999,31:664-668.
    [31] 吴松刚,谢新东,黄建忠等,类产碱假单胞菌耐热碱性脂肪酶的研究,微生物学报,1997,37:32-39.
    [32] 邹文欣,刘慧,郁文焕,脂肪酶产生菌 Serratia liguefaciens 的分离及其酶学性质的研究,南京大学学报,1996,32:713-716.
    [33] Gupta M.N. Enzyme in organic solvents, Eur. J. Biochem., 1991, 203: 25-32.
    [34] Avila-Gonzalez R., Perez-Gilabert M., Lopez-Lopez M.A. et al. Candida rugosa lipase-catalyzed intramolecular O- to N- transacylation of butyryl propranolol in the presence of cyclodextrins, Biotechnol. Prog., 2005, 21: 338-342.
    [35] Lee Y.S., Hong J.H., Jeon N.Y. et al. Highly enantioselective acylation of rac-alkyl lactates using Candida Antarctica lipase B, Organic Process Research & Development, 2004, 8: 948-951.
    [36] Fransson A.-B.L., Boren L., Pamies O. et al. Kinetic resolution and chemoenzymatic dynamic kinetic resolution of functionalized γ-hydroxy amides, J. Org. Chem., 2005, 70: 2582-2587.
    [37] Sakai T., Liu Y., Ohta H. et al. Lipase-catalyzed resolution of (2R,3S)- and (2R,3S)-3-methyl-3-phenyl-2-aziridinemethanol at low temperatures and determination of the absolute configurations of the four stereoisomers, J. Org. Chem., 2005, 70: 1369-1375.
    [38] Orlich B., Schomacker R. Candida rugosa lipase reactions in nonionic w/o-microemulsion with a technical surfactant, Enzyme Microb. Technol., 2001, 28: 42-48.
    [39] Yuan Y., Bai S., Sun Y. Comparison of lipase-catalyzed enantioselective esterification of (±)-menthol in ionic liquids and organic solvents, Food Chemistry, 2006, 97: 324-330.
    [40] Pichon C., Martin-Gourdel M.-E., Chauvat D. et al. Regioselectivity in the reaction of hydrolases with (Z,E)-hexa-2,4-diene-1,6-diol, J. Mol. Catal. B: Enzym., 2004, 27: 65-68.
    [41] Yang K., Wang Y.-J. Lipase-catalyzed cellulose acetylation in aqueous and organic media, Biotechnol. Prog., 2003, 19: 1664-1671.
    [42] Kremnichy L., Mastihuba V., Cote G.L. Trichoderma reesei acetyl esterase catalyzes transesterification in water, J. Mol. Catal. B: Enzym., 2004, 30: 229-239.
    [43] Baron A.M., Sarquis M.I.M., Baigori M. et al. A comparative study of the synthesis of n-butyl-oleate using a crude lipolytic extract of Penicillum coryophilum in water-restricted environments, J. Mol. Catal. B: Enzym., 2005, 34: 25-32.
    [44] Nara S.J., Harjani J.R., Salunkhe M.M. Lipase-catalysed transesterification in ionic liquids and organic solvents: a comparative study, Tetrahedron Letters, 2002, 43: 2979-2982.
    [45] Lozano P., Diego T.D., Carrie D. et al. Enzymatic ester synthesis in ionic liquids, J. Mol. Catal. B: Enzym., 2003, 21: 9-13.
    [46] Bonrath W., Karge R., Netscher T. Lipase-catalyzed transformations as key-steps in the large-scale preparation of vitamins, J. Mol. Catal. B: Enzym., 2002, 19-20: 67-72.
    [47] Chang R.-C., Chou S.-J., Shaw J.-F. Synthesis of fatty acid esters by recombinant Staphylococcus epidermidis lipases in aqueous environment, J. Agric. Food Chem., 2002, 49: 2619-2622.
    [48] Ko W.-C., Wang H.-J., Hwang J.-S. et al. Efficient hydrolysis of tuna oil by a surfactant-coated lipase in a two-phase system, J. Agric. Food Chem., 2006, 54: 1849-1853.
    [49] Naoe K., Ohsa T., Kawagoe M. et al. Esterification by Rhizopus delemar lipase in organic solvent using sugar ester reverse micelles, Biochemical Engineering Journal, 2001, 9: 67-72.
    [50] Luisi P.L., Giomini M., Pileni M.P. et al. Reverse micelles as hosts for proteins and small molecules, Biochim. Biophys. Acta, 1988, 947: 209-246.
    [51] Grigolini P., Maestro M. A two-state stochastic model for the dynamics of constrained water in reversed micelles, Chem. Phys. Lett., 1986, 127: 248-252.
    [52] Andrews B.A., Pyle D.L., Asenjo J.A. The effect of pH and ionic strength on the partitioning of four proteins in reversed micelles system, Biotechnol. Bioeng., 1994, 43: 1052-1058.
    [53] Martinek K., Levashov A.V., Klyachko N.L. Catalysis of water soluble enzymes in organic solvents. Stabilization of enzyme against denaturation when they are included in inversed micelles of surface active substances, Dokl Akad Nauk SSSR, 1977, 236: 920-923.
    [54] Carvalho C.M.L., Cabral J.M.S. Reverse micelles as reaction media for lipase, Biochimie, 2000, 82: 1063-1085.
    [55] Martinek K., Klyachko N.L., Kabanov A.V. et al. Micellar enzymology: its reaction to membranology, Biochim. Biophys. Acta, 1989, 981: 161-172.
    [56] Sanchez F.A., Garacia C.F. Biocatalysis in reverse self-assembling structures: reverse micelles and reverse vesicles, Enzyme Microb. Technol., 1994, 16: 409-415.
    [57] Greach A.L., Prausntz J.M., Blanch H.W. Structural and catalytic properties of enzymes in reverse micelles, Enzyme Microb. Technol., 1993, 15: 383-392.
    [58] Fersht A.R. Enzyme structure and mechanism, 2nd Ed., W.H. Freeman Company, New York, 1985, 26-29.
    [59] Zaks A., Klibanov A.M. Enzymatic catalysis in nonaqueous solvents, J. Biol. Chem., 1988, 263: 3194-3201.
    [60] Fitzpatrick P.A., Klibanov A.M. How can the solvent affect enzyme enantioselectivity? J. Am. Chem. Soc., 1991, 113: 3166-3178.
    [61] Yamaguchi S., Mase T. Purification and characterization of monoglycerol and diacylglycerol lipase isolated from Penicillium canenbertii U-150, Appl. Microbiol. Biotechnol., 1991, 34: 720-725.
    [62] Tornquist H., Belfrage P. Purification and some properties of a monoacylglycerol-hydrolyzing enzyme of rat adipose tissue, J. Biol. Chem., 1976, 251: 813-819.
    [63] Matori M., Asahara T., Ota Y. Positional specificity of microbial lipases, J. Ferment Bioeng., 1991, 72: 397-398.
    [64] Rogalska E., Cudrey C., Ferrato F. et al. Stereoselective hydrolysis of triglycerides by animal and microbial lipases, Chirality, 1993, 5: 24-30.
    [65] Rubion E., Fernandzz-Mayorales A., Klibanov A.M. Effect of the solvent on enzyme regioselectivity, J. Am. Chem. Soc., 1991, 113: 695-709.
    [66] Rogalska E., Ransac S., Verger R. Stereoselectivity of lipase Ⅱ : Stereoselective hydrolysis of triglycerides by gastric and pancreatic lipase, J. Biol. Chem., 1990, 265: 20271-20276.
    [67] Kazlauskas R.L., Weissfloch A.N.E., Rappaport A.T. et al. A rule to predict which eantiomer of a secondary alcohol reacts faster in reactions catalyzed by cholesterol esterase lipase from Pseudomonas cepacia and lipase from Candida rugosa, J. Org. Chem., 1991, 56: 2656-2665.
    [68] Pleiss J., fischer M., Schmid R.D. Anatomy of lipase binding sites: the scissile fatty acid binding site, Chem. Phys. Lipids, 1998, 93: 67-80.
    [69] Joerger R.D., Haas M.J. Alteration of chain length selectivity of a Rhizopus delemar lipase through site-directed mutagenesis, Lipids, 1994, 29: 377-384.
    [70] 崔玉敏,魏东芝,俞俊棠,水在有机介质酶催化反应中的作用,生物工程进展,1999,19:54-58.
    [71] Halling P.J. Organic liquids and biocatalysts: theory and practice., Trends in Biotechnol., 1989, 7: 50-52.
    [72] Dordick J.S. Designing enzymes for use in organic solvents, Biotechnol. Prog., 1992, 8: 259-267.
    [73] Halling P.J. Thermodynamic predictions for biocatalysis in nonconventional media: theoty, test, and recommendations for experimental design and analysis, Enzyme Microb. Technol., 1994, 16: 178-206.
    [74] Valivety R.H., Halling P.J., Peilow A.D. et al. Lipase from different sources vary widely in dependence of catalytic activity on water activity, Biochim. Biophys. Acta, 1992, 1122: 143-146.
    [75] Gustavsson M.T., Persson P.V., Iversen T. et al. Polyester coating of cellulose fiber surfaces catalyzed by a cellulose-binding module-Candida Antarctica lipase B fusion protein, Biomacromolecules, 2004, 5: 106-112.
    [76] Ducret A., Trani M., Lortie R. Lipase-catalyzed enantioselective esterification of ibuprofen in organic solvents under controlled water activity, Enzyme Microb. Technol., 1998, 22: 212-216.
    [77] Wihtje E., Svensson I., Adlecreutz P. et al. Continuous control of water activity during biocatalysis in organic media, Biotechnol. Lett., 1993, 7: 873-878.
    [78] Kuhl P., Halling P.J. Salt hydrates buffer water activity during chymotrypsin-catalyzed peptide synthesis, Biochim. Biophys. Acta, 1991, 1078: 326-328.
    [79] Yang B.K., Kuo S.J., Hariyadi P. et al. Solvent suitability for lipase-mediated acyl-transfer and esterification reactions in microaqueous milieu is related to substrate and product polarities, Enzyme Microb. Technol., 1994, 16: 577-583.
    [80] Sakurai T., Margolin A.L. Control of enzyme enantioselectivity by the reaction medium, J. Am. Chem. Soc., 1988, 110: 7236-7237.
    [81] Mastihubova M., Biely P. Lipase-catalysed preparation of acetates of 4-nitrophenyl β-D-xylopyranoside and their use in kinetic studies of acetyl migration, Carbohydrate Research, 2004, 339: 1353-1360.
    [82] Nara S.J., Mohile S.S., Harjani J.R. et al. Influence of ionic liquids on the rates and regioselectivity of lipase-mediated biotransformations on 3,4,6-tri-O-acetyl-D-glucal, J. Mol. Catal. B: Enzym., 2004, 28: 39-43.
    [83] Kim M.-J., Choi M.Y., Lee J.K. et al. Enzymatic selective acylation of glycosides in ionic liquids: significantly enhanced reactivity and regioselectivity, J. Mol. Catal. B: Enzym., 2003, 26: 115-118.
    [84] Singer M.A., Lindquist S. Thermotolerance in saccharomyces cerevisiae: the Yin and Yang of trehalose, TIBTECH, 1998, 16: 460-468.
    [85] Van Dijck P., Colavizza D., Smet P. et al. Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells, Appl. Environ. Microbiol., 1995, 61: 109-115.
    [86] 尤新,淀粉糖品生产与应用手册,北京:中国轻工业出版社,1997:295-311
    [87] 杉木利行,海藻糖的开发和利用,食品工业[日],1997,16(3):1-4.
    [88] Diniz-Mendes L., Bernardes E., Araujo P.S. et al. Preservation of frozen yeast cells by trehalose, Biotechnol. Bioeng., 1999, 65: 572-578.
    [89] Kaul S.C., Obuehi K., Komatsu Y. Cold shock response of yeast cells: induction of a 33 kDa protein and protection against freezing injury, Cell Mol. Biol., 1992, 38: 553-559.
    [90] Page-Sharp M., Behm C.A., Smith G.D. Involvement of the compatible solutes trehalose and sucrose in the response to salt stress of a cyanobacterial Scytonema species isolated from desert soils, Biochim. Biophys. Acta, 1999, 1472: 519-528.
    [91] Hounsa C.G., Brandt E.V., Thevelein J. et al. Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress, Microbiology, 1998, 144: 671-680.
    [92] 李群,袁勤生,海藻糖的性质和应用,中国生化药物杂志,1995,16:231-233.
    [93] Lopez-diez E.C., Bone S. The interaction of trypsin with trehalose: an investigation of protein preservation mechanisms, Biochim. Biophys. Acta, 2004, 1673: 139-148.
    [94] Liao Y.-H., Brown M.B., Martin G.P. Investigation of the stabilization of freeze-dried lysozyme and the physical properties of the formulations, European Journal of Pharmaceutics and Biopharmaceutics, 2004, 58: 15-24.
    [95] 杨基础,董燊,杨小民,篢逄嵌怨潭ɑ傅谋;ぷ饔茫ぱПǎ?000,51 (2):193-197.
    [96] Aksan A., Toner M. Isothermal desiccation and vitrification kinetics of trehalose-dextran solutions, Langmuir, 2004, 20: 5521-5529.
    [97] Espinosa L., Schebor C., Nudelman N.S. et al. Stability of enzymes and proteins in dried glassy systems: effect of simulated sunlight conditions, Biotechnol. Prog. 2004, 20: 1220-1224.
    [98] Batchelor J.D., Olteanu A., Tripathy A. et al. Impact of protein denaturants and stabilizers on water structure, J. Am. Chem. Soc., 2004, 126: 1958-1961.
    [99] Xie G., Timasheff S.N. The thermodynamic mechanism of protein stabilization by trehalose, Biophysical Chemistry, 1997, 64: 25-43.
    [100]Sola-Penna M., Meyer-Fernandes J.R. Stabilization against thermal inactivation promoted by sugars on enzyme structure and function: Why is trehalose more effective than other sugars? Archives of Biochemistry and Biophysics, 1998, 360: 10-14.
    [101]Crowe J.H., Crowe L.M., Carpenter J.F. et al. Stabilization of dry phospholipid bilayers and proteins by sugars, Biochem. J., 1987, 242: 1-10.
    [102]French D.L., Arakawa T., Li T. Fourier transformed infrared spectroscopic investigation of protein conformation in spray-dried protein/trehalose powders, Biopolymers, 2004, 73: 524-531.
    [103]Depaz R.A., Dale D.A., Barnett C.C. et al. Effects of drying methods and additives on the structure, function and storage stability of subtilisin: role of protein conformation and molecular mobility, Enzyme Microb. Technol., 2002, 31: 765-774.
    [104]Maury M., Murphy K., Kumar S. et al. Spary-drying of proteins: effects of sorbitol and trehalose on aggregation and FT-IR amideⅠspectrum of an immunoglobulin G, European Journal of Pharmaceutics and Biopharmaceutics, 2005, 59: 251-261.
    [105]Levine H., Slade L. Another view of trehalose for drying and stabilizing biological molecules. Biopharm., 1992, 5: 36-40.
    [106]Sampedro J.G., Uribe S. Trehalose-enzyme interactions result in structure stabilization and activity inhibition. The role of viscosity., Molecular and Cellular Biochemistry, 2004, 256/257: 319-327.
    [107]Imamura K., Ogawa T., Sakiyama T. et al. Effects of types of sugar on the stabilization of protein in the dried state, Journal of Pharmaceutical Sciences, 2003, 92: 266-274.
    [108]Schlichter J., Friedrich J., Herenyi L. et al. Deuteration effects on the conformational dynamics of proteins in a trehalose glass, J. Phys. Chem. B, 2002, 106: 3510-3514.
    [109]Schebor C., Buera M.P., Chirife J. Classy state in relation to the thermal inactivation of the enzyme invertase in amorphous dried matrices of trehalose, maltodextrin and PVP. Jounal of Food Engineering, 1996, 30: 269-282.
    [110]Timasheff S.N. The control of protein stability and association by weak interactions with water: how do solvent affect these processes? Annu. Rev. Biophys. Biomol. Struct., 1993, 22: 67-97.
    [111]Lins R.D., Pereira C.S., Hunenberger P.H. Trehalose-protein interaction in aqueous solution, Proteins: Structure, Function, and Bioinformatics, 2004, 55: 177-186.
    [112]Cottone G., Giuffrida S., Ciccotti G. et al. Molecular dynamics simulation of sucrose- and trehalose- coated carboxy-myoglobin, Proteins: Structure, Function, and Bioinformatics, 2005, 59: 291-302.
    [113]Brown L., Johnston G.A., Suckling C.J. et al. Pyridoxal derivatives as probes for water concentration in non-aqueous solvents, J. Chem. PERKIN TRANSⅠ, 1993: 2777-2780.
    [114]Pham V., Zhang W., Chen V. et al. Design and synthesis of novel pyridoxine 5’-phosphonates as potential antiischemic agents, J. Med. Chem., 2003, 46: 3680-3687.
    [115]Korytnk W., Paul B. Acyl migration and selective esterification in pyridoxol, J. Org. Chem., 1967, 32: 3791-3796.
    [116]Liu Y., Dong X.-Y., Sun Y. Characterization of reversed micelles of Cibacron Blue F-3GA modified Span 85 for protein solubilization, J. Colloid Interface Sci., 2005, 290: 259-266.
    [117]Baldessari A., Mangone C.P., Gros E.G. Lipase-catalyzed acylation and deacylation reactions of pyridoxine, a member of vitamin-B6 group, Helvetica Chimica Acta, 1998, 81: 2407-2413.
    [118]杨森,魏国勤,食用维生素的基础知识和定量方法,北京:中国环境科学出版社,1995.
    [119]王宏雁,毛璞,卢奎等,维生素 B6 硬脂酸酯的合成与其水溶性的研究,郑州工程学院学报,2000,21(4):41-42.
    [120]Martinek K., Levashov A.V., Klyachko N. et al. The principles of enzyme stabilization Ⅵ. catalysis by water-soluble enzymes entrapped into reversed micelles of surfactants in organic solvents, Biochim. Biophys. Acta, 1981, 657: 277-294.
    [121]刘薇,非水相中固定化脂肪酶拆分(±)—薄荷醇的研究:[硕士学位论文],天津;天津大学,2004.
    [122]石家华,孙逊,杨春和等,离子液体研究进展,化学通报,2002,4:243-250.
    [123]Markopoulou C.K. An optimized method for the simultaneous determination of vitamin B1, B6, B12, in multivitamin tablets by HPLC, J. Pharmaceutical and Biomedical Analysis, 2002, 30: 1403-1410.
    [124]Sugai T., Kakeya H., Ohta H. Enzymatic preparations of enantiomerically enriched tertiary 2-benzyloxy acid esters, application to the synthesis of (s)-(-)-frontalin, J. Org. Chem., 1990, 55: 4643-4647.
    [125]Kielbasinaki P., Alhrycht M., Luczak J. et al. Enzymatic reactions in ionic liquids: lipase-catalysed kinetic resolution of racemic, P-chiral hydroxymethanephosphinates and hydroxymethylphosphine oxides, Tetrahedron: Asymmetry, 2002, 13: 735-738.
    [126]Hirose Y., Kariya K., Sasaki I. et al. Drastic solvent effect on lipase-catalyzed enantioselective hydrolysis of prochiral 1,4-dihydropyridines, Tetrahedron Lett., 1992, 33: 7157-7160.
    [127]Kaftzik N., Wasserscheid P., Kragl U. Use of ionic liquids to increase the yield and enzyme stability in the β-galactosidase catalysed synthesis of N-acetyllactosamine, Org. Proc. Res. Dev., 2002, 6: 553-557.
    [128]Kim K.W., Song B., Choi M.Y. et al. Biocatalysis in ionic liquids: markedly enhanced enantioselectivity of lipase, Org. Lett., 2001, 3: 1507-1509.
    [129]Schofer S.H., Kaftzik N., Wasserscheid P. et al. Enzyme catalysis in ionic liquids: lipase catalysed kinetic resolution of 1-phenylethanol with improved enantioselectivity, Chem. Commun., 2001, 30: 425-426.
    [130]Itoh T., Akasaki E., Kudo K. et al. Lipase-catalyzed enantioselective acylation in the ionic liquid solvent system: reaction of enzyme anchored to the solvent. Chemistry Letters, 2001, 30: 262-263.
    [131]Wang Y.F., Lalonde J.J., Momongn M. et al. Lipase catalyzed irreversible transesterifications using enol esters as acylating reagents: preparative enantio- and regioselective synthesis of alcohols, glycerol derivatives sugars, and organometallics, J. Am. Chem. Soc., 1988, 110: 7200-7205.
    [132]Weber H.K., Stecher H., Faber K. Sensitivity of microbial lipases to acetaldehyde formed by acyl-transfer reactions from vinyl esters, Biotechnol. Lett., 1995, 17: 803-808.
    [133]夏咏梅,微水体系中酶促合成脂肪酸偏甘油酯的研究:[博士学位论文],无锡;无锡轻工大学,2000.
    [134]Kitaguchi H., Itoh I., Ono M. Effects of water and water-mimicking solvents on the lipase-catalyzed esterification in an apolar solvent, Chemistry Letters, 1990, 19: 1203-1211.
    [135]Affleck R., Xu Z.F., Suzawa V. et al. Enzymatic catalysis and dynamics in low-water environments, Proc. Natl. Acad. Sci., USA, 1992, 89: 1100-1104.
    [136]Dudal Y., Lortie R. Influence of water activity on the synthesis of triolein catalyzed by immobilized Mucor miehei lipase, Biotechnol. Bioeng., 1995, 45: 129-134.
    [137]Phillips P.S. Temperature modulation of the stereochemistry of enzymatic catalysis: prospects for exploitation, TIBTECH, 1996, 14: 13-16.
    [138]Ryu S.A., Kim C.S., Kim H.J. et al. Continuous D-tagatose production by immobilized thermostable L-arabinose isomerase in a packed-bed bioreactor, Biotechnol. Prog., 2003, 19: 1643-1647.
    [139]彭立风,赵汝淇,有机介质中酶催化活性和选择性的调控,生物技术通报,1999,6:28-32.
    [140]Peng L., Xu X., Mu H. et al. Production of structured phospholipids by lipase-catalyzed acidolysis: Optimization using response surface methodology, Enzyme Microb. Technol., 2002, 31: 523-532.
    [141]Vaidya R., Vyas P., Chhatpar H.S. Statistical optimization of medium components for the production of chitinase by Alcaligenes xylosoxydans, Enzyme Microb. Technol., 2003, 33: 92-96.
    [142]Yang K., Wang Y.-j., Kuo M.-i. Effects of substrate pretreatment and water activity on lipase-catalyzed cellulose acetylation in organic media, Biotechnol. Prog., 2004, 20: 1053-1061.
    [143]陆强,李宽宏,施亚钧,用反胶束萃取法提取与分离蛋白质和酶,生物工程进展,1992,12(6):12-16.
    [144]Srivastava R.C., Madamwar D.B., Vyas V.V. Activation of enzymes by reversed micelles, Biotechnol. Bioeng., 1987, 29: 901-902.
    [145]Misiorowski R.L., Wells M.A. The activity of phospholipase A2 in reversed micelles of phosphatidylcholine in diethyl ether: effect of water and cations, Biochemistry, 1974, 13: 4921-4927.
    [146]Carvalho C.M.L., Cabral J.M.S. Reverse micelles as reaction media for lipases, Biochimie, 2000, 82: 1063-1085.
    [147]Stamatis H., Xenakis A., Kolisis F.N. Bioorganic reaction in microemulsions: the case of lipases, Biotechnol. Adv., 1999, 17: 293-318.
    [148]Marcozzi G., Correa N., Luisi P.L. et al. Ptotein extraction by reversed micelles: a study of the factors affecting the forward and backward transfer of α-chymotrypsin and its activity, Biotechnol. Bioeng., 1991, 38: 1239-1246.
    [149]Stamatis H., Xenakis A., Dimitriadis E. et al. Catalytic behavior of Pseudomonas cepacia lipase in w/o microemulsions, Biotechnol. Bioeng., 1995, 45: 33-41.
    [150]Ayala G.A., Kamat S., Beckman E.J. et al. Protein extraction and activity in reverse micelles of a nonionic detergent, Biotechnol. Bioeng., 1992, 39: 806-814.
    [151]Chiang C.L. Activity and stability of lipase in Aerosol-OT/isooctane reverse micelles, Biotechnol. Tech., 1999, 13: 453-457.
    [152]刘杨,新型亲和反胶团系统及其蛋白质萃取特性研究,[博士学位论文],天津,天津大学,2006.
    [153]Lowry R.R., Tinsley I.J. Rapid colorimetric determination of free fatty-acids, J. Am. Oil Chem. Soc., 1976, 53: 470-472.
    [154]Zhang S.P., Sun Y. Further studies on the contribution of electrostatic and hydrophobic interactions to protein adsorption on dye-ligand adsorbents, Biotechnol. Bioeng., 2001, 75: 710-717.
    [155]Rodakiewicz-Nowak J., Ito M. Effect of AOT on enzymatic activity of the organic solvent resistant tyrosinase from Streptomyces sp REN-21 in aqueous solutions and water-in-oil microemulsions, J. Colloid Interface Sci., 2005, 284: 674-679.
    [156]Maitra A. Determination of size parameters of water-aerosol OT-oil reverse micelles from their nuclear magnetic resonance data, J. Phy. Chem., 1984, 88: 5122-5125.
    [157]Otero C., Castro R., Soria J. et al. Electron paramagnetic resonance studies of spin-labeled fatty acid binding sites in Candida rugosa lipases, J. Phys. Chem. B, 1998, 102: 8611-8618.
    [158]Grochulski P., Li Y., Schrag J.D. et al. Two conformational states of Candida rugosa lipase, Prot. Sci., 1994, 3: 82-91.
    [159]Sheu E., G?klen K.E., Hatton T.A. et al. Small-angle neutron scattering studies of protein-reversed micelles complexes, Biotechnol. Prog., 1986, 90: 175-186.
    [160]Rodakiewicz-Nowak J., monkiewiez M., Haber J. Enzymatic activity of the A. bisporus tyrosinase in AOT/isooctane water-in-oil microemulsions, Colloids Surf. A-Physicochem. Eng. Asp., 2002, 208: 347-356.
    [161]Crooks G.E., Rees G.D., Robinson B.H. et al. Comparison of hydrolysis and esterification behavior of humicola lanuginose and Rhizomucor miehei lipases in AOT-stabilized water-in-oil microemulsions: I. Effect of pH and water content on reaction kinetics, Biotechnol. Bioeng., 1995, 48: 78-88.
    [162]Zhang S. P., Sun Y. A predictive model for salt effects on the dye-ligand affinity adsorption equilibrium of protein, Ind. Eng. Chem. Res., 2003, 42: 1235-1242.
    [163]Vantilbeurgh H., Egloff M.P., Martinez C. et al. Interfacial activation of the lipase procolipase complex by mixed micelles revealed by X-ray crystallography, Nature, 1993, 362: 814-820.
    [164]Huang W., Li X.F., Zhou J.M. et al. Activity and conformation of bovine pancreatic ribonuclease A in reverse micklles formed by didycylammonium butyrate and water in cyclohexane, Colloids Surfaces B, 1996, 7(1): 23-29
    [165]Falcone R.D., Biasutti M.A., Correa N.M. et al. Effect of the addition of a nonaqueous polar solvent (glycerol) on enzymatic catalysis in reverse micelles. Hydrolysis of 2-naphthyl acetate by α-chymotrypsin, Langmuir, 2004, 20: 5732-5737.
    [166]Han D., Rhee J.S. Characteristics of lipase-catalyzed hydrolysis of olive oil in AOT-isooctane reversed micelles, Biotechnol. Bioeng., 1986, 28: 1250-1255.
    [167]Yao C., Tang S., Zhang J. et al. Kinetics of lipase deactivation in AOT/isooctane reversed micelles, J. Mol. Catal. B: Enzym., 2002, 18: 279-284.
    [168]Bradford M M. A Rapid and sensitive method for the quantition of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem., 1976, 72: 248-254.
    [169]Pawinee K., Suree P. Simple assay method for lipase activity and analysis of its catalytic hydrolysis product in water-poor media, Indian J. Chem., 1993, 32B: 88-89.
    [170]Mazzobre M.F., Buera M.P., Chirife J. Glass transition and thermal stability of lactase in low-moisture amorphous polymeric matrices, Biotechnol. Prog., 1997, 13: 195– 199.
    [171]Davidson P., Sun W.Q. Effect of sucrose/raffinose mass ratios on the stability of co-lyophilized protein during storage above the Tg, Pharm. Res. 2001, 18: 474– 479.
    [172]Burin L., Buera M.P., Hough G. et al. Thermal resistance of β-galactosidase in dehydrated dairy model systems as affected by physical and chemical changes, Food Chemistry, 2002, 76: 423–430.
    [173]Michael A., Geoffrey L. Stability and Surface Activity of Lactate Dehydrogenase in Spray-Dried Trehalose, Journal of Pharmaceutical Sciences, 1999 (88), 2: 199-208.
    [174]Imamura K., Fukushima A., Sakaura K. et al. Water sorption and glass transition behaviors of freeze-dried sucrose-dextran mixtures, Journal of Pharmaceutical Sciences, 2002 (91), 10: 2175-2181.
    [175]Sadana A., Henley J.P. Mechanistic analysis of complex enzyme deactivations: influence of various parameters on series-type inactivations, Biotechnol. Bioeng., 1986, 28: 977-987.
    [176]Sa-Pereira P., Carvalho A.S.L., Costa-Ferreira M. et al. Thermostabilization of Bacillus subtillis CCMI 966 xylanases with trehalose. Study of deactivation kinetics, Enzyme Microb. Technol., 2004, 34: 278-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700