用户名: 密码: 验证码:
锂离子电池新型凝胶聚合物电解质的改性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在便携式电器领域应用的巨大成功,促进了锂离子电池向大型储能和动力电源方向发展,但是由于目前锂离子电池存在漏液以及在过充、针刺和挤压等安全型测试中存在易燃易爆的危险,解决电池的安全问题显得非常迫切。凝胶聚合物锂离子电池由于具有良好热稳定性和机械稳定性、特别是可靠的安全性能受到研究者的重点关注。
     为提高凝胶聚合物电池的离子电导率和电解质与电极的兼容性,本论文制备出几种新型的聚合物及其相应的聚合物隔膜和凝胶聚合物电解质(GPE)。通过热重分析(TG)及红外光谱(FTIR)等方法表征了聚合物的性质;采用吸液率测试、扫描电镜(SEM)、交流阻抗(AC)和电池充放电实验等方法研究了聚合物膜和相应凝胶聚合物电解质的性质,得到如下结果:
     (1)采用乙酸丁酸纤维素(CAB)对聚偏氟乙烯(PVDF)进行共混改性,用共溶剂法制备了聚烯烃(PE)隔膜支撑聚合物膜,研究了共溶剂体系和聚合物的共混比例对GPE性能的影响。结果表明,在以N, N-二甲基甲酰胺(DMF)分别与乙醇、丙酮和碳酸二甲酯(DMC)为共溶剂的体系中,当共溶剂体系为DMF:DMC=9:1时制备的聚合物隔膜的具有稳定和丰富的微孔体系。当PVDF:CAB=2:1时制备的GPE具有最高的电导率2.48×10~(-3)S·cm~(-1),在不锈钢电极上的氧化分解电位大于5.0V (vs. Li/Li~+),与电极的界面具有良好的稳定性,使用该GPE的锂离子电池循环性能、高温性能和倍率放电性能均得到明显改进。
     (2)以甲基丙烯酸甲酯(MMA)与丙烯腈(AN)进行共聚,利用乳液聚合法制备交联共聚物P(AN-co-MMA),将该聚合物的DMF凝胶溶液涂布到聚烯烃(PE)隔膜上,用相转移的方式制备得PE支撑聚合物膜,研究了聚合物单体的比例对GPE性能的影响。结果表明,当单体AN和MMA的比例为4:1时,获得的共聚物P(AN-co-MMA)具有最好的性能,在270℃范围内有很好的热稳定性;PE支撑的聚合物隔膜具有良好的交错相连的微孔结构,吸液率达到150%,室温电导率>2.0×10~3S·cm~(-1)。用该聚合物隔膜制备的GPE在不锈钢电极表面的氧化分解电位为5.5V (vs. Li/Li~+),与电极具有良好的兼容性,电池的循环和倍率放电性能得到提高。
     (3)添加纳米Al_2O_3对P(AN-co-MMA)进行掺杂改性,制备PE支撑P(AN-co-MMA)/Al_2O_3复合聚合物膜,研究了纳米粒子添加量对GPE性能的影响。结果表明,添加10%纳米Al_2O_3能有效改善聚合物膜的结构,将隔膜的吸液率提高到280%,同时将凝胶聚合物电解质的电导率提高到3.2×10~3S·cm~(-1),纳米粒子的添加也提高了GPE的氧化稳定性(从5.5V提高到5.7V)及与电极的兼容性,将电极界面阻抗从520Ω·cm~2减少至160Ω·cm~2,这些性能的提高促进了锂离子电池综合性能的改善。
     (4)采用乙酸乙烯酯(VAc)与丙烯腈(AN)进行共聚改性,用乳液聚合法合成交联共聚物P(AN-co-VAc),以此聚合物用相转化法制备P(AN-VAc)聚合物自支撑膜,并用聚甲基丙烯酸甲酯(PMMA)进行表面复合改性,得到复合型聚合物膜P(AN-co-VAc)/PMMA,研究了共聚单体的比例及PMMA复合对凝胶电解质的影响。结果表明:当单体AN:VAc=7:3时,制备的聚合物膜的机械拉伸强度达到15MPa,基本满足电池的应用要求。PMMA的复合能有效提高凝胶聚合物电解质的综合性能,GPE电导率从1.4×10~(-3)S·cm~(-1)提高到1.88×10~(-3)S·cm~(-1),在不锈钢电极上的氧化稳定性从4.8V提高到5.2V (vs. Li/Li+),并且以该GPE制备的聚合物锂离子电池具有良好的循环稳定性能。
Lithium ion battery has been widely used in portable electronic devices because of itsadvantages including high energy density and long cycle life. However, safety problem existsin current commercial lithium ion battery due to the using of combustible liquid organicelectrolyte, especially in large scale application for electrical vehicles. Therefore, polymerlithium-ion batteries with gel polymer electrolyte (GPE) have attracted intensive attention dueto their excellent thermal and mechanical stability, flexibility and safety.
     In order to improve the ionic conductivity of GPE and the compatibility of GPE withelectrode, several kinds of polymers were synthesized and the performances of thesynthesized polymers and corresponding membranes and GPEs were studied withthermogravimetric analysis (TG), Fourier transform infrared analysis (FTIR), scanningelectron microscope (SEM), linear sweep voltammetry (LSV), electrochemical impedancespectroscopy (EIS), and charge-discharge test. Following results were obtained:
     (1)Polyethylene(PE)-supported polyvinylidene fuoride (PVDF)-cellulose acetate butyrate(CAB) blending polymer membrane was prepared by co-solvents method. The effects ofco-solvent systems and polymer blending ratios on the performance of the corresponding GPEwere studied. It is found that the GPE with PVDF:CAB=2:1(in weight) has the largest ionicconductivity (2.48×10~(-3)S·cm~(-1)), is stable at the potential lower than5.0V on steel electrode.The LiCoO2/graphite battery using this GPE exhibits good performance, especially at elevatedtemperature.
     (2)P(AN-co-MMA) were prepared by solution polymerization with different mole ratios ofmonomers, acrylonitrile(AN) and methyl methacrylate(MMA). It is found that the GPEusing the PE-supported copolymer with AN to MMA=4:1(mole) exhibits the highest ionicconductivity of2.06×10~3S·cm~(-1)at room temperature. The copolymer is stable up to270℃.The PE-supported copolymer membrane shows a cross-linked porous structure and has150%(wt) of electrolyte uptake. The electrochemical window of the GPE on steel electrode is5.5V(vs.Li/Li~+). With the application of the PE-supported GPE in lithium ion battery, the batteryshows its good rate performance and cyclic stability.
     (3) The nano-Al_2O_3was doped in copolymer P(AN-co-MMA) and PE-supportedP(AN-co-MMA)/nano-Al_2O_3microporous composite polymer membrane was prepared. Theeffect of the amounts of nano-Al_2O_3on GPE was investigated. It is found that the nano-Al_2O_3significantly affects the GPE performances. Compared to the GPE without any nano-Al_2O_3,the GPE with10wt.%nano-Al_2O_3shows a improved performances. The ionic conductivity isimproved from2.0×10~3S·cm~(-1)to3.2×10~3S·cm~(-1), the oxidation decomposition potential onsteel electrode is enhanced from5.5V to5.7V (vs. Li/Li+) and its interfacial resistance onlithium is reduced from520Ω·cm2to160Ω·cm2.
     (4) P(AN-co-VAc) was synthesized by emulsion polymerization with different mole ratios ofacrylonitrile (AN) to vinyl acetate (VAc). Self-supported P(AN-co-VAc) membrane wasprepared and coated with polymethyl methacrylate (PMMA) to prepare a new type of gelpolymer electrolyte matrix, P(AN-co-VAc)/PMMA. It is found that when the ratio of AN toVAc is7:3, the mechanic tensile strength of the prepared polymer film reaches15Mpa, whichcan meet the application requirments of the battery. Compared with P(AN-co-VAc),P(AN-co-VAc)/PMMA is better as the matrix for gel polymer electrolyte for lithium ionbattery application. Its ionic conductivity is improved from1.4×10~3S·cm~(-1)to1.88×10~3S·cm~(-1), its oxidation decomposition potential on steel electrode is enhanced from4.8V to5.2V (vs. Li/Li~+). With the application of the P(AN-co-VAc)/PMMA GPE in lithium ionbattery, the battery shows its good cyclic stability.
引文
[1] Anouti M, Dougassa Y R, Tessier C, et al. Low pressure carbon dioxide solubility inpure electrolyte solvents for lithium-ion batteries as a function of temperature.Measurement and prediction[J]. The Journal of Chemical Thermodynamics,2012,50(0):71-79
    [2] He H, Zhang X, Xiong R, et al. Online model-based estimation of state-of-charge andopen-circuit voltage of lithium-ion batteries in electric vehicles[J]. Energy,2012,39(1):310-318
    [3] Farrington M D. Safety of lithium batteries in transportation[J]. J Power Sources,2001,96(1):260-265
    [4] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallicsand composites[J]. Electrochim Acta,1999,45(1-2):31-50
    [5] Bruce P G, Scrosati B, Tarascon J M. Nanomaterials for rechargeable lithiumbatteries[J]. Angew Chem Int Edit,2008,47(16):2930-2946
    [6] Aurbach D. Review of selected electrode-solution interactions which determine theperformance of Li and Li ion batteries[J]. J Power Sources,2000,89(2):206-218
    [7] Bates J B, Dudney N J, Neudecker B, et al. Thin-film lithium and lithium-ionbatteries[J]. Solid State Ionics,2000,135(1-4SI):33-45
    [8] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance inlithium-ion batteries?[J]. J Power Sources,1997,68(1):87-90
    [9] Xia Y Y, Yoshio M. An investigation of lithium ion insertion into spinel structureLi-Mn-O compounds[J]. J Electrochem Soc,1996,143(3):825-833
    [10] Chan C K, Peng H L, Liu G, et al. High-performance lithium battery anodes usingsilicon nanowires[J]. Nature Nanotech,2008,3(1):31-35
    [11] Lou X W, Archer L A, Yang Z C. Hollow Micro-/Nanostructures: Synthesis andApplications[J]. Adv Mater,2008,20(21):3987-4019
    [12] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ion batteries[J]. Chem Lett,2001(7):642-643
    [13] Morgan D, Van der Ven A, Ceder G. Li conductivity in LixMPO4(M=Mn, Fe, Co, Ni)olivine materials[J]. Electrochem Solid St,2004,7(2): A30-A32
    [14] Whittingham M S. Lithium batteries and cathode materials[J]. Chem Rev,2004,104(10):4271-4301
    [15] Lou X W, Wang Y, Yuan C L, et al. Template-free synthesis of SnO2hollownanostructures with high lithium storage capacity[J]. Adv Mater,2006,18(17):2325
    [16] Nam K T, Kim D W, Yoo P J, et al. Virus-enabled synthesis and assembly of nanowiresfor lithium ion battery electrodes[J]. Science,2006,312(5775):885-888
    [17] Farrington M D. Safety of lithium batteries in transportation[J]. J Power Sources,2001,96(1):260-265
    [18] Leising R A, Palazzo M J, Takeuchi E S, et al. Abuse testing of lithium-ion batteries-Characterization of the overcharge reaction of LiCoO2/graphite cells[J]. J ElectrochemSoc,2001,148(8): A838-A844
    [19] Arora P, Zhang Z M. Battery separators[J]. Chem Rev,2004,104(10):4419-4462
    [20] Venugopal G, Moore J, Howard J, et al. Characterization of microporous separators forlithium-ion batteries[J]. J Power Sources,1999,77(1):34-41
    [21] Doyle M, Newman J, Gozdz A S, et al. Comparison of modeling predictions withexperimental data from plastic lithium ion cells[J]. J Electrochem Soc,1996,143(6):1890-1903
    [22] Wang H P, Huang H T, Wunder S L. Novel microporous poly(vinylidene fluoride)blend electrolytes for lithium-ion batteries[J]. J Electrochem Soc,2000,147(8):2853-2861
    [23] Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries[J].J Power Sources,2006,155(2):401-414
    [24] Pech D, Brunet M, Durou H, et al. Ultrahigh-power micrometre-sized supercapacitorsbased on onion-like carbon[J]. Nature Nanotech,2010,5(9):651-654
    [25] Croce F, Epifanio A D, Hassoun J, et al. A novel concept for the synthesis of animproved LiFePO4lithium battery cathode[J]. Electrochem Solid St,2002,5(3):A47-A50
    [26] Kang K S, Meng Y S, Breger J, et al. Electrodes with high power and high capacity forrechargeable lithium batteries[J]. Science,2006,311(5763):977-980
    [27] Li G H, Azuma H, Tohda M. LiMnPO4as the cathode for lithium batteries[J].Electrochem Solid St,2002,5(6): A135-A137
    [28] Guo Y G, Hu J S, Wan L J. Nanostructured materials for electrochemical energyconversion and storage devices[J]. Adv Mater,2008,20(15):2878-2887
    [29] Bruce P G, Armstrong A R, Gitzendanner R L. New intercalation compounds forlithium batteries: layered LiMnO2[J]. J Mater Chem,1999,9(1):193-198
    [30] Ellis B L, Lee K T, Nazar L F. Positive Electrode Materials for Li-Ion andLi-Batteries[J]. Chem Mater,2010,22(3):691-714
    [31] Gibot P, Casas-Cabanas M, Laffont L, et al. Room-temperature single-phase Liinsertion/extraction in nanoscale Li(x)FePO(4)[J]. Nat Mater,2008,7(9):741-747
    [32] Dominko R, Bele M, Gaberscek M, et al. Structure and electrochemical performance ofLi2MnSiO4and Li2FeSiO4as potential Li-battery cathode materials[J]. ElectrochemCommun,2006,8(2):217-222
    [33] Delacourt C, Poizot P, Tarascon J M, et al. The existence of a temperature-driven solidsolution in LixFePO4for0<=x <=1[J]. Nat Mater,2005,4(3):254-260
    [34] Winter M, Besenhard J O. Electrochemical lithiation of tin and tin-based intermetallicsand composites[J]. Electrochim Acta,1999,45(1-2):31-50
    [35] Zhang S S. A review on electrolyte additives for lithium-ion batteries[J]. J PowerSources,2006,162(2SI):1379-1394
    [36] Xu K, Ding M S, Zhang S S, et al. An attempt to formulate nonflammable lithium ionelectrolytes with alkyl phosphates and phosphazenes[J]. J Electrochem Soc,2002,149(5): A622-A626
    [37] Ota H, Sakata Y, Inoue A, et al. Analysis of vinylene carbonate derived SEI layers ongraphite anode[J]. J Electrochem Soc,2004,151(10): A1659-A1669
    [38] Goodenough J B, Kim Y. Challenges for Rechargeable Li Batteries[J]. Chem Mater,2010,22(3):587-603
    [39] Aurbach D, Talyosef Y, Markovsky B, et al. Design of electrolyte solutions for Li andLi-ion batteries: a review[J]. Electrochim Acta,2004,50(2-3SI):247-254
    [40] Zhang X R, Kostecki R, Richardson T J, et al. Electrochemical and infrared studies ofthe reduction of organic carbonates[J]. J Electrochem Soc,2001,148(12):A1341-A1345
    [41] Wrodnigg G H, Besenhard J O, Winter M. Ethylene sulfite as electrolyte additive forlithium-ion cells with graphitic anodes[J]. J Electrochem Soc,1999,146(2):470-472
    [42] Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surfacechemistry and performance of graphite negative electrodes for Li ion batteries[J].Electrochim Acta,1999,45(1-2):67-86
    [43] Aurbach D, Gamolsky K, Markovsky B, et al. On the use of vinylene carbonate (VC)electrolyte solutions for Li-ion as an additive to batteries[J]. Electrochim Acta,2002,47(9):1423-1439
    [44] Aurbach D, Zaban A, Ein-Eli Y, et al. Recent studies on the correlation between surfacechemistry, morphology, three-dimensional structures and performance of Li and Li-Cintercalation anodes in several important electrolyte systems[J]. J Power Sources,1997,68(1):91-98
    [45] Armand M, Endres F, Macfarlane D R, et al. Ionic-liquid materials for theelectrochemical challenges of the future[J]. Nat Mater,2009,8(8):621-629
    [46] Xu K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. ChemRev,2004,104(10):4303-4417
    [47] Meyer W H. Polymer electrolytes for lithium-ion batteries[J]. Adv Mater,1998,10(6):439
    [48] Sakaebe H, Matsumoto H, Tatsumi K. Application of room temperature ionic liquids toLi batteries[J]. Electrochim Acta,2007,53(3):1048-1054
    [49] Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ionbatteries-An overview of electrochemical studies[J]. J Power Sources,2009,194(2):601-609
    [50] Sato T, Maruo T, Marukane S, et al. Ionic liquids containing carbonate solvent aselectrolytes for lithium ion cells[J]. J Power Sources,2004,138(1-2):253-261
    [51] Wang H P, Huang H T, Wunder S L. Novel microporous poly(vinylidene fluoride)blend electrolytes for lithium-ion batteries[J]. J Electrochem Soc,2000,147(8):2853-2861
    [52] Ishikawa M, Sugimoto T, Kikuta M, et al. Pure ionic liquid electrolytes compatible witha graphitized carbon negative electrode in rechargeable lithium-ion batteries[J]. J PowerSources,2006,162(1):658-662
    [53] Lee H S, Yang X Q, Mcbreen J, et al. The synthesis of a new family of anion receptorsand the studies of their effect on ion pair dissociation and conductivity of lithium saltsin nonaqueous solutions[J]. J Electrochem Soc,1996,143(12):3825-3829
    [54] Sato T, Maruo T, Marukane S, et al. Ionic liquids containing carbonate solvent aselectrolytes for lithium ion cells[J]. J Power Sources,2004,138(1-2):253-261
    [55] Chung G C, Kim H J, Yu S I, et al. Origin of graphite exfoliation-An investigation ofthe important role of solvent cointercalation[J]. J Electrochem Soc,2000,147(12):4391-4398
    [56] Macneil D D, Dahn J R. The reaction of charged cathodes with nonaqueous solventsand electrolytes-I. Li0.5CoO2[J]. J Electrochem Soc,2001,148(11): A1205-A1210
    [57] Besenhard J O, Yang J, Winter M. Will advanced lithium-alloy anodes have a chance inlithium-ion batteries?[J]. J Power Sources,1997,68(1):87-90
    [58] Xu K, Zhang S S, Jow T R, et al. LiBOB as salt for lithium-ion batteries-A possiblesolution for high temperature operation[J]. Electrochem Solid St,2002,5(1): A26-A29
    [59] Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and polymer gel electrolytes for lithiumbatteries composed of room-temperature molten salt doped by lithium salt[J]. JElectrochem Soc,2003,150(6): A695-A700
    [60] Xu K, Zhang S S, Poese B A, et al. Lithium bis(oxalato)borate stabilizes graphite anodein propylene carbonate[J]. Electrochem Solid St,2002,5(11): A259-A262
    [61] Andersson A M, Herstedt M, Bishop A G, et al. The influence of lithium salt on theinterfacial reactions controlling the thermal stability of graphite anodes[J]. ElectrochimActa,2002,47(12):1885-1898
    [62] Dominey L A, Koch V R, Blakley T J. THERMALLY STABLE LITHIUM-SALTSFOR POLYMER ELECTROLYTES[J]. Electrochim Acta,1992,37(9):1551-1554
    [63] Xu K, Zhang S S, Jow T R, et al. LiBOB as salt for lithium-ion batteries-A possiblesolution for high temperature operation[J]. Electrochem Solid St,2002,5(1): A26-A29
    [64] Chen Z H, Lu W Q, Liu J, et al. LiPF6/LiBOB blend salt electrolyte for high-powerlithium-ion batteries[J]. Electrochim Acta,2006,51(16):3322-3326
    [65] Xu K, Zhang S S, Poese B A, et al. Lithium bis(oxalato)borate stabilizes graphite anodein propylene carbonate[J]. Electrochem Solid St,2002,5(11): A259-A262
    [66] Aurbach D, Chusid O, Weissman I, et al. LiC(SO2CF3)3, a new salt for Li batterysystems. A comparative study of Li and non-active metal electrodes in its etherealsolutions using in situ FTIR spectroscopy[J]. Electrochim Acta,1996,41(5):747-760
    [67] Ota H, Sakata Y, Inoue A, et al. Analysis of vinylene carbonate derived SEI layers ongraphite anode[J]. J Electrochem Soc,2004,151(10): A1659-A1669
    [68] Balasubramanian M, Lee H S, Sun X, et al. Formation of SEI on cycled lithium-ionbattery cathodes-Soft X-ray absorption study[J]. Electrochem Solid St,2002,5(1):A22-A25
    [69] Ota H, Akai T, Namita H, et al. XAFS and TOF-SIMS analysis of SEI layers onelectrodes[J]. J Power Sources,2003,119(SI):567-571
    [70] Zhang Y, Wang L Z, Feng H, et al. Effect of SO2and CO2additives on the cycleperformances of commercial lithium-ion batteries[J]. Ionics,2011,17(8):677-682
    [71] Eineli Y, Thomas S R, Koch V R. The role of SO2as an additive to organic Li-ionbattery electrolytes[J]. J Electrochem Soc,1997,144(4):1159-1165
    [72] Wrodnigg G H, Wrodnigg T M, Besenhard J O, et al. Propylene sulfite as film-formingelectrolyte additive in lithium ion batteries[J]. Electrochem Commun,1999,1(3-4):148-150
    [73] Hu Y S, Kong W H, Wang Z X, et al. Effect of morphology and current density on theelectrochemical behavior of graphite electrodes in PC-based electrolyte containingVEC additive[J]. Electrochem Solid St,2004,7(11): A442-A446
    [74] Xiang H F, Chen J J, Wang H H. Effect of vinyl ethylene carbonate on the compatibilitybetween graphite and the flame-retarded electrolytes containing dimethyl methylphosphonate[J]. Ionics,2011,17(5):415-420
    [75] Li J, Yao W H, Meng Y S, et al. Effects of vinyl ethylene carbonate additive onelevated-temperature performance of cathode material in lithium ion batteries[J]. J.Phys.Chem.C,2008,112(32):12550-12556
    [76] Hu Y S, Kong W H, Hong L, et al. Experimental and theoretical studies on reductionmechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries[J].Electrochem Commun,2004,6(2):126-131
    [77] Fu Y B, Chen C, Qiu C C, et al. Vinyl ethylene carbonate as an additive to ionic liquidelectrolyte for lithium ion batteries[J]. J Appl Electrochem,2009,39(12):2597-2603
    [78] Feng J K, Ai X P, Cao Y L, et al. A highly soluble dimethoxybenzene derivative as aredox shuttle for overcharge protection of secondary lithium batteries[J]. ElectrochemCommun,2007,9(1):25-30
    [79] Chen J, Buhrmester C, Dahn J R. Chemical overcharge and overdischarge protection forlithium-ion batteries[J]. Electrochem Solid St,2005,8(1): A59-A62
    [80] Moshurchak L M, Buhrmester C, Wang R L, et al. Comparative studies of three redoxshuttle molecule classes for overcharge protection of LiFePO4-based Li-ion cells[J].Electrochim Acta,2007,52(11):3779-3784
    [81] Lee H, Lee J H, Ahn S, et al. Co-use of cyclohexyl benzene and biphenyl forovercharge protection of lithium-ion batteries[J]. Electrochem Solid St,2006,9(6):A307-A310
    [82] Xiao L F, Ai X P, Cao Y L, et al. Electrochemical behavior of biphenyl aspolymerizable additive for overcharge protection of lithium ion batteries[J].Electrochim Acta,2004,49(24):4189-4196
    [83] Dahn J R, Jiang J W, Moshurchak L M, et al. High-rate overcharge protection ofLiFePO4-based Li-ion cells using the redox shuttle additive2,5-ditertbutyl-1,4-dimethoxybenzene[J]. J Electrochem Soc,2005,152(6):A1283-A1289
    [84] Feng X M, Ai X P, Yang H X. Possible use of methylbenzenes as electrolyte additivesfor improving the overcharge tolerances of Li-ion batteries[J]. J Appl Electrochem,2004,34(12):1199-1203
    [85] Chen Z H, Qin Y, Amine K. Redox shuttles for safer lithium-ion batteries[J].Electrochim Acta,2009,54(24):5605-5613
    [86] Balakrishnan P G, Ramesh R, Kumar T P. Safety mechanisms in lithium-ion batteries[J].J Power Sources,2006,155(2):401-414
    [87] He Y B, Liu Q, Tang Z Y, et al. The cooperative effect of tri(beta-chloromethyl)phosphate and cyclohexyl benzene on lithium ion batteries[J]. Electrochim Acta,2007,52(11):3534-3540
    [88] Shim E G, Nam T H, Kim J G, et al. Diphenyloctyl phosphate as a flame-retardantadditive in electrolyte for Li-ion batteries[J]. J Power Sources,2008,175(1):533-539
    [89] Shim E G, Nam T H, Kim J G, et al. Effect of the concentration of diphenyloctylphosphate as a flame-retarding additive on the electrochemical performance oflithium-ion batteries[J]. Electrochim Acta,2009,54(8):2276-2283
    [90] Li L L, Li L, Wang B, et al. Methyl phenyl bis-methoxydiethoxysilane as bi-functionaladditive to propylene carbonate-based electrolyte for lithium ion batteries[J].Electrochim Acta,2011,56(13):4858-4864
    [91] Zhang L, Zhang Z C, Wu H M, et al. Novel redox shuttle additive for high-voltagecathode materials[J]. Energ Environ Sci,2011,4(8):2858-2862
    [92] Feng J K, Cao Y L, Ai X P, et al. Tri-(4-methoxythphenyl) phosphate: A newelectrolyte additive with both fire-retardancy and overcharge protection for Li-ionbatteries[J]. Electrochim Acta,2008,53(28):8265-8268
    [93] Plechkova N V, Seddon K R. Applications of ionic liquids in the chemical industry[J].Chem Soc Rev,2008,37(1):123-150
    [94] Mennucci B, Cances E, Tomasi J. Evaluation of solvent effects in isotropic andanisotropic dielectrics and in ionic solutions with a unified integral equation method:Theoretical bases, computational implementation, and numerical applications[J]. J PhysChem B,1997,101(49):10506-10517
    [95] Rogers R D, Seddon K R. Ionic liquids-Solvents of the future?[J]. Science,2003,302(5646):792-793
    [96] Seddon K R. Ionic liquids for clean technology[J]. J Chem Technol Biot,1997,68(4):351-356
    [97] Earle M J, Seddon K R. Ionic liquids. Green solvents for the future[J]. Pure Appl Chem,2000,72(7):1391-1398
    [98] Zhao D B, Wu M, Kou Y, et al. Ionic liquids: applications in catalysis[J]. Catal Today,2002,74(1-2):157-189
    [99] Lu W, Fadeev A G, Qi B H, et al. Use of ionic liquids for pi-conjugated polymerelectrochemical devices[J]. Science,2002,297(5583):983-987
    [100] Welton T. Room-temperature ionic liquids. Solvents for synthesis and catalysis[J].Chem Rev,1999,99(8):2071-2083
    [101]Wilkes J S, Zaworotko M J. AIR AND WATER STABLE1-ETHYL-3-METHYLIMIDAZOLIUM BASED IONIC LIQUIDS[J]. JOURNAL OFTHE CHEMICAL SOCIETY-CHEMICAL COMMUNICATIONS,1992(13):965-967
    [102] Baranchugov V, Markevich E, Pollak E, et al. Amorphous silicon thin films as a highcapacity anodes for Li-ion batteries in ionic liquid electrolytes[J]. ElectrochemCommun,2007,9(4):796-800
    [103] Sakaebe H, Matsumoto H, Tatsumi K. Application of room temperature ionic liquids toLi batteries[J]. Electrochim Acta,2007,53(3):1048-1054
    [104] Zheng H H, Jiang K, Abe T, et al. Electrochemical intercalation of lithium into a naturalgraphite anode in quaternary ammonium-based ionic liquid electrolytes[J]. Carbon,2006,44(2):203-210
    [105] Lewandowski A, Swiderska-Mocek A. Ionic liquids as electrolytes for Li-ionbatteries-An overview of electrochemical studies[J]. J Power Sources,2009,194(2):601-609
    [106] Sato T, Maruo T, Marukane S, et al. Ionic liquids containing carbonate solvent aselectrolytes for lithium ion cells[J]. J Power Sources,2004,138(1-2):253-261
    [107] Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and polymer gel electrolytes for lithiumbatteries composed of room-temperature molten salt doped by lithium salt[J]. JElectrochem Soc,2003,150(6): A695-A700
    [108] Ishikawa M, Sugimoto T, Kikuta M, et al. Pure ionic liquid electrolytes compatible witha graphitized carbon negative electrode in rechargeable lithium-ion batteries[J]. J PowerSources,2006,162(1):658-662
    [109] Bazito F, Kawano Y, Torresi R M. Synthesis and characterization of two ionic liquidswith emphasis on their chemical stability towards metallic lithium[J]. Electrochim Acta,2007,52(23):6427-6437
    [110] Appetecchi G B, Dautzenberg G, Scrosati B. A new class of advanced polymerelectrolytes and their relevance in plastic-like, rechargeable lithium batteries[J]. JElectrochem Soc,1996,143(1):6-12
    [111] Zaghib K, Armand M, Gauthier M. Electrochemistry of anodes in solid-state Li-ionpolymer batteries[J]. J Electrochem Soc,1998,145(9):3135-3140
    [112] Gadjourova Z, Andreev Y G, Tunstall D P, et al. Ionic conductivity in crystallinepolymer electrolytes[J]. Nature,2001,412(6846):520-523
    [113] Dominey L A, Koch V R, Blakley T J. THERMALLY STABLE LITHIUM-SALTSFOR POLYMER ELECTROLYTES[J]. Electrochim Acta,1992,37(9):1551-1554
    [114] Murata K, Izuchi S, Yoshihisa Y. An overview of the research and development of solidpolymer electrolyte batteries[J]. Electrochim Acta,2000,45(8-9):1501-1508
    [115] Kim J R, Choi S W, Jo S M, et al. Electrospun PVdF-based fibrous polymer electrolytesfor lithium ion polymer batteries[J]. Electrochim Acta,2004,50(1):69-75
    [116] Christie A M, Lilley S J, Staunton E, et al. Increasing the conductivity of crystallinepolymer electrolytes[J]. Nature,2005,433(7021):50-53
    [117] Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and polymer gel electrolytes for lithiumbatteries composed of room-temperature molten salt doped by lithium salt[J]. JElectrochem Soc,2003,150(6): A695-A700
    [118] Wang H P, Huang H T, Wunder S L. Novel microporous poly(vinylidene fluoride)blend electrolytes for lithium-ion batteries[J]. J Electrochem Soc,2000,147(8):2853-2861
    [119] Quartarone E, Mustarelli P, Magistris A. PEO-based composite polymer electrolytes[J].Solid State Ionics,1998,110(1-2):1-14
    [120] Andreev Y G, Bruce P G. Polymer electrolyte structure and its implications[J].Electrochim Acta,2000,45(8-9):1417-1423
    [121] Meyer W H. Polymer electrolytes for lithium-ion batteries[J]. Adv Mater,1998,10(6):439
    [122] Scrosati B. Recent advances in lithium ion battery materials[J]. Electrochim Acta,2000,45(15-16):2461-2466
    [123] Dias F B, Plomp L, Veldhuis J. Trends in polymer electrolytes for secondary lithiumbatteries[J]. J Power Sources,2000,88(2):169-191
    [124] Kang Y K, Lee J, Suh D H, et al. A new polysiloxane based cross-linker for solidpolymer electrolyte[J]. J Power Sources,2005,146(1-2SI):391-396
    [125] Chiang C Y, Shen Y J, Reddy A J, et al. Complexation of poly(vinylidene fluoride):LiPF6solid polymer electrolyte with enhanced ion conduction in 'wet' form[J]. J PowerSources,2003,123(2):222-229
    [126] Jeong S K, Jo Y K, Jo N J. Decoupled ion conduction mechanism of poly(vinyl alcohol)based Mg-conducting solid polymer electrolyte[J]. Electrochim Acta,2006,52(4):1549-1555
    [127] Chattaraj A P, Basumallick I N. FABRICATION AND CHARGE DISCHARGEBEHAVIOR OF SOME LITHIUM SOLID POLYMER ELECTROLYTE CELLS[J]. JPower Sources,1995,55(1):123-126
    [128] Kobayashi Y, Seki S, Mita Y, et al. High reversible capacities of graphite andSiO/graphite with solvent-free solid polymer electrolyte for lithium-ion batteries[J]. JPower Sources,2008,185(1):542-548
    [129] Lee Y M, Ko D H, Lee J Y, et al. Highly ion-conductive solid polymer electrolytesbased on polyethylene non-woven matrix[J]. Electrochim Acta,2006,52(4):1582-1587
    [130] Kim T, Kang I J, Cho G, et al. New method for the preparation of solid polymerelectrolyte based on poly(vinylidene fluoride-co-hexafluoropropylene)[J]. Korean JChem Eng,2005,22(2):234-237
    [131] Appetecchi G B, Romagnoli P, Scrosati B. Composite gel membranes: a new class ofimproved polymer electrolytes for lithium batteries[J]. Electrochem Commun,2001,3(6):281-284
    [132] Kim D W. Electrochemical characterization of poly (ethylene-co-methylacrylate)-based gel polymer electrolytes for lithium-ion polymer batteries[J]. J PowerSources,2000,87(1-2):78-83
    [133]饶睦敏,锂离子电池凝胶聚合物电解质的制备及性能研究,华南师范大学硕士学位论文,2009,7-15
    [134] Nakagawa H, Izuchi S, Kuwana K, et al. Liquid and polymer gel electrolytes for lithiumbatteries composed of room-temperature molten salt doped by lithium salt[J]. JElectrochem Soc,2003,150(6): A695-A700
    [135] Boudin F, Andrieu X, Jehoulet C, et al. Microporous PVdF gel for lithium-ionbatteries[J]. J Power Sources,1999,81:804-807
    [136] Sung H Y, Wang Y Y, Wan C C. Preparation and characterization of poly(vinylchloride-co-vinyl acetate)-based gel electrolytes for Li-ion batteries[J]. J ElectrochemSoc,1998,145(4):1207-1211
    [137] Liu X J, Osaka T. Properties of electric double-layer capacitors with various polymergel electrolytes[J]. J Electrochem Soc,1997,144(9):3066-3071
    [138] Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes forlithium-ion batteries[J]. J Power Sources,1999,77(2):183-197
    [139] Kim K M, Ko J M, Park N G, et al. Characterization ofpoly(vinylidenefluoride-co-hexafluoropropylene)-based polymer electrolyte filled withrutile TiO2nanoparticles[J]. Solid State Ionics,2003,161(1-2):121-131
    [140] Stephan A M, Teeters D. Characterization of PVdF-HFP polymer membranes preparedby phase inversion techniques I. Morphology and charge-discharge studies[J].Electrochim Acta,2003,48(14-16):2143-2148
    [141] Ye H, Huang J, Xu J J, et al. Li ion conducting polymer gel electrolytes based on ionicliquid/PVDF-HFP blends[J]. J Electrochem Soc,2007,154(11): A1048-A1057
    [142] Ferrari S, Quartarone E, Mustarelli P, et al. Lithium ion conducting PVdF-HFPcomposite gel electrolytes based on N-methoxyethyl-N-methylpyrrolidiniumbis(trifluoromethanesulfonyl)-imide ionic liquid[J]. J Power Sources,2010,195(2):559-566
    [143] Xiao Q Z, Wang X Z, Li W, et al. Macroporous polymer electrolytes based onPVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. JMembrane Sci,2009,334(1-2):117-122
    [144] Li Z H, Su G Y, Wang X Y, et al. Micro-porous P(VDF-HFP)-based polymerelectrolyte filled with Al2O3nanoparticles[J]. Solid State Ionics,2005,176(23-24):1903-1908
    [145] Saika D, Kumar A. Ionic conduction in (PVdF-HFP)/PVdF-(PC+DEC)-LiClO4polymergel electrolytes[J]. Electrochim. Acta,2004,49(16):2581-2589
    [146] Capiglia C, Saito Y, Kataoka H, et al. Structure and transport of polymerGelelectrolytes based on PVDF-HFP and LiN(C2F5SO2)2[J]. Solid State Ionics,2000,131(3-4):291-299
    [147] Wu C G, Lu M I, Chuang H J. PVdF-HFP/P123hybrid with mesopores: a new matrixfor high-conducting, low-leakage porous polymer electrolyte[J]. Polymer,2005,46(16):5929-5938
    [148] Subramania A, Sundaram N, Kumar G V. Structural and electrochemical properties ofmicro-porous polymer blend electrolytes based on PVdF-co-HFP-PAN for Li-ionbattery applications[J]. J Power Sources,2006,153(1):177-182
    [149] Chung N K, Kwon Y D, Kim D. Thermal, mechanical, swelling, and electrochemicalproperties of poly(vinylidene fluoride)-co-hexafluoropropylene/poly(ethylene glycol)hybrid-type polymer electrolytes[J]. J Power Sources,2003,124(1):148-154
    [150] Muniyandi N, Kalaiselvi N, Periyasamy P, et al. Optimisation of PVdF-based polymerelectrolytes[J]. J. Power Sources,2001,96(1):14-19
    [151] Wang Z L, Tang Z Y. Characterization of the polymer electrolyte based on the blend ofpoly(vinylidene fluoride-co-hexafluoropropylene) and poly(vinyl pyrrolidone) forlithium ion battery[J]. Mater. Chem. Phys.,2003,82(1):16-20
    [152] Kufian M Z, Aziz M F, Shukur M F, et al. PMMA–LiBOB gel electrolyte forapplication in lithium ion batteries[J]. Solid State Ionics,2012,208(0):36-42
    [153]卢雷,左晓希,李伟善,等.锂离子电池PMMA-VAc聚合物电解质的制备与性质研究[J].化学学报,2007,65(6):475-480
    [154] Kim K M, Park N G, Ryu K S, et al. Characteristics of PVdF-HFP/TiO2compositemembrane electrolytes prepared by phase inversion and conventional castingmethods[J]. Electrochim. Acta,2006,51(26):5636-5644
    [155] Wang B B, Gu L X. Influence of nanometeric CuO on poly(vinylidene fluoride)-basedcomposite gel polymer electrolyte[J]. Mater. Lett.,2002,57(2):361-363
    [156] Wu C G, Lu M I, Tsai C C, et al. PVdF-HFP/metal oxide nanocomposites: The matricesfor high-conducting, low-leakage porous polymer electrolytes[J]. J. Power Sources,2006,159(1):295-300
    [157] Caillon-Caravanier M, Claude-Montigny B, Lemordant D, et al. Absorption abilityandkinetics of a liquid electrolyte in PVDF-HFP copolymer containing or not SiO2[J]. J.Power Sources,2002,107(1):125-132
    [158]Saikia D, Kumar A. Ionic conduction studies in P(VDF-HFP)-LiAsF6-(PC+DEC)-fumedSiO2composite gel polymer electrolyte system[J]. Phys. Status Solidi,2005,(a)202(2):309-315
    [159] Kalyana Sundaram N T, Subramania A. Nano-size LiAlO2ceramic filler incorporatedporous PVDF-co-HFP electrolyte for lithium-ion battery applications[J]. Electrochim.Acta,2007,52(15):4987-4993
    [160] Subramania A, Kalyana Sundaram N T, Vijaya Kumar G. Structural andelectrochemical properties of micro-porous polymer blend electrolytes based onPVdF-co-HFP-PAN for Li-ion battery applications[J]. J. Power Sources,2006,153(1):177-182
    [161]石桥,黄薇,周啸,等.水蒸气沉淀法制备SiO2/偏氟乙烯-六氟丙烯共聚物复合微孔型聚合物电解质的研究[J].高分子学报,2004,3(3):350-354.
    [162] Tang Z, Wang J, Chen Q, et al. A novel PEO-based composite polymer electrolytewith absorptive glass mat for Li-ion batteries[J]. Electrochim Acta,2007,52(24):6638-6643
    [163] Yang C, Lin S. Alkaline composite PEO–PVA–glass-fibre-mat polymer electrolytefor Zn–air battery[J]. J Power Sources,2002,112(2):497-503
    [164] Appetecchi G B, Alessandrini F, Duan R G, et al. Electrochemical testing of industriallyproduced PEO-based polymer electrolytes[J]. J Power Sources,2001,101(1):42-46
    [165] Song J Y, Wang Y Y, Wan C C. Review of gel-type polymer electrolytes forlithium-ion batteries[J]. J Power Sources,1999,77(2):183-197
    [166] Chakrabarti A, Juilfs A, Filler R, et al. Novel PEO-based dendronized polymers forlithium-ion batteries[J]. Solid State Ionics,2010,181(21–22):982-986
    [167] Fiory F S, Croce F, D'Epifanio A, et al. PEO based polymer electrolyte lithium-ionbattery[J]. J Eur Ceram Soc,2004,24(6):1385-1387
    [168] Zhao Y, Tao R, Fujinami T. Enhancement of ionic conductivity of PEO-LiTFSIelectrolyte upon incorporation of plasticizing lithium borate[J]. Electrochim Acta,2006,51(28):6451-6455
    [169] Liao Y H, Rao M M, Li W S, et al. Fumed silica-doped poly(butylmethacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J]. JMembrane Sci,2010,352(1–2):95-99
    [170] Si Q, Hanai K, Ichikawa T, et al. High performance Si/C@CNF composite anode forsolid-polymer lithium-ion batteries[J]. J Power Sources,2011,196(16):6982-6986
    [171] Choi B K, Shin K H, Kim Y W. Lithium ion conduction in PEO–salt electrolytesgelled with PAN[J]. Solid State Ionics,1998,113–115(0):123-127
    [172] Derrien G, Hassoun J, Sacchetti S, et al. Nanocomposite PEO-based polymer electrolyteusing a highly porous, super acid zirconia filler[J]. Solid State Ionics,2009,180(23–25):1267-1271
    [173] Lin C W, Hung C L, Venkateswarlu M, et al. Influence of TiO2nano-particles on thetransport properties of composite polymer electrolyte for lithium-ion batteries[J]. J.Power Sources,2005,146:397-401
    [174] Li W, Yuan M, Yang M. Dual-phase polymer electrolyte with enhanced phasecompatibility based on Poly(MMA-g-PVC)/PMMA[J]. Eur Polym J,2006,42(6):1396-1402
    [175] Xu J J, Ye H. Polymer gel electrolytes based on oligomeric polyether/cross-linkedPMMA blends prepared via in situ polymerization[J]. Electrochem Commun,2005,7(8):829-835
    [176] Nicotera I, Coppola L, Oliviero C, et al. Rheological properties and impedancespectroscopy of PMMA-PVDF blend and PMMA gel polymer electrolytes foradvanced lithium batteries[J]. Ionics,2005,11:87-94
    [177]杨道均,傅相锴,蒋庆龙,等. P(VAc-MA)/PMMA为基体的聚合物电解质制备及其在电致变色器件中的应用[J].高等学校化学学报,2007,28(9):1781-1786
    [178] Nicotera I, Coppola L, Oliviero C, et al. Spectromechanical properties of polymeric gelelectrolytes and blends[J]. Macromol. Symp.,2007,247:282-294
    [179] Osman Z, Ansor N M, Chew K W, et al. Infrared and Conductivity Studies on Blendsof PMMA/PEO Based Polymer Electrolytes[J]. Ionics,2005,11:431-435
    [180] Sharma J P, Sekhon S S. Nanodispersed polymer gel electrolytes: Conductivitymodification with the addition of PMMA and fumed silica[J]. Solid State Ionics,2007,178:439-445
    [181] Ahmad S, Saxena T K, Ahmad S, et al. The effect of nanosized TiO2addition on poly(methylmethacrylate) based polymer electrolytes[J]. J. Power Sources,2006,159:205-209
    [182] Shanmukaraj D, Wang G X, Murugan R, et al. Ionic conductivity and electrochemicalstability of poly(methylmethacrylate)–poly(ethylene oxide) blend-ceramic fillerscomposites[J]. J. Phys. Chem. Solids,2008,69(1)243-248
    [183] Gopalan A I, Santhosh P, Manesh K M, et al. Development of electrospun PVdF-PANmembrane-based polymer electrolytes for lithium batteries[J]. J Membrane Sci,2008,325(2):683-690
    [184] Capiglia C, Saito Y, Kataoka H, et al. Structure and transport of polymerGelelectrolytes based on PVDF-HFP and LiN(C2F5SO2)2[J]. Solid State Ionics,2000,131(3-4):291-299.
    [185] Manuel Stephan A, Gopu Kumar S, Renganathan N G, et al. Characterization ofpoly(vinylidene fluoride-hexafluoropropylene) complexed with different lithiumsalts[J]. J. Eur. Polym.,2005,41(1):15-21
    [186] Du Pasquier A, Warren P C, Culver D, et al. Plastic PVDF-HFP electrolyte laminatesprepared by a phase-inversion process[J]. Solid State Ionics,2000,135(1-4SI):249-257
    [187] Xi J, Qiu X, Ma X, et al. Composite polymer electrolyte doped with mesoporous silicaSBA-15for lithium polymer battery[J]. Solid State Ionics,2005,176(13-14):1249-1260
    [188] Li Z H, Zhang H P, Zhang P, et al. Effects of the porous structure on conductivity ofnanocomposite polymer electrolyte for lithium ion batteries[J]. J Membrane Sci,2008,322(2):416-422
    [189] Mcbreen J, Lee H S, Yang X Q, et al. New approaches to the design of polymer andliquid electrolytes for lithium batteries[J]. J Power Sources,2000,89(2):163-167
    [190] Hu L, Tang Z, Zhang Z. New composite polymer electrolyte comprising mesoporouslithium aluminate nanosheets and PEO/LiClO4[J]. J Power Sources,2007,166(1):226-232
    [191] Zhang H P, Zhang P, Li Z H, et al. A novel sandwiched membrane as polymerelectrolyte for lithium ion battery[J]. Electrochem Commun,2007,9(7):1700-1703
    [192] Xiao Q, Wang X, Li W, et al. Macroporous polymer electrolytes based onPVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. JMembrane Sci,2009,334(1–2):117-122
    [193] Wang L, Yang W, Wang J, et al. New nanocomposite polymer electrolyte comprisingnanosized ZnAl2O4with a mesopore network and PEO-LiClO4[J]. Solid State Ionics,2009,180(4–5):392-397
    [194] Manuel Stephan A. Review on gel polymer electrolytes for lithium batteries[J]. EurPolym J,2006,42(1):21-42
    [195] Xue R, Huang H, Huang X, et al. Storage study of lithium battery with PEO-PC/LiClO4electrolyte[J]. Solid State Ionics,1994,74(3–4):133-136
    [1]藤昭,相泽益男,井上著,陈震,姚建年译.电化学测试方法[M].北京:北京大学出版社,1995
    [2] Lee Y. G., Park J. K., Moon S. I.. Interfacial characteristics between lithium electrode andplasticized polymer electrolytes based on poly(acrylonitrile-co-methyl methacrylate)[J].Electrochem. Acta,2000:46:533-539
    [3]阿伦. J.巴德,拉里. R.福克纳著,邵元华,朱果逸,董献堆等译.电化学方法原理和应用[M].北京:化学工业出版社,2005
    [4] Bruce P. G., Vincent C. A.. Steady state current flow in solid binary electrolyte cells[J]. J.Electroanal. Chem.,1987,225(1-2):1-17
    [5] Evans J., Vincent C. A., Bruce P. G.. Electrochemical measurement of transferencenumbers in polymer electrolytes[J]. Polymer,1987,28:2324-2328
    [6]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2005
    [7]邓芹英,刘岚,邓慧敏.波谱分析教程[M].北京:科学出版社,2004
    [8]张向宇.胶黏剂分析与测试技术[M].北京:化学工业出版社,2004
    [9]吴宇平,戴晓兵,马军旗,等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004
    [10]赵藻藩,周性尧,张悟铭,等.仪器分析[M].北京:高等教育出版社,1993
    [11] Song M. K., Kim Y. T., Cho J. Y., et al. Composite polymer electrolytes reinforced bynon-woven fabrics[J]. J. Power Sources,2004,125:10-16
    [12] Jeong Y. B., Kin D. W.. Effect of thickness of coating layer on polymer-coatedseparatoron cycling performance of lithium-ion polymer cells[J]. J. Power Sources,2004,128:256-262
    [1] Li Z. H., Cheng C., Zhan X. Y., et al. A foaming process to prepare porous polymermembrane for lithium ion batteries[J]. Electrochem. Acta,2009,54(18):4403-4407
    [2] Zhang H. P., Zhang P., Li G. C., et al. A porous poly(vinylidene fluoride) gel electrolytefor lithium ion batteries prepared by using salicylic acid as a foaming agent[J]. J PowerSources,2009,189(1):594-598
    [3] Han J. Y., Oh H. H., Choi K. J., et al. Characterization of Poly(vinylidene fluoride) FlatSheet Membranes Prepared in Various Ratios of Water/Ethanol for Separator of Li-IonBatteries: Morphology and Other Properties[J]. J Appl Polym Sci,2011,122(4):2653-2665
    [4] Ren Z., Liu Y. Y., Sun K. N., et al. A microporous gel electrolyte based onpoly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulosederivative blend for lithium-ion battery[J]. Electrochim Acta,2009,54(6):1888-1892
    [5] Jeong H. S., Kim J. H., Lee S. Y.. A novel poly(vinylidenefluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwovenseparator with phase inversion-controlled microporous structure for a lithium-ionbattery[J]. J Mater Chem,2010,20(41):9180-9186
    [6] Aravindan V., Senthilkumar V., Nithiananthi P., et al. Characterization ofpoly(vinylidenefluoride-co-hexafluoroprolylene) membranes containing nanoscopicAlO(OH)nfiller with Li/LiFePO4cell[J]. Journal of Renewable and Sustainable Energy,2010,2(033105):1-9
    [7] Komaba S., Yabuuchi N., Ozeki T., et al. Comparative Study of Sodium Polyacrylate andPoly(vinylidene fluoride) as Binders for High Capacity Si-Graphite Composite NegativeElectrodes in Li-Ion Batteries[J]. Journal of Physical Chemistry C,2012,116(1):1380-1389
    [8] Vondrák J., Reiter J., Velická J., et al. Ion-conductive polymethylmethacrylate gelelectrolytes for lithium batteries[J]. J Power Sources,2005,146(1–2):436-440
    [9] Rajendran S., Kannan R., Mahendran O.. Ionic conductivity studies inpoly(methylmethacrylate)–polyethlene oxide hybrid polymer electrolytes with lithiumsalts[J]. J Power Sources,2001,96(2):406-410
    [10] Choi N., Park J.. New polymer electrolytes based on PVC/PMMA blend for plasticlithium-ion batteries[J]. Electrochem. Acta,2001,46(10–11):1453-1459
    [11] Rajendran S., Uma T.. Conductivity studies on PVC/PMMA polymer blend electrolyte[J].Mater Lett,2000,44(3–4):242-247
    [12] Xu J. J., Ye H.. Polymer gel electrolytes based on oligomeric polyether/cross-linkedPMMA blends prepared via in situ polymerization[J]. Electrochem Commun,2005,7(8):829-835
    [13] Rao M. M., Liu J. S., Li W. S., et al. Preparation and performance analysis ofPE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion batteryapplication[J]. J Membrane Sci.,2008,322(2):314-319
    [14] Wu N., Cao Q., Wang X. Y., et al. A novel high-performance gel polymer electrolytemembrane basing on electrospinning technique for lithium rechargeable batteries[J]. JPower Sources,2011,196(20):8638-8643
    [15] Liao Y. H., Rao M. M., Li W. S., et al. Fumed silica-doped poly(butylmethacrylate-styrene)-based gel polymer electrolyte for lithium ion battery[J]. JMembrane Sci,2010,352(1–2):95-99
    [16] Li W., Yuan M., Yang M.. Dual-phase polymer electrolyte with enhanced phasecompatibility based on Poly(MMA-g-PVC)/PMMA[J]. Eur Polym J,2006,42(6):1396-1402
    [17] Kim H, Shin J, Moon S, et al. Preparation of gel polymer electrolytes using PMMAinterpenetrating polymeric network and their electrochemical performances[J].Electrochem. Acta,2003,48(11):1573-1578
    [18] L. D. Xing, C. Y. Wang, W. S. Li, M. Q. Xu, X. L. Meng, S. F. Zhao, Theoretical Insightinto Oxidative Decomposition of Propylene Carbonate in the Lithium Ion Battery[J].J.Phys. Chem. B,113(2009)5181-5190
    [19] Y. H. Liao, X. P. Li, C. H. Fu, R. Xu, L. Zhou, C. L. Tan, S. J. Hu, W. S. Li,Polypropylene-supported and nano-Al2O3doped poly(ethylene oxide)–poly(vinylidenefluoride-hexafluoropropylene)-based gel electrolyte for lithium ion batteries[J]. J. PowerSources196(2011)2115-2120
    [20] Xiao Q., Wang X., Li W., et al. Macroporous polymer electrolytes based onPVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. JMembrane Sci.,2009,334(1–2):117-122
    [21] F. Boudon, X. Andrieu, C. Jehoulet, I. I. Olesn, Electrospun PVDF nanofiber web aspolymer electrolyte or separator[J]. J. Power Sources81-82(1999)804-811
    [22] Ren Z., Liu Y. Y., Sun K. N., et al. A microporous gel electrolyte based onpoly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulosederivative blend for lithium-ion battery[J]. Electrochim Acta,2009,54(6):1888-1892
    [23] Jeong H. S., Kim J. H., Lee S. Y.. A novel poly(vinylidenefluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwovenseparator with phase inversion-controlled microporous structure for a lithium-ionbattery[J]. J Mater Chem,2010,20(41):9180-9186
    [24] Li G. C., Zhang P., Zhang H. P., et al. A porous polymer electrolyte based onP(VDF-HFP) prepared by a simple phase separation process[J]. Electrochem Commun,2008,10(12):1883-1885
    [25] Deka M., Nath A. K., Kumar A.. Effect of dedoped (insulating) polyaniline nanofibers onthe ionic transport and interfacial stability of poly(vinylidenefluoride-hexafluoropropylene) based composite polymer electrolyte membranes[J]. JMembrane Sci,2009,327(1-2):188-194
    [26] Ulaganathan M., Rajendran S.. Effect of Different Salts on PVAc/PVdF-co-HFP BasedPolymer Blend Electrolytes[J]. J Appl Polymer Sci.,2010,118(2):646-651
    [27] H. Li, Y. M. Chen, X. T. Ma, J. L. Shi, B.K. Zhu, L. P. Zhu, J. Membr. Sci.379(2011)397-405
    [28] N. H. Idris, M. M. Rahman, J. Z. Wang, H. K. Liu, Microporous gel polymer electrolytesfor lithium rechargeable battery application[J]. J. Power Sources201(2012)293-300
    [29] Y. M. Lee, J. W. Kim, N. S. Choi, J. A. Lee, W. H. Seol, J. K. Park, Novel porousseparator based on PVdF and PE non-woven matrix for rechargeable lithiumbatteries[J].J. Power Sources139(2005)235-241
    [30] Y. R. Miao, B. W. Liu, Z. Z. Zhu, Y. Liu, X. D. Wang, Q. F. Li, PVDF-HFP-based porouspolymer electrolyte membranes for lithium-ion batteries[J]. J. Power Sources184(2008)420-430
    [1] Osman Z., Isa K., Ahmad A., et al. A comparative study of lithium and sodium salts inPAN-based ion conducting polymer electrolytes[J]. Ionics,2010,16(5):431-435
    [2] Hwang J. J., Peng H. H., Yeh J. M.. Alpha-Al2O3improves the properties of gelPolyacrylonitrile nanocomposite electrolytes used as electrolyte materials inrechargeable Lithium Batteries[J]. J. Applied Polymer Sci.,2011,120(4):2041-2047
    [3] Gopalan A. I., Santhosh P., Manesh K. M., et al. Development of electrospunPVdF-PAN membrane-based polymer electrolytes for lithium batteries[J]. Journal ofMembrane Science,2008,325(2):683-690
    [4] Chen-Yang Y. W., Chen Y. T., Chen H. C., et al. Effect of the addition of hydrophobicclay on the electrochemical property of polyacrylonitrile/LiClO4polymer electrolytes forlithium battery[J]. Polymer,2009,50(13):2856-2862
    [5] Prasanth R., Aravindan V., Srinivasan M.. Novel polymer electrolyte based on cob-webelectrospun multi component polymer blend of polyacrylonitrile/poly(methylmethacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemicalcharacterization[J]. J. Power Sources,2012,202:299-307
    [6] Li Z. H., Cheng C., Zhan X. Y., et al. A foaming process to prepare porous polymermembrane for lithium ion batteries[J]. Electrochimica Acta,,2009,54(18):4403-4407
    [7] Ren Z., Liu Y. Y., Sun K. N., et al. A microporous gel electrolyte based onpoly(vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulosederivative blend for lithium-ion battery[J]. Electrochimica Acta,,2009,54(6):1888-1892
    [8] Jeong H. S., Kim J. H., Lee S. Y.. A novel poly(vinylidenefluoride-hexafluoropropylene)/poly(ethylene terephthalate) composite nonwovenseparator with phase inversion-controlled microporous structure for a lithium-ionbattery[J]. J. Membr. Sci.,2010,20(41):9180-9186
    [9] Zhang H. P., Zhang P., Li G. C., et al. A porous poly(vinylidene fluoride) gel electrolytefor lithium ion batteries prepared by using salicylic acid as a foaming agent[J]. J. PowerSources,2009,189(1):594-598
    [10] Han J. Y., Oh H. H., Choi K. J., et al. Characterization of Poly(vinylidene fluoride) FlatSheet Membranes Prepared in Various Ratios of Water/Ethanol for Separator of Li-IonBatteries: Morphology and Other Properties[J]. J. Applied Polymer Sci.,2011,122(4):2653-2665
    [11] Osman Z., Mohd Ghazali M. I., Othman L., et al. AC ionic conductivity and DCpolarization method of lithium ion transport in PMMA-LiBF4gel polymerelectrolytes[J]. Results in Physics,2012,2(0):1-4
    [12] Rajendran S., Mahendran O., Kannan R.. Characterisation of [(1x)PMMA–xPVdF]polymer blend electrolyte with Li+ion[J]. Fuel,2002,81(8):1077-1081
    [13] Rajendran S., Uma T.. Conductivity studies on PVC/PMMA polymer blend electrolyte[J].Materials Letters,2000,44(3-4):242-247
    [14] Li W., Yuan M., Yang M.. Dual-phase polymer electrolyte with enhanced phasecompatibility based on Poly(MMA-g-PVC)/PMMA[J]. European Polymer Journal,2006,42(6):1396-1402
    [15] Jung H., Lee W.. Electrochemical characteristics of electrospun poly(methylmethacrylate)/polyvinyl chloride as gel polymer electrolytes for lithium ion battery[J].Electrochimica Acta,2011,58(0):674-680
    [16] Appetecchi G. B., Shin J. H., Alessandrini F, et al.0.6 Ah Li/V2O5batteryprototypes based on solvent-free PEO-LiN(SO2CF2CF3)2polymer electrolytes[J]. J.Power Sources,2005,143(1-2):236-242
    [17] Tang Z., Wang J., Chen Q., et al. A novel PEO-based composite polymer electrolyte withabsorptive glass mat for Li-ion batteries[J]. Electrochimica Acta,2007,52(24):6638-6643
    [18] Ito Y., Kawakubo M., Ueno M., et al. Carbon anodes for solid polymer electrolytelithium-ion batteries[J]. J. Power Sources,2012,214(0):84-90
    [19] Huang B., Wang Z., Chen L., et al. The mechanism of lithium ion transport inpolyacrylonitrile-based polymer electrolytes[J]. Solid State Ionics,1996,91:279-284.
    [20] Wang Z., Huang B., Xue R., et al. Spectroscopic investigation of interactions amongcomponents and ion transport mechanism in polyacrylonitrile based electrolytes[J]. SolidState Ionics,1999,121:141-156
    [21] Xi J. Y., Qiu X. P., Li J., et al. PVDF-PEO blends based microporous polymerelectrolyte: Effect of PEO on pore configurations and ionic conductivity[J]. J. PowerSources,2006,157:501-506
    [22] Lu L., Zuo X. X., Li W. S., et al. Study on the Preparation and performances ofPMMA-Vac polymer electrolyte for lithium ion battery use[J]. Acta Chim. Sinica,2007,5:475-480
    [23] Zhou D. Y., Wang G. Z., Li W. S., et al. Preparation and performances of porousP(AN-CO-MMA) membrane for Lithium-ion batteries[J]. J. Power Sources,2008,184:477-480
    [24] Lee Y. G., Park J. K., Moon S. I.. Interfacial characteristics between lithium electrodeand plasticized polymer electrolytes based on poly(acrylonitrile-co-methylmethacrylate)[J]. Electrochem. Acta,2000,46:533-539
    [25] Choi N. S., Lee Y. M., Park J. H., et al. Interfacial enhancement between lithiumelectrode and polymer electrolytes[J]. J. Power Sources,2003,119-121:610-616.
    [26] Matsuda A., Kanzaki T., Kotani Y., et al. Proton conductivity and structure ofphosphosilicate gels derived from tetraethoxysilane and phosphoric acid ortriethylphosphate[J]. Solid State Ionics,2001,139:113-119
    [27] Kim C. S., Oh S. M.. Performance of gel-type polymer electrolytes according to theaffinity between polymer matrix and plasticizing solvent molecules[J]. Electrochem.Acta,2001,46:1323-1331
    [1] Li X. P., Rao M. M., Liao Y. H., et al. Non-woven fabric supported poly(acrylonit-rile-vinyl acetate) gel electrolyte for lithium ion battery use[J]. J. AppliedElectrochemistry,2010,40(12):2185-2191
    [2] Prasanth R., Aravindan V., Srinivasan M.. Novel polymer electrolyte based on cob-webelectrospun multi component polymer blend of polyacrylonitrile/Poly(methylmethacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemicalcharacterization[J]. J. Power Sources,2012,202:299-307
    [3] Gao K., Hu X. G., Yi T. F., et al. PE-g-MMA polymer electrolyte membrane for lithiumpolymer battery[J]. Electrochim. Acta,2006,52(2):443-449
    [4] Song M. K., Kim Y. T., Cho J. Y., et al. Composite polymer electrolytes reinforced bynon-woven fabrics[J]. J. Power Sources,2004,125:10-16.
    [5] Kim J. Y., Lim D. Y.. Surface-Modified membrane as a separator for lithium-ion polymerbattery [J]. Energies,2010,3(4):866-885
    [6] Yang M. J., Li W. L., Wang G. G., et al. Preparation and characterization of a novelmicroporous PE membrane supporting composite gel polymer electrolyte[J]. Solid StateIonics,2005,176(37-38):2829-2834
    [7] Lee Y. M., Choi N. S., Lee J. A., et al. Electrochemical effect of coating layer on theseparator based on PVdF and PE non-woven matrix[J]. J. Power Sources,2005,146(1-2):431-435
    [8] Park J. H., Cho J. H., Park W., et al. Close-packed SiO2/poly(methyl methacrylate)binary nanoparticles-coated polyethylene separators for lithium-ion batteries[J]. J. PowerSources,2010,195(24):8306-8310
    [9] Jeong H. S., Hong S. C., Lee S. Y.. Effect of microporous structure on thermal shrinkageand electrochemical performance of Al2O3/poly(vinylidenefluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. Journalof membrane science,2010,364(1-2):177-182
    [10] Jae W. P., Euh D. J., Won M. S., et al. Effect of organic acids and nano-sized ceramicdoping on PEO-based solid polymer electrolytes[J]. J. Power Sources,2006,160:674-680
    [11] Jeong H. S., Kim D. W., Jeong Y. U., et al. Effect of phase inversion on microporousstructure development of Al2O3/poly(vinylidene fluoride-hexafluor opropylene)-basedceramic composite separators for lithium-ion batteries[J]. J. Power Sources,2010,195(18):6116-6121
    [12] Liao Y. H., Li X. P., Fu C. H., et al. Performance improvement ofpolyethylene-supported oly(methyl methacrylate-vinyl acetate)-co-oly(ethylene glycol)diacrylate based gel polymer electrolyte by doping nano-Al2O3[J]. J. Power Sources,2011,196(16):6723-6728
    [13] Lee K. H., Lee Y. G., Park J. K., et al. Effect of silica on the electrochemicalcharacteristics of the plasticized polymer electrolytes based on the P(AN-co-MMA)copolymer[J]. Solid State Ionics,2000,133:257-263
    [14] Rao M. M., Liu J. S., Li W. S., et al. Polyethylene-supportedpoly(acrylonitrile-co-methyl methacrylate)/nano-Al2O3microporous compositepolymer electrolyte for lithium ion battery[J]. Journal of Solid State Electrochemistry,2010,14(2):255-261
    [15] Kalyana Sundaram N. T., Subramania A.. Nano-size LiAlO2ceramic filler incorporatedporous PVDF-co-HFP electrolyte for lithium-ion battery applications[J]. Electrochem.Acta,2007,52:4987-4993
    [16] Park C. H., Kim D. W., Prakash J., et al. Electrochemical stability and conductivityenhancement of composite polymer electrolytes[J]. Solid State Ionics,2003,159(1-2):111-119
    [17] Rao M. M., Liu J. S., Li W. S., et al. Preparation and performance analysis of PEsupported P(AN-co-MMA) gel polymer electrolyte for lithium ion battery applications[J].J. Membr. Sci.,2008,322:314-319
    [18] Michael M. S., Jacob M. M. E., Prabaharan S. R. S., et al. Enhanced lithium iontransport in PEO-based solid polymer electrolytes employing a novel class ofplasticizers[J]. Solid State Ionics,1997,98(3–4):167-174
    [19] Ramesh S., Winie T., Arof A. K.. Investigation of mechanical properties of polyvinylchloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithiumpolymer cells[J]. Polymer,2007,43(5):1963-1968
    [20] Rao M. M., Liu J. S., Li W. S., et al. Performance improvement ofpoly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. J. PowerSources,2009,189:711-715
    [21] Zhou D. Y., Wang G. Z., Li W. S., et al. Preparation and performances of porousP(AN-CO-MMA) membrane for Lithium-ion batteries[J]. J. Power Sources,2008,184:477-480
    [22] Xiao Q., Wang X., Li W., et al. Macroporous polymer electrolytes based onPVDF/PEO-b-PMMA block copolymer blends for rechargeable lithium ion battery[J]. J.Membr. Sci.,2009,334(1–2):117-122
    [23] Vijayakumar G., Karthick S. N., Sathiya Priya A. R., et al. Effect of nanoscale CeO2onPVDF-HFP-based nanocomposite porous polymer electrolytes for Li-ion batteries[J]. J.Solid State Electrochemistry,2008,12:1135-1141
    [24] Bruce P. G., Vincent C. A. Steady state current flow in solid binary electrolyte cells[J]. J.Electroanal. Chem.,1987,225(1-2):1-17
    [25] Evans J, Vincent C. A., Bruce P G. Electrochemical measurement of transferencenumbers in polymer electrolytes[J]. Polymer,1987,28:2324-2328
    [26] Chakrabarti A., Juilfs A., Filler R., et al. Novel PEO-based dendronized polymers forlithium-ion batteries[J]. Solid State Ionics,2010,181(21–22):982-986
    [27] Zhang H. P., Zhang P., Li G. C., et al. A porous poly(vinylidene fluoride) gel electrolytefor lithium ion batteries prepared by using salicylic acid as a foaming agent[J]. J. PowerSources,2009,189(1):594-598
    [28] Liu Y., Lee J. Y., Hong L.. In situ preparation of poly(ethylene oxide)-SiO2compositepolymer electrolytes[J]. J. Power Sources,2004,129(2):303-311
    [29] Liao Y. H., Zhou D. Y., Rao M. M., et al. Self-supported poly(methylmethacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery[J]. J.Power Sources,2009,189:139-144
    [30] Liu P., Sherman E., Jacobsen A.. Design and fabrication of multifunctional structuralbatteries[J]. J. Power Sources,2009,189(1):646-650
    [31] Przyluski J., Siekierski M., Wieczorek W.. Effective medium theory in studies ofconductivity of composite polymeric electrolytes[J]. Electrochim. Acta,1995,40(13-14):2101-2108
    [32] Xu J. J., Ye H.. Polymer gel electrolytes based on oligomeric polyether/cross-linkedPMMA blends prepared via in situ polymerization[J]. ElectrochemistryCommunications,2005,7(8):829-835
    [33] Choi N. S., Lee Y. M., Park J. H., et al. Interfacial enhancement between lithiumelectrode and polymer electrolytes[J]. J. Power Sources,2003,119-121:610-616
    [34] Nookala M., Kumar B., Rodrigues S.. Ionic conductivity and ambient temperature Lielectrode reaction in composite polymer electrolytes containing nanosize alumina[J]. J.Power Sources,2002,111:165-172
    [35] Appetecchi G. B., Croce F., Persi L., et al. Transport and interfacial properties ofcomposite polymer electrolytes[J]. Electrochem. Acta,2000,45:1481-1490
    [36] Rao M. M., Liu J. S., Li W. S., et al. Preparation and performance analysis ofPE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion batteryapplication[J]. Journal of Membrane Science,2008,322(2):314-319
    [37] Li Q., Sun H. Y., Takeda Y., et al. Interface properties between a lithium metalelectrode and a poly(ethylene oxide) based composite polymer electrolyte[J]. J. PowerSources,2001,94:201-205
    [38] Kim H., Shin J., Moon S., et al. Preparation of gel polymer electrolytes using PMMAinterpenetrating polymeric network and their electrochemical performances[J].Electrochem. Acta,2003,48(11):1573-1578
    [1] Hwang J. J., Peng H. H., Yeh J. M.. Alpha-Al2O3improves the properties of gelpolyacrylonitrile nanocomposite electrolytes used as electrolyte materials in rechargeablelithium batteries[J]. J Applied Polymer Sci.,2011,120(4):2041-2047
    [2] Gopalan A. I., Santhosh P., Manesh K. M., et al. Development of electrospunPVdF-PAN membrane-based polymer electrolytes for lithium batteries[J]. J MembraneSci,2008,325(2):683-690
    [3] An S. Y., Jeong I. C., Won M. S., et al. Effect of additives in PEO/PAA/PMAAcomposite solid polymer electrolytes on the ionic conductivity and Li ion batteryperformance[J]. J Applied Electrochem.,2009,39(9):1573-1578
    [4] Chen-Yang Y. W., Chen Y. T., Chen H. C., et al. Effect of the addition of hydrophobicclay on the electrochemical property of polyacrylonitrile/LiClO4polymer electrolytesfor lithium battery[J]. Polymer,2009,50(13):2856-2862
    [5] Jung H. R., Ju D. H., Lee W. J., et al. Electrospun hydrophilic fumedsilica/polyacrylonitrile nanofiber-based composite electrolyte membranes[J].Electrochim Acta,2009,54(13):3630-3637
    [6] Liang Y. Z., Lin Z., Qiu Y. P., et al. Fabrication and characterization of LATP/PANcomposite fiber-based lithium-ion battery separators[J]. Electrochem. Acta,2011,56(18):6474-6480
    [7] Chen Y. T., Chuang Y. C., Su J. H., et al. High discharge capacity solid compositepolymer electrolyte lithium battery[J]. J Power Sources,2011,196(5):2802-2809
    [8] Patel M., Menezes P. V., Bhattacharyya A. J.. Ion transport in a polymer-plastic solidsoft matter electrolyte in the light of solvent dynamics and ion association[J]. J Phys.Chem. B,2010,114(16):5233-5240
    [9] Prasanth R., Aravindan V., Srinivasan M.. Novel polymer electrolyte based on cob-webelectrospun multi component polymer blend of polyacrylonitrile/poly(methylmethacrylate)/polystyrene for lithium ion batteries-Preparation and electrochemicalcharacterization[J]. J Power Sources,2012,202:299-307
    [10] Rao M. M., Liu J. S., Li W. S., et al. Performance improvement ofpoly(acrylonitrile-vinyl acetate) by activation of poly(methyl methacrylate)[J]. J PowerSources,2009,189(1SI):711-715
    [11] Carol P., Ramakrishnan P., John B., et al. Preparation and characterization of electrospunpoly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ionbatteries[J]. J Power Sources,2011,196(23):10156-10162
    [12] Liang Y. Z., Ji L. W., Guo B. K., et al. Preparation and electrochemical characterizationof ionic-conducting lithium lanthanum titanate oxide/polyacrylonitrile submicroncomposite fiber-based lithium-ion battery separators[J]. J Power Sources,2011,196(1):436-441
    [13] Nyman A., Behm M., Lindbergh G.. A theoretical and experimental study of the masstransport in gel electrolytes I. mathematical analysis of characterization method[J]. JElectrochem. Soc.,2011,158(6): A628-A635
    [14] Yoshimoto N., Gotoh D., Egashira M., et al. Alkylphosphate-based nonflammable gelelectrolyte for LiMn2O4positive electrode in lithium-ion battery[J]. J Power Sources,2008,185(2):1425-1428
    [15] Kim J. K., Matic A., Ahn J. H., et al. An imidazolium based ionic liquid electrolyte forlithium batteries[J]. J Power Sources,2010,195(22SI):7639-7643
    [16] Aravindan V., Vickraman P.. Characterization of SiO2and Al2O3incorporatedPVDF-HFP based composite polymer electrolytes with LiPF3(CF3CF2)3[J]. J AppliedPolymer Science,2008,108(2):1314-1322
    [17] Deka M., Nath A. K., Kumar A.. Effect of dedoped (insulating) polyaniline nanofiberson the ionic transport and interfacial stability of poly(vinylidenefluoride-hexafluoropropylene) based composite polymer electrolyte membranes[J]. JMembrane Sci.,2009,327(1-2):188-194
    [18] Ulaganathan M., Rajendran S.. Effect of different salts on PVAc/PVdF-co-HFP basedpolymer blend electrolytes[J]. J Applied Polymer Science,2010,118(2):646-651
    [19] Jeong H. S., Hong S. C., Lee S. Y.. Effect of microporous structure on thermal shrinkageand electrochemical performance of Al2O3/poly(vinylidenefluoride-hexafluoropropylene) composite separators for lithium-ion batteries[J]. JMembrane Sci.,2010,364(1-2):177-182
    [20] Rao M. M., Liu J. S., Li W. S., et al. Preparation and performance analysis ofPE-supported P(AN-co-MMA) gel polymer electrolyte for lithium ion batteryapplication[J]. J Membrane Sci.,2008,322(2):314-319
    [21] Kim H., Shin J., Moon S., et al. Preparation of gel polymer electrolytes using PMMAinterpenetrating polymeric network and their electrochemical performances[J].Electrochem. Acta,2003,48(11):1573-1578
    [22] Choi N., Park J.. New polymer electrolytes based on PVC/PMMA blend for plasticlithium-ion batteries[J]. Electrochem. Acta,2001,46(10–11):1453-1459
    [23] Idris N. H., Rahman M. M., Wang J., et al. Microporous gel polymer electrolytes forlithium rechargeable battery application[J]. J Power Sources,2012,201(0):294-300
    [24] Kufian M. Z., Aziz M. F., Shukur M. F., et al. PMMA–LiBOB gel electrolyte forapplication in lithium ion batteries[J]. Solid State Ionics,2012,208(0):36-42
    [25] Xiao Q., Li Z., Gao D., et al. A novel sandwiched membrane as polymer electrolyte forapplication in lithium-ion battery[J]. J Membrane Sci.,2009,326(2):260-264
    [26] Zhang H. P., Zhang P., Li Z. H., et al. A novel sandwiched membrane as polymerelectrolyte for lithium ion battery[J]. Electrochem. Communication,2007,9(7):1700-1703
    [27] Osman Z., Mohd Ghazali M. I., Othman L., et al. AC ionic conductivity and DCpolarization method of lithium ion transport in PMMA–LiBF4gel polymerelectrolytes[J]. Results in Physics,2012,2(0):1-4
    [28] Fergus J. W.. Ceramic and polymeric solid electrolytes for lithium-ion batteries[J]. JPower Sources,2010,195(15):4554-4569

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700