用户名: 密码: 验证码:
新疆棉区棉蚜对新烟碱类杀虫药剂抗性监测、风险评估及抗性机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.采用单头反选育的方法,得到了棉蚜吡虫啉(LC50为0.176mg/L)、啶虫脒(LC50为0.180mg/L)敏感种群;相对于田间原始种群(LCso分别为0.346mg/L和0.312mg/L),棉蚜吡虫啉、啶虫脒敏感种群对吡虫啉、啶虫脒的LCs0分别减少了2倍、1.73倍。采取群体汰选的方式,浸药40次选育的棉蚜吡虫啉、啶虫脒种群,相对于敏感种群,抗性倍数分别为83.27倍(LC50为14.657mg/L)、82.33倍(LCso为14.819mg/L)。采用阈性状分析的方法,获得棉蚜对吡虫啉、啶虫脒的抗性现实遗传力(h2)分别为0.1478和0.1342。进一步预测其抗性发展速度,预计抗性增长100倍时,吡虫啉、啶虫脒分别可使用30.2-38.1代、30.3-38.2代。
     2.交互抗性谱的研究结果表明,(1)抗吡虫啉棉蚜种群的交互抗性谱的研究表明,抗性倍数小于5的药剂为吡蚜酮和甲氨基阿维菌素;交互抗性倍数在5-10倍为噻虫嗪、硫丹、阿维菌素、联苯菊酯、毒死蜱、马拉硫磷、丙溴磷和辛硫磷;交互抗性倍数在10-15倍为啶虫脒、高效氯氰菊酯和三唑磷;交互抗性倍数大于15的为氧化乐果。(2)抗啶虫脒棉蚜种群的交互抗性谱的研究表明,交互抗性倍数小于5的药剂为吡蚜酮和甲基阿维菌素;交互抗性倍数在5-10倍为噻虫嗪、联苯菊酯、毒死蜱、马拉硫磷、丙溴磷和辛硫磷;交互抗性倍数在10-15倍为硫丹、阿维菌素、高效氯氰菊酯、三唑磷和氧化乐果;交互抗性倍数大于15的为毗虫啉。
     3.抗性监测结果表明,新疆各主要棉区棉蚜对吡虫啉的相对抗性倍数为3.17-4.87倍,对啶虫脒的相对抗性倍数为1.7-22.0倍。2012年和2011年相比,新疆主要棉区棉蚜对吡虫啉和啶虫脒的抗性呈上升趋势。
     4.增效剂实验表明,增效剂磷酸三苯酯(TPP)、增效醚(PBO)、顺丁烯二酸二乙酯(DEM),在吡虫啉敏感品系中的增效比分别为1.12、1.09、0.97,在吡虫啉抗性品系中的增效比分别为2.02、1.75、1.05;在啶虫脒敏感棉蚜品系中的增效比为1.02、1.03、1.02,在啶虫脒抗性棉蚜品系中的增效比为1.77、1.61、1.04。TPP和PBO对吡虫啉和啶虫脒有很好的增效作用。
     5.解毒酶活性测定表明,棉蚜吡虫啉和啶虫脒抗性品系羧酸酯酶、谷胱甘肽S-转移酶、细胞色素P450s O-脱乙基比活力都高于敏感品系,其中羧酸酯酶、细胞色素P450s O-脱乙基比活力差异都达到了显著水平(P<0.05)。毗虫啉抗性品系三种解毒酶活性分别为敏感品系的3.26倍、1.08倍、1.60倍;啶虫脒抗性品系三种解毒酶活性分别为敏感品系的2.91倍、1.04倍、1.69倍。
     6.酶标仪法测定单头棉蚜羧酸酯酶(CarE)活性,吡虫啉、啶虫脒抗性品系单头棉蚜羧酸酯酶(CarE)活性明显高于敏感品系。酶标仪法测定单头棉蚜乙酰胆碱酯酶(AChE)活性,吡虫啉、啶虫脒抗性品系单头棉蚜乙酰胆碱酯酶(AChE)活性明显高于敏感品系。
     7.应用实时荧光定量PCR技术分析表明,棉蚜羧酸酯酶基因在吡虫啉抗性品系的相对表达量是敏感品系的1.85倍;棉蚜P450单加氧酶CYPCY3-1基因在吡虫啉抗性品系的相对表达量是敏感品系的1.60倍;棉蚜P450单加氧酶CYPCY3-2基因在吡虫啉抗性品系的相对表达量是敏感品系的2.0倍。棉蚜羧酸酯酶基因啶虫脒抗性品系的相对表达量是敏感品系的1.91倍;棉蚜P450单加氧酶CYPCY3-1基因在啶虫脒抗性品系的相对表达量是敏感品系的1.44倍;棉蚜P450单加氧酶CYPCY3-2基因在啶虫脒抗性品系的相对表达量是敏感品系的1.30倍。由此说明,棉蚜对吡虫啉、啶虫脒的抗性的产生与羧酸酯酶基因、P450单加氧酶CYPCY3-1基因、P450单加氧酶CYPCY3-2基因的过量表达有着密切的关系。
     8.应用实时荧光定量PCR技术分析表明,烟碱型乙酰胆碱受体β1亚基基因在吡虫啉抗性品系的相对表达量是敏感品系的0.85倍;在啶虫脒抗性品系的相对表达量是敏感品系的0.36倍,由此说明,棉蚜对吡虫啉、啶虫脒的抗性的产生与烟碱型乙酰胆碱受体β1亚基基因的低水平表达有着密切的关系。
     9.根据NCBI上登录的棉蚜乙酰胆碱受体β亚基基因序列(GenBank:JQ627836.1),设计特异性引物检测,结果表明,棉蚜吡虫啉、啶虫脒抗性品系、敏感品系以及新疆农一师、农二师、农三师、农四师、农五师、农六师、农七师、农八师、新疆沙湾、湖北省枣阳市、河南省西华县、安徽省萧县、山西省运城市等地方种群均未检测到突变。
1.The imidacloprid and acetamiprid susceptible strains (LC5o were0.176mg/L and0.180mg/L, respectively) were developed by individual reverse selection. The LC50value of the imidacloprid and acetamiprid susceptible strain had a2and1.73fold decrease compared with the field strain (LC50were0.346mg/L and0.312mg/L, respectively). The resistant strains of A. gossypii were obtained after forty selection with imidacloprid and acetamiprid by group selection. The resistance index of imidacloprid and acetamiprid resistant strain were83.27-fold (LC50was14.657mg/L) and82.33-fold (LC50was14.819mg/L), respectively. The realized heritability (h2) of resistance were0.1478and0.1342by Tabashnik's methods. In order to estimate the speed of resistance, it would take cotton aphid30.2-38.1and30.3-38.2ages of to obtain100-fold resistance to imidacloprid and acetamiprid, which was under breeding pressure of imidacloprid and acetamiprid. The results showed that A. gossypii had the resistance risk to imidacloprid and acetamiprid.
     2. The results of cross-resistance to imidacloprid and acetamiprid-resistant strains were analyzed.(1) The results of cross-resistance to imidacloprid-resistant strains showed that the cross-resistaace of imidacloprid less than5folds were pymetrozine and Methyl abamectin, in5-10folds were thiamethoxam, endosulfan, abamectin, bifenthrin, chlorpyrifos, malathion, profenofos and Phoxim, in10-15folds were acetamiprid, beta-cypermethrin and triazophos, more than15folds was Omethoate.
     (2) The results of cross-resistance to acetamiprid-resistant strains showed that the cross-resistance of acetamiprid-resistant strains less than5folds were pymetrozine and Methyl abamectin, in5-10folds were thiamethoxam, bifenthrin, chlorpyrifos, malathion, profenofos and Phoxim, in10-15folds were endosulfan, abamectin, beta-cypermethrin, triazophos and Omethoate, more than15folds was imidacloprid.
     3. The survey for susceptible levels of cotton aphid to imidacloprid and acetamiprid of each cotton region in xinjiang showed that the relative resistance multiples to imidacloprid and acetamiprid were3.17-4.87folds and1.7-22.0folds. The resistance development speed to acetamiprid was faster than imidacloprid compared with2011in2012.
     4. Synergism tests showed that triphenyl phosphate (TPP), piperonyl buoxide (PBO) and diethyl maleate (DEM) resulted in1.12,1.09and0.97-fold synergist ratios, respectively in the imidacloprid-susceptible strain. It was2.02,1.75and1.05-fold SR, respectively in the imidacloprid-resistant strain. It was1.02,1.03and1.02-fold SR, respectively in the acetamiprid-susceptible strain. It was2.02,1.75and1.05-fold SR, respectively in the imidacloprid-resistant strain. TPP and PBO had a good synergistic effect on imidacloprid and acetamiprid.
     5. The detoxification enzymes tests showed that the activity of CarE, GST and7-ethoxycoumarin O-deethylase (ECOD) in the resisitant strain were higher than in susceptible strain. Among them, the activity difference of the CarE and ECOD reached significant level (P<0.05). The activity of three kinds detoxification enzymes in imidacloprid resisitant strain were3.26-,1.08-and1.60-folds that of the susceptible strain.The activity of three kinds detoxification enzymes in acetamiprid resisitant strain was2.91-,1.04-,1.69-times that of the susceptible strain.
     6. Determination of individual aphid carboxylesterase (CarE) by microplate assay showed the activity of CarE in imidacloprid, acetamiprid resistant Aphis gossypii strains was higher than in susceptible strains. Determination of individual aphid acetylcholinesterase (AChE) by microplate assay showed the activity of AChE in imidacloprid, acetamiprid resistant Aphis gossypii strains was higher than in susceptible strains.
     7. The mRNA relative expression level of CarE and P450monooxygenase gene were determined by real-time quantitative PCR. The mRNA relative expression level of CarE gene in imidacloprid resistant strains was1.85-fold of that of the sensitive strain; The mRNA relative expression level of P450CYPCY3-1in imidacloprid resistant strains was1.60-fold of that of the sensitive strain; The mRNA relative expression level of P450CYPCY3-2in imidacloprid resistant strains was2.00-fold of that of the sensitive strain; The mRNA relative expression level of CarE gene in acetamiprid resistant strains was1.91-fold of that of the sensitive strain; The mRNA relative expression level of P450CYPCY3-1in acetamiprid resistant strains was1.44-fold of that of the sensitive strain; The mRNA relative expression level of P450CYPCY3-2in acetamiprid resistant strains was1.30-fold of that of the sensitive strain. Therefore, the overexpression of CarE, P450CYPCY3-1and P450CYPCY3-2in Aphis gossypii were closely related with the resisitance to imidacloprid and acetamiprid.
     8. The mRNA relative expression level of nAChR beta1subunit were determined by real-time quantitative PCR. The mRNA relative expression level of the imidacloprid resistant strains was0.85-fold of that of the sensitive strain; The mRNA relative expression level of nAChR beta1subunit in acetamiprid resistant strains was0.36-fold of that of the sensitive strain. Therefore, the low level expression of nAChR beta1subunit gene in Aphis gossypii was closely related with the resisitance to imidacloprid and acetamiprid.
     9. According to the gene sequence logged on NCBI about Aphis gossypii nAChR betal subunit (GenBank:JQ627836.1), the specific primers were designed to detect the susceptible strain R81T position of arginine(codon:AGA) might be replaced by threonine (codon:ACA) in resistant strains. The results showed that the Aphis gossypii population of imidacloprid, acetamiprid-resistant strain, sensitive strain, main cotton region in Xinjiang, Zaoyang city in Hubei, Xihua County in Henan, Xiao County in Anhui, Yuncheng City in Shanxi all were not detected the mutation.
引文
艾国民,王庆敏,邹东云,等.高效液相色谱法测定家蝇细胞色素P450 O-脱甲基活性.分析化学,2009,37(8):1157-1160
    曹艳.棉蚜抗药性检测及其对灭多威的抗性机制研究:[中国农业大学硕士论文].北京:中国农业大学,2011,19,31
    常新龙,郑建立.新疆车排子垦区棉蚜发生特点及防治措施.中国棉花,2013,40(6):37-38
    陈安良,冯俊涛,张兴.陕西棉蚜抗药性发展动态研究.西北农业大学学报,2000,28(1):45-51
    程桂林,刘润玺.新疆、山东棉蚜抗药性对比.农药,1997,36(11):6-9
    程家安,祝增荣.2005年长江流域稻区褐飞虱暴发成灾原因分析.植物保护,2006,32(4):1-4
    程霞,亦冰.第二代新烟碱类杀虫剂噻虫嗪的开发.世界农药,2001,23(4):19-25
    崔淑芳,李俊兰.棉蚜的发生、危害与防治.中国棉花,2010(4):33
    邓业成,王荫长,李洁荣,等.啶虫脒的杀虫活性研究.西南农业学报,2002,15(1):50-53
    丁锦华,博强.棉蚜有性世代的观察.昆虫知识,1995,32(3):141-145
    封云涛,徐宝云,吴青君,等.杀虫剂分子靶标烟碱型乙酰胆碱受体研究进展.农药学学报,2009,11(2):149-158
    范银君,史雪岩,高希武.新烟碱类杀虫剂吡虫啉和噻虫嗪的代谢研究进展.农药学学报,2012,14(6);587-596
    冯志超,王永安.新疆北部棉区棉蚜大发生原因及综合防治.新疆农业科学,2005,42(4):265-266
    高步尔.棉蚜发生危害特点与防治方法.北京农业,2007,(27)25-26
    高聪芬,张兴,冯俊涛.杀虫剂增效作用研究进展.西北农业大学学报,1996,24(1):88-92
    高希武.寄主植物对棉蚜羧酸酯酶活性的影响.昆虫学报,1992,35(3):267-272
    高希武.害虫抗药性分子机制与治理策略.见:梁沛.昆虫乙酰胆碱受体与抗药性北京:科学出版社,2012,25-27
    高希武,曹本钧.杀虫剂混用或加增效剂对瓜—棉蚜增效作用及机制的研究.植物保护学报,1989,16(4):273-278
    高希武,胡熳华,郑炳宗.应用酶标仪动力学方法监测棉蚜的抗药性.昆虫知识,1998,35(1):17-19
    高希武,郑炳宗.生物化学法监测瓜-棉蚜田间种群的抗药性.植物保护学报,1990,17(4):373-376
    高希武,郑润勇,宁世民,等.棉蚜不同品系羧酸酯酶的酶标仪动力学测定研究.中国农业大学学报,1997,2(5):59-63
    高占林,李耀发,党志红,等.河北省不同地区棉蚜对吡虫啉等杀虫剂抗药性发展动态研究.河北农业大学学报,2008,31(3):81-84
    龚坤元,张桂林,翟桂英.棉蚜对“1059”抗药性的测定.昆虫学报,1964,13(1):1-8
    郭惠琳,高希武.棉蚜抗氧化乐果品系的羧酸酯酶基因突变.昆虫学报,2005,48(2):194-202
    郭天凤,孙洪波,马野萍.棉蚜种群数量变化与防治的探讨.新疆农垦科技,2002(4):23-24郭天凤,孙洪波,马野萍等.棉田周围植被对棉蚜及天敌的影响.新疆农垦科技,2005,4:21-22
    韩晓莉,潘文亮,高占林,等.害虫对新烟碱类杀虫剂抗药性研究进展.华北农学报,2007,22(增刊):28-32
    胡斌.新烟碱类杀虫剂的发展应各有侧重.中国农资,2011,(28):26
    胡冠芳,陈明,张新瑞等.甘肃敦煌棉蚜抗药性测定.西北农业学报,2000,9(2):45-48
    胡双庆,尹大强,陈良燕.吡虫清等4种新农药的水生态安全性评价.农村生态环境,2002,18(4):23-26,34
    韩召军,王荫长,尤子平.棉蚜对拟除虫菊酯类杀虫剂的抗性机理,南京农业大学学报,1995,18(3):54-59
    洪波,陈安良,冯俊涛,等.我国棉蚜抗药性研究现状.西北农业学报,2009,9(1):118-122
    侯洪,王登元,王俊,等.新疆棉蚜的抗药性研究.新疆农业科技,2008,179(2):3
    姜卫华,韩召军,郝鸣丽.二化螟对氟虫氰抗性初探.中国水稻科学,2005,19(6):577-579
    雷虹,张战利.棉蚜对啶虫脒的抗性汰选与风险评估.西北农业学报,2007,16(6):238-241
    冷欣夫,唐振华,王荫长.杀虫药剂分子毒理学及昆虫抗药性.北京:中国农业出版社,1996,1-29
    李国英,王佩玲,刘政,等.近年来新疆棉区病虫发生的特点及其原因分析.兵团精准农业技术研讨会论文汇编,2006:39-43
    李飞,韩召军.棉蚜钠离子通道基因cDNA和基因组DNA片段的克隆和序列分析.武夷科学,2002,18:86-92
    李飞,韩召军,吴智峰.我国棉蚜抗药性现状.棉花学报,2001,13(2):121-124
    李菁,韩召军.棉蚜对吡虫啉抗性的初步研究.农药学学报,2007,9(3):257-262
    林荣华,于彩虹,王开运.4种增效利对杀虫剂的增效毒力测定.农业科学与管理,2007,28(5):21-22
    柳建伟,张东海,陈晋忠,等.棉蚜对12种杀虫剂的敏感性测定.农药,2012,51(8):613-615
    柳建伟,张东海,陈晋忠,等.啶虫脒、硫丹混配对棉蚜防治增效作用的研究.中国棉花,2012,(10):36-38
    刘俊丽.我国桃蚜抗药性机制及检测.[博士学位论文].北京:中国农业大学,2008,22-23
    刘晓漫,方勇,贤振华.农业害虫抗药性监测技术研究进展.广西农业科学,2010,41(9):931-935
    刘泽文.褐飞虱对吡虫啉的抗性及其机理研究.[南京农业大学博士学位论文],2004,47-52
    罗亮,马德英,苗伟.北疆气温与棉蚜发生量之间关系的探讨.新疆农业科学,2007,44(4):423-428
    罗万春,凌冰,岳留强.新疆棉蚜抗药性研究.植物保护学报,1990,17(3):283-288
    马志卿,江志利,陈安良,等.新疆北疆棉蚜抗药性测定及发展动态分析.西北农林科技大学学报,2001,29(2):80-82
    牟吉元,李熙会,牟少敏,等.春直播棉棉蚜防治指标的研究.山东农业大学学报,1993,24(2):183-187
    慕立义,王开运.我国棉花蚜虫对菊酯类农药及呋喃丹抗药性调查研究.杀虫药剂,1986(2):1-6
    慕立义,王开运,姜翠玲,等.棉蚜对氰戊菊醋、氧化乐果及其混剂抗药性的研究.中国农业科学,1988,21(6):18-26
    慕立义,王开运.几类增效剂在抗药性棉蚜中对杀虫剂增效作用研究.农药,1989,38(6):1-4任晓霞,李国清,王荫长,等.丙×辛混剂对棉铃虫幼虫的室内增效作用.农药科学与管理,2000, 21(1):27-30
    单淑玲.浅谈农业害虫综合治理技术.农民致富之友,2010(4):30
    史晓斌,王鹏.吡虫啉的抗性现状及其机理研究进展.农药研究与应用,2009,14(2):1-3
    石绪根.棉蚜对吡虫啉抗性机理的研究:[山东农业大学博士论文].山东:山东农业大学,2012,49-50
    孙家峰.萧县棉蚜抗药性发展的研究.安徽农学通报,2008,14(5):94-95
    宋化稳,陈泽龙.济南地区棉蚜对15种杀虫剂的抗性比较.农药科学与管理,2002,23(4):29-31
    孙洪波,马野萍,郭天凤,等.棉蚜生活周期及繁殖特征观察.新疆农业科学,2000(2):78-80
    孙磊,谢慧琴,许慧敏,等.新疆玛纳斯河流域棉蚜抗药性测定.中国农学通报,2011,27(27):299-302
    孙鲁娟,高希武,郑炳宗.氰戊菊酯抗性和敏感品系棉蚜部分钠离子通道基因的克隆.中国农业科学,2003,36(11):1301-1305
    孙耘琴,冯国蕾,张桂林,等.棉蚜对有机磷杀虫药剂抗性的生化机制.昆虫学报,1987,30:13-19
    唐良德,邱宝利,任顺祥.天敌昆虫抗药性研究进展.应用昆虫学报,2014,51(1):13-25
    唐振华编著.昆虫抗药性及其治理.北京:中国农业出版社,1993,158-297
    唐振华.新烟碱类杀虫剂的结构与活性及其药效基团.现代农药,2002(1):1-6
    唐振华,韩启发,庄佩君.镶嵌式交替防治对菜蚜抗性演化的影响.昆虫学报,1994,37(2):25-30
    田笑明,陈冠文,李国英.宽膜植棉早熟高产理论与实践.北京:中国农业出版社,2000:110-111
    王保成,马恩波,任竹梅.两种有机磷农药及其混配农药的毒力测定.山西大学学报:自然科学版,2000,23(4):354-357
    王开运,慕立义,张世安,等.六种蚜虫对溴氰菊酯等杀虫剂的抗性及毒性选择性.杀虫药剂,1992,31(3):2-5
    王开运,孔祥波,于彩虹,等.温室白粉虱和棉蚜对吡虫啉抗性及交互抗性.第五届全国药剂毒理学术讨论会,1999,115-116
    王洪亮,王丙丽,郭志刚,等.不同类型杀虫剂对棉蚜的毒力研究.河南科技学院学报:自然科学版,2005,33(1):61-62
    王顺建,朱克响,于向刚,等.准北棉田节肢动物的群落结构.昆虫知识,2000,7(15):268-274
    王瑞霞.棉蚜大发生原因分析及综合防治.新疆农垦科技,1995,4:7-8
    王孝法,孟昭坤,罗教祥.新疆植棉区棉蚜分布为害特点及治理对策.中国棉花,1997,24(11):12-13
    王荫长.我国农业害虫抗药性发生概况.昆虫知识,1991,28(2):120-121
    魏书军,聂秀东,石宝才,等.阿维菌素与毒死蜱对小菜蛾联合毒力的生物测定.农药,2012,51(3):231-233
    吴青君,张文吉,张友军.烟碱样乙酰胆碱受体及其有关杀虫药剂.植物保护,2000,26(4):39-41
    吴兴富,刘光辉,邓建华,等.云南烟蚜的抗药性差异研究初报.云南农业大学学报,2004,19(1):75-77
    谢心宏.新型杀虫剂吡虫啉.农药,1998,37(6):40-42
    许新新,谭瑶,高希武.绿盲蝽P450基因的克隆及增效醚对P450酶活性的抑制作用.应用昆虫学 报,2012,49(2):324-334
    姚丽花,郭天风,孙洪波.棉蚜种群数量变化与气象要素关系分析.农村科技,2004(5):28
    闫纯博,张伍平,李国英,等.棉花“三虫三病”发生趋势及防治对策.新疆农垦科技,1997,3:13-16
    杨焕青,王开运,王红艳,等.抗吡虫啉棉蚜种群对吡蚜酮等药剂的交互抗性及施药对其生物学特性的影响.昆虫学报,2009,52(2):175-182杨焕青.棉蚜对吡虫啉的抗性及吡蚜酮对抗吡虫啉棉蚜生物学和生化特性的影响:[山东农业大学硕士论文].山东:山东农业大学,2009,55-56
    张广学.谈农林害虫的自然控制.昆虫学报,1999,42(增刊):1-5
    张韧.印楝素与吡虫啉对牛蒡长管蚜毒力最佳配比的筛选及田间防效研究.安徽农业科学,2009,37(29):26-28
    张瑞亭.农药的混用与混剂.北京:化学工业出版社,1992:26-28
    张新瑞,胡冠芳,张月莲,等.兰州市桃蚜抗药性监测及治理对策研究.植物保护,2004,30(3):52-55
    张学涛,柳建伟,李芬,等.北疆地区棉蚜对不同杀虫剂敏感水平测定.植物保护,2012,38(2):163-166
    张彦英,张弘.吡虫啉抗性产生的可能与治理.农药,1999,38(4):22-23
    周运刚,王俊刚,马天文,等.缩节胺对棉蚜种群繁殖的影响.西北农业学报,2011,20(5):199-202
    左伯军,李磊,石隆平.新烟碱类杀虫剂发展历程浅说.今日农药,2011,4:23-28
    Abel E L, Bammler T K, Eaton D L. Biotransformation of methyl parathion by glutathione S-transferases. Toxicology Science,2004(79):224-232
    Aitio A. A simple and sensitive assay of 7-ethoxycoumarin deethylation. Anal Biochem,1978, 85:488-491
    Alin M P, Stephen P F, Linda O,et al. Amplification of a cytochrome P450 gene is associated with resistance to Neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genet,2010,6(6):1-10
    Arias H R. Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Research Reviews,1997,25(2):133-191
    Bass C, Puinean A M, Andrews M C,et al. Mutation of a nicotinic acetylcholoine receptor β1 subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. BMC Neuroscience,2010b,12-51
    Bautista M A,Miyata T,Miura K,et al. RNA interference-mediated knockdown of a cytochrome P450, CYP6BG1, from the diamondback moth,Plutella xylostella, reduces larval resistance to permethrin. Insect Biochemistry Molecular Biology,2009(39):38-46
    Bradford M M. A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical. Biochemistry,1976,7:248-254
    Cao C, Zhang J, Gao X W, et al. Overexpression of carboxylesterase gene associated with organophosphorous insecticide resistance in cotton aphids, Aphis gossypii (Glover). Pesticide Biochemistry Physiology,2008(90):175-180
    Casida J E. Neonicotinoid metabolism:compounds, substituents,pathways,enzymes,organisms,and relevance. J Agric Food Chem,2011,59(7):2923-2931
    Daborn P, Boundy S, Yen J, et al. DDT resistance in Drosophila correlates with Cyp6gl over-expression and confers cross-resistance to the neonicotinoid imidacloprid. Molecular Genetics and Genomics,2001, (266)556-563
    Daborn P J, Yen J L,Bogwitz M R,et al. A single P450 allele associated with insecticide resistance in Drosophila. Science,2002(297) 2253-2256
    David J P,Strode C,Vontas J,et al. The Anopheles gambiae detoxification chip:a highly specific microarray to study metabolic-based insecticide resistance in malaria vectors. Proceedings of the National Academy of Sciences of the United States of America,2005(102)4080-4084
    Delorme R,Auge D,Bethenod M T,et al. Insecticide resistance in a strain of Aphis gossypii from southern France. Science,1997,90-96
    Devonshire A L, Moores G D, Ffrench-Constant R H. Dection of insecticide resistance by immunological estimation of carboxylesterase activity in Myzus persicae (Sulzer) and cross reaction of the antiserum with Phorodon humwuli(Schrank)(Hemiptera:Aphididae). Bulletin of Entomological Research,1986(76):97-107
    Eldefrawi M E, Miskus R, Sutcher V. Methylenedioxyphenyl derivatives as synergists for carbamate insecticides on susceptible, DDT- and parathion-resistant house flies. Journal of Economic Entomology,1960(53):231-234
    Feyereisen R. Evolution of insect P450. Biochemisty Society Transactions,2006, (34):1252-1255
    Field L M, Blackman R L,Tyler-Smith C,et al. Relationship between amount of esterase and gene copy number in insecticide-resistant Myzus persicae(Sulzer). Biochemistry J,1999 (399):737-742
    Firko M J,Hayes J L. Quantitative genetic tools for insecticide resistance risk assessment:estimating the heritability of resistance. Journal Economic Entomology,1990,83(3):647-654
    Foster S P, Denholm I, Devonshire A L. Field-simulator studies of insecticide resistance to dimethylcarbamates and pyrethroids conferred by metabolic-and target site-based mechanisms in peach-potato aphids, Myzus persicae (Hemiptera:Aphididae). Pest Management Science, 2002(58):811-816
    Francis F, Vanhaelen N, Haubruge E. Glutathione S-Transferases in the adaptation to plant seconderay metabolites in the Myzus persicae aphid. Archives of Insect Biochemistry and Physiology, 2005(58):166-174
    Gorman K, Devine G,Bennison J. Report of resistance to the neonicotinoid insecticide imidacloprid in Trialeurodes vaporariorum (Hemiptera:Aleyrodidae). Pest Managagement Science,2007, 63(6):555-558
    Gorman K, Slater R, Blande J D,et al. Cross-resistance relationships between neonicotinoids and pymetrozine in Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Management Science, 2010(66):1186-1190
    Grafton-Cardwell E E, Leigh T F, Bentley W J,et al. In the San Joaquin Valle Y-cotton pests have become resistant to commonly used pesticides. California Agricuture,1992(46):4-7
    Gubran E M E, Delorme R,Auge D, et al. Insecticide resistance in cotton aphid Aphis gossypii(Glov.)in the Sudan Gezira. Pesticide Science,1992,35:101-107
    Gundelfinger E D. How complex is nicotinic receptor system of insects. Trends in neuosciences, 1992, (15):6
    Habig W H. in:Willian B J. ed. Method in enzymology, New York:Academic press,1981, 77:398-405
    Han Z J,Moores G D. Association between biochemical marks and insecticide resistance in the cotton aphid, Aphis gossypii. Pesticide Biochemistry Physiology,1998(62):164-171
    Hemingway J, Hawkes N J, McCarroll L,et al. The molecular basis of insecticide resistance in mosquitoes. Insect Biochemistry Molecular Biology,2004(34):653-665
    Herron G A, Powis K, Rophail J. Insecticide resistance in Aphis gossypii Glover (Homoptera:Aphididae), a serious threat to Australian cotton. Australia J Entomology,2001(40):85-91
    Hollingsworth R G, Tabashnik B E, Ullman D E,et al. Resistance of Aphis gossypii (Homoptera:Aphididae) to insecticides in Hawaii:spatial patterns and relation to insecticide use. J. Econ. Entomology,1994(87):293-300
    Horowitz A R,Toscano N C,Youngman R R,et al. Synergism of insecticides with DEF in sweet potato whitefly. Journal of Economic Entomology,1988,81(1):110-114
    Ishaama I,Mendelson Z. The susceptibility of the melon aphid Aphis gossypii to insecticides during the cotton growing season. Hassadeh,1987(67):1772-1773
    Karunker I, Benting J, Lueke B,et al. Over-expression of cytochrome P450 CYP6CM1 is associated with high resistance to imidacloprid in the B and Q biotypes of Bemisia tabaci (Hemiptera:Aleyrodidae). Insect Biochemistry Molecular Biochemistry,2008(38):634-644
    Karunker I, Morou E, Nikou D, et al. Structural model and functional characterization of the Bemisia tabaci CYP6CM1vQ, a cytochrome P450 associated with high levels of imidacloprid resistance. Insect Biochemistry Molecular Biochemistry,2009(39):697-706
    Kim J W, Hwang T G. Studies on resistance to organophoshorus insecticides in the brown planthopper, Niapavata lugens Stal(Ⅱ):Difference of the biochemical characteristic. Korean Journal of plant protection,1987,26(3):165-170
    Le Goff G, Boundy S, Daborn P G, et al. Microarray analysis of cytochrome P450 mediated insecticide resistance in Drosophila. Insect Biochemistry and Molecular Biology,2003(33):701-708
    Li J,Shao Y, Ding Z P,et al. Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochemistry Molecular Biology, 2010(40):17-22
    Liu Z E, Williamson M S, Lansdell S J,et al. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. Neurochemistry, 2006(99):1273-1281
    Liu Z, Han Z. Fitness costs of laboratory-selected imidacloprid resistance in the brown planthopper, Nilaparvata lugen Stal. Pest Management Science,2006,62(3):279-282
    Liu Z W, Williamson M S, Lansdell S S J,et al. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). Proc. Natl Acad. Science. USA,2005,(102):8420-8425
    Li X C, Schuler M A, Berenbaum M R. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology,2007(52):231-253
    Maitra S, Dombrowski S M, Basu M, et al. Factors on the third chromosome affect the level of Cyp6a2 and Cyp6a8 expression in Drosophila melanogaster. Gene,2000, (248):147-156
    Markussen M D K,Kristensen M. Lowexpression of nicotinic acetylcholine receptor subunit Mda2 in neonicotinoid resistant strains of Musca domestica L. Pest managage,science,2010a, (66):1257-1263
    Martinez-Torres D, Devonshire A L, Williamson M S. Molecular studies of knockdown resistance to pyrethroids:cloning of domain Ⅱ sodium channel sequences from insects. Pesticide Science, 1997(51):265-270
    Matsuda K, Buckingham S D, Kleier D,et al. Neontinotinoids:insecticides acting on insect nicotinic acetylcholine receptors. Trends in Pharma Science,2001,22(11):573-580
    Millar N S, Denholm I. Nicotinic acetylcholine receptors:targets for commercially important insecticides. Invert Neuroscience,2007(7):53-66
    Moores G D, Gao X W, Denholm I,et al. Characterisation of insensitive acetylcholinesterase in insecticide resistant cotton aphids, Aphis gossypii Glover (Homoptera:Aphididae). Pesticide Biochemistry Physiology,1996(56):102-110
    Moores G D, Devine G J, Devonshire A L. Insecticide-insensitive acetylcholinesterase can enhance esterase-based resistance in Myzus persicae and Myzus nicotianae. Pesticide Biochemistry Physiology, 1994(49):114-120
    Moores G D, Gao X W, Denhoin I. Characterization of insensitive acetylcholinesterase in the insecticide-resistant cotton aphid, Aphis gossypii Glover(Homoptera:Aphididae). Pesticide. Biochemistry,1996(56):102-110
    Morton R A, Holwerda B C. The oxidative metabolism of malathion and malaoxon in resistant and susceptible strains of Drosophila melanogaster. Pesticide Biochemistry Physiology.1985(24):19-31
    Mota-Sanchez D, Hollingworth R M. Resistance and cross-resistance to neonicotinoid insecticides and spinosad in the Colorado potato beetle; Leptinotarsa decemlineata (Say)(Coleoptera:Chrysomelidae). Pest Management Science. Jan,2006:62(1):30-37
    Muller P, Donnelly M J, Ranson H. Transcription profiling of a recently colonised pyrethroid resistant Anopheles gambiae strain from Ghana. BMC Genomics,2007,8(1):36-48
    Muller P, Warr E, Stevenson B J, et al. Field-caught permethrin-resistant Anopheles gambiae overexpress CYP6P3, a P450 that metabolises pyrethroids. PLoS Genetics,2008,4(11):e1000286
    Mutero A, Pralavorio M, Bride J M et al. Resistance-associated point mutations in insecticide insensitive acetylcholinesterase. Proc. Natl. Acad. Sci. USA,1994, (91)5922-5926
    Nauen R, Elbert A. European monitoring of resistance to insecticides in Myzus persicae and Aphis gossypii(Hemipera:Aphidiae) with special reference to imidacloprid. Bull Entomological Research, 2003,93(1):47-54
    Nauen R, Stumpf N, Elbert A. Toxicological and mechanistic studies on neonicotinoid resistance in Q-type Bemisia tabaci (Hemiptera:Aleyrodidae). Pest Management Science,2002,58(9):875
    Nelson D R. The cytochrome P450 homepage. Human Genomics,2009(4):59-65
    Nikou D, Ranson H, Hemingway J. An adult-specific CYP6P450 gene is overexpressed in a pyrethroid-resistant strain of the malaria vector. Anopheles Gambiae. Gene,2003(318):91-102
    O'Brien P J, Abdel-Aal Y A. Resationship of insecticide resistance to carbox-ylesterases in Aphis gossypii(Homoptera:Aaphididae)from midsouth cotton. J. Econ. Entomology,1992, (85):651-657
    Pan Y, Guo H, Gao X W. Comparative study on carboxylesterase activity, cDNA sequence, and gene expression between malathion susceptible and resistant strains of the cotton aphid, Aphis gossypii. Comparative Biochemistry Physiology part B Biochemistry Molecular Biology,2009(152):266-270
    Perry T, Heckel D G, McKenzie J A, et al. Mutations in Dal or Dβ2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster. Insect Biochemistry Molecular. Biology,2008(38):520-528
    Perry T, Mckenzie J A,Batterham P. A Dα6 knockout strain of Drosophila melanogaster confers a high level of resistance to spinosad. Insect Biochemistry Molecular Biology,2007(37):184-188
    Prabhaker N, Castle S, Henneberry T J, et al. Assessment of cross-resistance potential to neonicotinoid insecticides in Bemisia tabaci (Hemiptera:Aleyrodidae). Bull Entomological Research, 2005,95(6):535-543
    Pridgeon J W, Zhang L, Liu N. Overexpression of CYP4G19 associated with a pyrethroid-resistant strain of the German cockroach,Blattella germanica(L.). Gene,2003(314),157-163
    Puinean A M, Denholm I, Millar N S,et al. Characterization of imidacloprid resistance mechanisms in the brown planthopper Nilaparvata lugens Stal (Hemiptera:Delphacidae). Pest Biochemistry Physiology,2010(97):129-132
    Puinean A M,Foster S P,Oliphant L,et al. Amplification of a cytochrome P450 gene is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. PLoS Genetics,2010,6(6): 1-11
    Pyke F M, Bogwitz M R,Perry T P, et al. The genetic basis of resistance to diazinon in natural populations of Drosophila melanogaster. Genetica,2004(121):13-24
    Rauch N,Nauen R. Identification of biochemical markers linked to neonicotinoid cross-resistance in Bemisia tabaci (Hemiptera:Aleyrodidae). Arch Insect Biochemistry Physiology,2003,54(4):165-176
    Saito T, Hama H, Suzuki K. Insecticide resistance in clones of the cotton aphid Aphis gossypii Glover (Homoptera:Aphididae), and synergistic effect of esterase and mixed-function oxidase inhibitors. Jpn. J. Appl. Entomology. Zool,1995(39):151-158
    Sato M E,Miyata T,Kawai A,et al. Methidathion Resistance Mechanisms in Amblyseius womersleyi Schicha (Acari:Phytoseiidae). Pesticide Biochemistry and Physiology,2001(69):1-12
    Sato M E, Tanaka T M, Miyata T. A cytochrome P450 gene involved in methidathion resistance in Amblyseius womersleyi Schicha (Acari:Phytoseiidae),2007(88):337-345
    Scott J G, Liu N, Wen Z. Insect cytochromes P450:diversity, insecticide resistance and tolerance to plant toxins. Comparative Biochemistry and Physiology,1998(121):147-155
    Shen B, Dong H, Tian H, et al. Cytochrome P450 genes expressed in the deltamethrin-susceptible and-resistant strains of Culex pipiens pallens. Pesticide Biochemistry Physiology,2003(75):19-26
    Shi X G, Zhu Y K, X X M,et al. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover) Agriculture & Environment. Journal of Food,2012(2):1227-1230
    Small G J, Hemingway J,Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper Nilaparvata lugens. Insect Molecular Biology,2000(9):647-653
    Sukhoruchenko G I. Review of the problem of resistance of cotton pests to pesticides in Central Asia and Azerbaijan at the beginning of the 90's. Entomology obozrenie,1996,75:3-15
    Syvanen M, Zhou Z, Wharton J, et al. Heterogeneity of the glutathione transferase genes encoding enzymes responsible for insecticide degradation in the housefly. Journal of Molecular Evolution, 1996(43):236-240
    Tabashnik B E, McGaughey W H. Resistance risk assessment for single and multiple insecticide:response of Indian meal moth(Lepidoptera:Pyralidae)to Bacillus thuringiensis. Journal Economic Entomology,1994,87(4):834-841
    Takao I, Naoki M, Ambrose J T, et al. Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee Apis mellifera. Crop Protection,2004(23):371-378
    Van Asperen K. A study of housefly esterase bymeans of a sensitive colorimetric method. J. Insect Physiology,1962, (8):401-406
    Villatte F, Auge D, Touton P, et al. Negative cross-insensitivity in insecticide-resistant cotton aphid Aphis gossypii Glover. Pesticide. Biochemistry. Physiology,1999(65):55-61
    Villatte F, Ziliani P. A high number of mutations in insect acetylcholinesterase may provide insecticide resistance. Pesticide Biochemistry Physiology,2000(67):95-102
    Wang K Y, Liu T X, Yu C H. Resistance of Aphis gossypii(Homoptera:Aphididae) to fenvalerate and imidacloprid and activities of detoxification enzymes on cotton and cucumber. J. Econ. Entomology, 2002,95(2):407-413
    Wang K Y, Guo Q L, Xia X M, et al. Resistance of Aphis gosspii(Homoptera:Aphididae)to selected insecticides on cotton from five cotton production regions in Shandong,China. Pestcide Science, 2007,32(4):372-378
    Wei S H, Clark A G Syvanen M. Identification and cloning of a key insecticide-metabolizing glutathione S-transferase (MdGST-6A) from a hyper insecticide-resistant strain of the housefly Musca domestica. Insect Biochemistry Molecular Biology,2001(31):1145-1153
    Wen Y C, Liu Z W, Bao H B,et al. Imidacloprid resistance and its mechanisms in field populations of brown plant hopper Nilaparvata lugens in China. Pest Biochemistry Molecular Biology,2009(94): 36-42
    Wen Z M, Scott J G Cross-resistance to imidacloprid in strains of German cockroach (Blattellla germanica) and house fly (Musca domestica). Pesticides. Science,1997(49):367-371
    Yao X M, Song F, Chen F J,et al. Amino acids within loops D, E and F of insect nicotinic acetylcholine receptor β subunits influence neonicotinoid selectivity. Insect Biochemistry Molecular Biology.2008,38:834-840
    Yao X M, Song F, Zhang Y X,et al. Nicotinic acetylcholine receptor β1 subunit from the brown plant hopper, Nilaparvata lugens:A-to-I RNA editing and its possible roles in neonicotinoid sensitivity. Insect Biochemistry Molecular Biology.2009, (39):348-354
    Zhang J, Zhang J, Yang M,et al. Genomics-based approaches to screening carboxylesterase-like genes potentially involved in malathion resistance in oriental migratory locust (Locusta migratoria manilensis). Pest Managagement Science,2011(67):183-190
    Zhang Y X, Liu S H, Gu J H,et al. Imidacloprid acts as an antagonist on insect nicotinic acetylcholine receptor containing the Y151M mutation. Neuroscience Letters,2008(446):97-100
    Zhao J Z, Bishop B A. Inheritance and synergism of resistance to imidacloprid in the Colorado potato beetle (Coleoptera:Chysomelidae). J Econ Entomology,2000,93(5):1508-1514
    Zhu F, Parthasarathya R, Bai H, et al. A brain-specific cytochrome P450 responsible for the majority of deltamethrin resistance in the QTC279 strain of Tribolium castaneum. Proc. Natl. Acad. Science. USA,2010(107):8557-8562
    Zhu Y C, Snodgrass G L, Chen M S. Enhanced esterase gene expression and activity in a malathion resistant strain of the tarnished plant bug, Lygus lineolaris. Insect Biochemistry Molecular Biology, 2004(34):1175-1186

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700