用户名: 密码: 验证码:
芳香族酮类和苄基氯代物的不对称电还原反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
手性现象在自然界中普遍存在。不同立体构型的对映异构体往往表现出不同甚至相反的性能。获得光学异构体纯手性化合物在生物学、化学、药学、农业或非线性光学材料行业都非常重要。寻找高对映选择性地获得异构体纯的手性化合物的有效方法一直是现代化学工作者的巨大挑战。不对称催化合成方法是获得对映异构体纯手性化合物中最具有经济效益的合成方法,同时也最具挑战。
     不对称催化领域催化剂主要有三类,金属络合物催化剂、生物催化剂和有机催化剂。金鸡钠生物碱是一类有机催化剂。21世纪初开始,有机催化尤其是金鸡钠生物碱催化在不对称研究领域迅速发展,现己被公认是学术界和工业界通用的有机合成方法。反应在廉价和环境友好的试剂和溶剂中即可完成,并有可能在化学工艺上进行大规模生产。金鸡钠生物碱催化不对称合成现已取得了卓越的成绩,越来越受到化学工作者的关注。钴Schiff碱配合物作为一类金属催化剂广泛应用于环氧化物和卤代物的催化还原研究领域。
     电化学技术是一门研究电子这一清洁试剂的技术,反应条件温和、安全。电化学反应中只需简单的控制电极电势即可精确的产生所需要的高能量的中间体。因此,电化学方法是一种有效的合成方法和技术,应用电化学技术进行不对称合成,获得光学纯的手性化合物具有重大意义。
     CO2与CO和光气不同,它是一种来源丰富、成本低、无毒、可再生的理想C1资源。然而,CO2具有很高的化学稳定性,寻找有效固定CO2为用途广泛、有经济竞争力化学品的方法一直备受人们的关注。电化学技术在常压条件下即可有效活化和还原CO2,是有效利用CO2的好方法。
     电化学中,电子自身不具备手性,所以通过电子转移不对称固定像CO2这样的小分子为具有光学活性的手性化合物,在理论上是不可能的。然而,若通过外力创造一个手性环境,则可实现电化学不对称合成。通过往体系中添加手性诱导剂的电化学不对称催化合成方法是合成手性化合物的有效方法之一。反应中,以价格相对便宜、丰富易得的非手性物质为底物,在少量手性诱导剂的诱导作用下,即可获得所需立体构型的手性化合物。虽然电化学不对称合成有效手性产物具有重大的理论意义和潜在的应用价值。但是,相比有机不对称合成,电化学不对称合成的相关报道非常少,尤其是不对称电羧化部分,除了本课题组外,国际上只有仅有的几例关于底物自身含有手性基团的不对称电羧化报道。
     应用电化学技术合成手性芳香醇或活化固定CO2为具有光学活性的芳香羟羧酸和羧酸具有易操作和条件温和等特点。利用绿色环保的Ag电极为工作电极,潜手性的苯乙酮为底物进行不对称电还原反应及利用电还原生成的手性[CoⅠ(salen)]-配合物为诱导剂不对称固定CO2和卤代物为具有光学活性的2-苯丙酸反应的研究尚无报道。因此,此研究具有重要的创新意义和很好的发展空间。
     本论文主要研究内容如下:
     (1)生物碱诱导的苯乙酮不对称电还原反应
     常压N2气氛下,一室型电解池中研究了潜手性苯乙酮在Ag电极上的不对称电化学还原反应。以金鸡钠生物碱辛可尼定(CD)为诱导剂,电还原苯乙酮可得到两种主要产物:具有光学活性的苯乙醇和无光学活性的二聚产物频哪醇。实验中研究了溶剂中乙腈/水的比例、乙腈/质子源中质子源种类、支持电解质、阴极材料、电流密度、诱导剂生物碱的种类对产物ee值和产率的影响。在最优电解条件下,可以得到ee值为21.6%、产率为3.6%的苯乙醇及产率为83.2%、外消旋/内消旋(dl/meso)比例为5.5的频哪醇。此外,应用循环伏安法研究了底物苯乙酮本身的电化学行为。最后,结合电解结果和苯乙酮的循环伏安行为,推测了生物碱诱导苯乙酮发生不对称电还原可能的反应机理。该工作首次在绿色环保的Ag电极上,避免了有毒有害Hg电极的使用,实现了金鸡钠生物碱诱导的潜手性苯乙酮的不对称电还原反应。为绿色化地应用电化学技术合成具有光学活性产物提供了一条新的途径。
     (2)生物碱诱导的潜手性芳香酮不对称电羧化反应
     一室型电解池中,通过生物碱的诱导并在辅助剂质子源的共同作用下,首次研究了C02环境下,潜手性芳香酮类:2-萘乙酮、6-甲氧基-2-萘乙酮、4-甲氧基-1-萘乙酮的不对称电羧化反应,得到了具有光学活性的羧化产物2-羟基-2-芳基丙酸。以2-萘乙酮为模型底物,研究了各种合成条件对目标羧化产物产率和ee值的影响,如:阴极材料、电流密度、诱导剂种类、苯酚/诱导剂比值、质子源种类、诱导剂量等。此外,在2-萘乙酮不对称电羧化反应的最优化反应条件下,考查了其他潜手性芳香酮的不对称电羧化反应。实验中所考察的芳香酮均能被相应转化为具有光学活性且产率为32.2%~41.3%、ee值为48.1%~48.6%的2-羟基-2-芳基丙酸。此外研究了模板底物2-萘乙酮在N2和CO2环境下的循环伏安行为。通过芳香酮的电解结果和2-萘乙酮的循环伏安行为推测了反应可能的机理。反应过程操作简单,耗时短,条件温和,实验中避免了摩尔当量的手性辅助剂的使用,在生物碱的诱导作用下,即可完成潜手性芳香酮的不对称电羧化反应。该工作为不对称电羧化固定CO2为具有光学活性的芳香羟羧酸提供了一条新途径。
     (3)手性[CoⅠ(salen)]-络合物诱导的1-氯-1-苯乙烷不对称电羧化
     一室型电解池中,CO2环境下,首次研究了在电还原生成的手性[CoⅠ(salen)]-配合物诱导作用下,1-氯-1-苯乙烷的不对称电羧化反应,得到了具有光学活性的相应羧化产物2-苯丙酸。为提高2-苯丙酸产率和ee值,研究了在恒电流和恒电位的电解方式下,各种合成条件对反应影响,如:电解温度、电极材料、电流密度、前诱导剂量、前诱导剂构型、电解电位、底物浓度、电解电量等。优化条件下,光学活性2-苯丙酸ee值可达83%,同时产率为37%。此外,为了研究反应的诱导机理,应用循环伏安法研究加入底物和通入CO2前后,前诱导剂CoⅡ-(R,R)(salen)的电化学行为。该工作为电化学不对称羧化合成手性芳香羧酸化合物开辟了一条新思路,同时也拓展了手性CoⅡ(salen)络合物在电化学不对称固定CO2上的应用。
Chirality is common in nature. Enantiomers with different configuration often exhibit different or even opposite properties. Chiral compounds with high optical purity are very important for the biological, chemical, pharmaceutical, agricultural and non-linear optical materials industry. Effective method for obtaining chiral compounds with high optical purity has always been a great challenge to the modern chemical workers. Asymmetric catalytic synthesis is the most economic method for obtaining chiral compounds with high optical purity, and also bears the most challenging.
     There are three main types of catalysts for asymmetric catalysis, such as metal complexes catalyst, biological catalyst and organic catalysts. Cinchona alkaloid is one of the organic catalysts. At the beginning of21st century, asymmetric organic catalytic reactions experienced rapid development especially in the reactions catalyzed by cinchona alkaloids, which have been recognized as a common method of organic synthesis in the fields of academic and industrial. The reactions can be completed in a cheap and environment-friendly reagent and solvent, moreover, the mass production in the chemical process could be realized. Asymmetric synthesis catalyzed by cinchona alkaloid has caused great concerns from chemists because of its remarkable achievement. Furthermore, as a kind of metal catalyst, cobalt Schiff base complexes are widely used in the field of catalytic reduction research of epoxides and halides.
     Electrochemical technology is a research dealing with a clean reagent, the electron, under mild and safe conditions. The required high energy intermediates can be generated only by controlling the electrode potential in the electrochemical reaction. Therefore, electrochemical method is an effective synthesis method and technique. In addition, the application of electrochemical technology for asymmetric synthesis is of great significance to the obtaining of chiral compounds with high optical pure.
     CO2, which is other than CO and phosgene, is an ideal Cl resources. It is a rich source, low cost, non-toxic, and recyclable. However, CO2is very stability, so far effective method of utilizing CO2into useful chemicals has been made much attentions. The electrochemical technology, which can activate and reduce CO2under ambient pressure, is an effective method for fixing CO2.
     The electron in the electrochemical is not chiral, so it is theoretically impossible to asymmetric transform small molecule like CO2into chiral compound only through simple electron transfer. However, if a chiral environment can be created via an external force, electrochemical asymmetric synthesis would be realized. One effective methods of synthesizing chiral compounds is the addition of inducer into the system. Chiral compound can be obtained with the achiral substrate, which is relatively cheap and abundant, in the presence of small amount of chiral inducer. There are great theoretical significance and potential application value in the electrochemical asymmetric synthesis. However, compared with organic asymmetric synthesis, there are relatively only a few reports on the electrochemical asymmetric synthesis, especially on the asymmetric electrocarboxylation. So far, only a few reports with its substrate containing chiral group on the asymmetric fixing of CO2into chiral compounds though electrochemical technique except for our group.
     Electrochemical technique affords a handy and mild way to obtain chiral aromatic alcohols, aromatic carboxylic acids, and carboxylic acids though asymmetric fixing CO2in the presence of inducer. The asymmetric electroreduction of prochiral acetophenone, carried out on green and environment-friendly electrode Ag, and the study of obtaining the chiral2-phenyl propionic acid from organic halide and CO2in the presence of the electrogenerated chiral [CoⅠ(salen)]-complex are particularly new all over the word. Therefore, there are great significance and good development space for the study.
     The main research contents of the thesis are as follows:
     (1) Alkaloid induced asymmetric electroreduction of acetophenone
     The asymmetric electroreduction of prochiral acetophenone, which was induced by cinchona alkaloid cinchonidine (CD) and carried out on Ag cathode in an undivided cell under atmospheric N2atmosphere condition, yields two main products the chiral phenylethanol and the dimerization yield pinacol with no optical rotation. The effect of various experiment conditions, such as the water in the solvent (MeCN/H2O), proton type in the solvent (MeCN/Proton), supporting electrolyte, cathode material, current density, and inducer type, on the yield and enantiomeric excesses (ee) of the product was studied. Phenylethanol in21.6%ee with3.6%yield and pinacol in83.2%yield with a5.5dl/meso ratio are obtained under the optimized conditions. In addition, the electrochemical behavior of acetophenone was studied by cyclic voltammetry. The possible reaction mechanism was proposed combined the cyclic voltammetric behavior of acetophenone with electrolytic results. This work achieves asymmetric electroreduction of prochiral acetophenone induced by cinchona alkaloids on green and environment-friendly Ag cathode for the first time, avoiding the use of toxic and harmful Hg electrode. It provides a new way for the synthesis of optically active product by electrochemical technique under green, environment-friendly, and mild condition.
     (2) Asymmetric electrocarboxylation of aromatic ketones with CO2induced by cinchona alkaloids
     The asymmetric electrocarboxylation of prochiral aromatic ketones, such as2-acetonaphthone,6-methoxy-2-acetyl naphthalene, and4-methoxy-l-acetonaphthone induced by cinchona alkaloids with the auxiliary inducer proton was studied for the first time in an undivided cell under atmospheric CO2atmosphere condition, yielding the corresponding optically active carboxylic products2-hydroxy-2-aryl propionic acids. Using2-acetyl naphthalene as the model substrate, the effect of various synthetic conditions, such as cathode material, current density, inducer, phenol/inducer ratio, proton source type, and inducer quantity, on the yield and enantiomeric excesses (ee) of the target carboxylation product was studied. In addition, electrocarboxylation of other prochiral aromatic ketones under the optimized reaction conditions of2-acetonaphthone was actualized. The studied aromatic ketones could be converted into optically active product2-hydroxy-2-aryl propionic acids in32.2%~-41.3%yield with48.1%~48.6%ee. In addition, the electrochemical behavior of the model substrate2-acetonaphthone was also investigated by cyclic voltammetry in the absence and presence of atmonpheric CO2. The possible reaction mechanism was proposed combined the cyclic voltammetric behavior of2-acetonaphthone with electrolytic results of aromatic ketones. There are several advantages, such as simple operation, short reaction time and mild conditions, in the reaction. The employing of cinchona alkaloids achieves the asymmetric electrocarboxylation of prochiral aromatic ketones avoiding the use of stoichiometric quantities of optically active chiral auxiliary reagent. This work provides a new way for asymmetric electrochemical fixing CO2into optically active aromatic carboxylic acid.
     (3) Asymmetric electrocarboxylation of1-phenylethyl chloride induced by electrogenerated chiral [CoⅠ(salen)]-complexes
     The asymmetric electrocarboxylation of1-phenylethyl chloride induced by electrogenerated chiral [CoⅠsalen)]-complexes was studied for the first time under atmospheric CO2atmosphere condition in an undivided cell, yielding the corresponding optically active2-phenylpropionic acid. In order to improve the yield and ee of2-phenylpropionic acid, the effect of various synthetic conditions, such as electrolytic temperature, cathode material, current density, preinducer quantity, inducer type, electrolysis potential, substrate concentration, and charge passed, on the reaction was studied under galvanostatic and potentiostatic condition. Under the optimized condition, the optically active2-phenylpropionic acid can be obtained in83%ee with37%yield. In addition, in order to study the inducing mechanism of the reduction, cyclic voltammetry was carried out to investigated the electrochemical behavior of the preinducer Con-(R,R)(salen) in the absence and presence of1-phenylethyl chloride and atmonpheric CO2. This work opens up a new way for the asymmetry electrosynthesis of chiral aromatic carboxylic acid compound, extending the application of the chiral Con(salen) complexes in the asymmetry electrochemical fixing of CO2.
引文
[1]H.C. Kolb, K.B. Sharpless, In: M. Beller, C. Bolm (eds) Transition metals for organic synthesis, vol 2. Wiley-VCH, Weinheim, Germany, 1998, pp 243-260.
    [2]Ojima (ed) Catalytic asymmetric synthesis. Wiley-VCH, New York, 2000.
    [3]H. Wynberg, Top. Stereochem., 16 (1986) 87.
    [4]A.E. Taggi, A.M. Hafez, H. Wack, B. Young, W. J. Drury, Ⅲ, J. Am. Chem. Soc., 122 (2000)7831.
    [5]Y. Chen, S.K. Tian, L. Deng, J. Am. Chem. Soc., 122 (2000) 9542.
    [6]T.P. Yoon, E.N. Jacobsen, Science, 299 (2003) 1691.
    [7]Schwalm, J. Weber, B. Minder, A. Baiker, Int. J. Quantum. Chem.52 (1994) 191.
    [8]P. Wilairatana, S. Krudsood, S. Treeprasertsuk, K. Chalermrut, S. Looareesuwan, Arch. Med. Res., 33 (2002) 416.
    [9]D.M. Aviado, H. Salem, J. Clin. Pharmacol.,15 (1975) 477.
    [10]P. M. Dewick. Medicinal natural products: a biosynthetic approach. Wiley, Chichester, 1997.
    [11]H.M.R. Hoffmann, J. Frackenpohl, Eur. J. Org. Chem., 15 (2004) 4293.
    [12]R. McCague, A. Smith, Innov. Pharm. Technol.,99 (1999) 100.
    [13]E.R. Francotte, J. Chromatogr. A, 906 (2001) 379.
    [14]K. Kacprzak, J. Gawronski, Synthesis, 7 (2001) 961.
    [15]A. Baiker, J. Mol. Catal. A, 115 (1997) 473.
    [16]T.P. Yoon, E.N. Jacobsen, Science, 299 (2003) 1691.
    [17]G Bredig, W.S. Fiske, Biochem. Z. (1912) 7.
    [18](a) H. Pracejus, Justus Liebigs Ann. Chem. 634 (1960) 9; (b) H. Pracejus, H. Matje, J. Prakt. Chem.24 (1964) 195.
    [19]U.H. Dolling, P. Davis, E. J. J. Grabowski, J. Am. Chem. Soc., 106 (1984) 446.
    [20]D. L. Hughes, U.-H. Dolling, K. M. Ryan, E. F. Schoenewaldt, E. J. J. Grabowski, J. Org. Chem., 52 (1987) 4745.
    [21]A. Bhattacharya, U.-H. Dolling, E.J.J. Grabowaki, S. Karady, K.M. Ryan, L.M. Weinstock, Angew. Chem., 98 (1986) 442; Angew, Chem, Int, Ed, Engl., 25 (1986) 476.
    [22]T.B.K. Lee, G. S.K. Wong, J. Org. Chem., 56 (1991) 872.
    [23]S. Arai, M. Oku, T. Ishida, T. Shioiri, Tetrahedron Lett., 40 (1999) 6785.
    [24]E.J. Park, M.H. Kim, D.Y. Kim, J. Org. Chem., 69 (2004) 6897.
    [25]T.A. Moss, D.R. Fenwick, D.J. Dixon, J. Am. Chem. Soc., 130 (2008) 10076.
    [26]M.W. Paixao, M. Nielsen, C.B. Jacobsen, K.A. Jorgensen, Org. Biomol. Chem.,6 (2008) 3467.
    [27]H.J. Yao, M.M. Lian, Z. Li, Y.K. Wang, Q.W. Meng, J. Org, Chem.,77 (2012) 9601.
    [28]B.M. Wang, F.-H. Wu, Y. Wang, X.F. Liu, L. Deng, J. Am. Chem, Soc., 129 (2007) 768.
    [29]A.E. Nibbs, A.L. Baize, R.M. Herter, K.A. Scheidt, Org. Lett. 11 (2009) 4010.
    [30](a) M.J. O'Donnell, W.D. Bennett, S. Wu, J. Am. Chem. Soc., 111 (1989) 4507. (c) K. B. Lipkowitz, M.W. Cavanaugh, B. Baker, M.J. O'Donnell, J. Org. Chem., 56 (1991) 5181. (d) M.J. O'Donnell, I.A. Esikova, D.F. Shullenberger, S. Wu, In Phase-Transfer Catalysis; ACS Symposiu Series 659, M.E. Halpern, Ed.; American Chemical Society: Washington, DC, 1997; Chapter 10. (e) M. J. O'Donnell, W. D. Bennett, W.A. Bruder, W.N. Jacobsen, K. Knuth, B. LeClef, R.L. Polt, F.G Boldwell, S.R. Mrozack, T.A. Cripe, J. Am. Chem. Soc., 110 (1988) 8520. (f) M. J. O'Donnell, S. Wu, I. A. Esikova, A. Mi, U.S. Patent, 5,554,753,1996; Chem. Abstr., 123 (1995) 9924. (g) M. J. O'Donnell, Aldrichim. Acta, 34(2001)3.
    [31](a) E.J. Corey, F. Xu, M.C. Noe, J. Am. Chem. Soc., 119 (1997) 12414. (b) E. J. Corey, M.C. Noe, Xu, F. Tetrahedron Lett., 39 (1998) 5347.
    [32]B. Lygo, P.G. Wainwright, Tetrahedron Lett., 38 (1997) 8595. (b) B. Lygo, J. Crosby, J.A. Peterson, Tetrahedron Lett., 40 (1999) 1385. (c) B. Lygo, Tetrahedron Lett., 40 (1999) 1389. (d) B. Lygo, J. Crosby, T.R. Lowdon, P.G. Wainwright, Tetrahedron, 57 (2001) 2391. (e) B. Lygo, J.Crosby, T.R. Lowdon, J.A. Peterson, P.G. Wainwright, Tetrahedron, 57 (2001) 2403.
    [33](a) S.S. Jew, B.S. Jeong, M.S. Yoo, H. Huh, H.G. Park, Chem. Commun. (2001)1244. (b) H.G. Park, B.S. Jeong, M.S. Yoo, M.K. Park, H. Huh, S.S. Jew, Tetrahedron Lett., 42 (2001) 4645. (c) H.G. Park, B.S. Jeong, M.S. Yoo, J.H. Lee, M.K. Park, Y.J. Lee, M.J. Kim, S.S. Jew, Angew. Chem., Int. Ed., 41 (2002) 3036.
    [34]E.J. Corey, Y. Bo, J. Busch-Petersen, J. Am. Chem. Soc., 120 (1998) 13000.
    [35]N. Shibata, E. Suzuki, Y. Takeuchi, J. Am. Chem. Soc., 122 (2000) 10728.
    [36]N. Shibata, E. Suzuki, T. Asahi, M. Shiro, J. Am. Chem. Soc., 123 (2001) 7001.
    [37]D. Cahard, C. Audouard, J.C. Plaquevent, N. Roques, Org. Lett., 2 (2000) 3699.
    [38](a) H. Wack, A.E. Taggi, A.M. Hafez, W.J. Drury, Ⅲ, T. Lectka, J. Am. Chem. Soc., 123 (2001) 1531. (b) S. France, H. Wack, A.E. Taggi, A.M. Hafez, T.R. Wagerle, M.M. Shah, C.L. Dusich, T. Lectka, J. Am. Chem. Soc., 126 (2004) 4245.
    [39]N. Krause, A. Hoffmann-Roder, Synthesis, (2001) 171. (b) M.P. Sibi, S. Manyem, Tetrahedron, 56 (2000) 8033.
    [40]H. Wynberg, R. Helder, Tetrahedron Lett., 46 (1975) 4057.
    [41]H. Wynberg, Topics Stereochem.,16 (1986) 87.
    [42]K. Hermann, H. Wrnberg, J. Org. Chem.,44 (1979) 2238.
    [43]R. Alvarez, M.A. Hordin, G Cave, J. D-Angelo, P. Chaminade, Tetrahedron Lett., 40(1999)7091.
    [44](a) N. Kobayashi, K. Iwai, J. Am. Chem. Soc., 100 (1978) 7071. (b) M. Inagaki, J. Hiratake, Y. Yamamoto, J. Oda, Bull. Chem. Soc. Jpn., 60 (1987) 4021.
    [45]B. Langstrom, G Bergson, Acta Chem. Scand., 27 (1973) 3118.
    [46]F.Y. Zhang, E.J. Corey, Org. Lett., 2 (2000) 1097.
    [47]E.J. Corey, M.C. Noe, F. Xu, Tetrahedron Lett., 39 (1998) 5347.
    [48]F.Y. Zhang, E.J. Corey, Org. Lett., 3 (2001) 639.
    [49]T. Perrard, J.C. Plaquevent, J.R. Desmurs, D. Hebrault, Org. Lett., 2 (2000) 2959.
    [50]B.M. Trost, C.D. Shuey, F. Dininno, S.S. Mcelvain, J. Am. Chem. Soc. 101 (1979) 1284.
    [51]W.T. Hoeve, H. Wynberg., J. Org. Chem.,44 (1979) 1508.
    [52]T. Ishikawa, Y. Oku, T. Tanaka, T. Kumamoto, Tetrahedron Lett., 40 (1999) 3777.
    [53]T. Tanaka, T. Kumamoto, T. Ishikawa, Tetrahedron: Asymmetry, 11 (2000) 4633.
    [54]A. Merschaert, P. Delbeke, D. Daloze, G Dive, Tetrahedron Lett., 45 (2004) 4697.
    [55](a) GI. Georg (Ed.), The Organic Chemistry of β-Lactams, 1993, VCH Publications, New York; (b) N.D. Kimpe in: Comprehensive Heterocyclic Chemistry Ⅱ (Eds.:A.R. Katritzky, C.W. Rees, E.F.V. Scriven, A. Padwa), Vol. 1B, 1996, Pergamon, Oxford, pp. 507f.
    [56]A.E. Taggi, A.M. Hafez, H. Wack, B. Young, W.J. Drury, Ⅲ, T. Lectak, J. Am, Chem. Soc., 122(2000)7831.
    [57]A.E. Taggi, A.M. Hafez, H. Wack, B. Young, D. Ferraris, T. Lectka, J. Am. Chem. Soc., 124 (2002) 6626.
    [58]M.H. Shah, S. France, T. Lectka, Synlett, (2003) 1937.
    [59]A.E. Taggi, H. Wack, A.M. Hafez, S. France, T. Lectka, Org. Lett., 4 (2002) 627.
    [60]A.M. Hafez, A.E. Taggi, H. Wack, J. Esterbrook, T. Lectka, Org. Lett., 3 (2001) 2049.
    [61]S. France, H. Wack, A.M. Hafez, A.E. Taggi, D.R. Witsil, T. Lectka, Org. Lett.,4 (2002)1603.
    [62]T. Dudding, A.M. Hafez, A.E. Taggi, T.R. Wagerle, T. Lectka., Org. Lett., 4 (2002) 87.
    [63]A.M. Hafez, T. Dudding, T.R. Wagerle, M.H. Shah, A.E. Taggi, T. Lectka, J. Org. Chem., 68(2003)5819.
    [64](a) M. North, Tetrahedron: Asymmetry, 14 (2003) 147; (b) M. North, Synlett, (1993) 807.
    [65]L. Yet, Angew. Chem.113 (2001) 900; Angew. Chem. Int. Ed, Engl.40 (2001) 875.
    [66]D. Enders, J.P. Shilvock, Chem. Soc. Rev., 29 (2000) 359.
    [67]J.M. Brumel, I.P. Holmes, Angew. Chem., 116 (2004) 2810; Angew. Chem. Int. Ed., 43 (2004) 2752.
    [68]G. Bredig, W.S. Fiske, Biochem. Z., (1912) 7.
    [69]G. Bredig, M. Minaeff, Biochem. Z., 249 (1932) 241.
    [70]S.K. Tian, L. Deng, J. Am. Chem. Soc., 123 (2001) 6195
    [71]S.K. Tian, R. Hong, L. Deng, J. Am. Chem. Soc., 125 (2003) 9900.
    [72]A. Ando, T. Miura, T. Tatematsu, T. Shioiri, Tetrahedron Lett., 34 (1993) 1507.
    [73]T. Shioiri, A. Bohsako, A. Ando, Heterocycles 42 (1996) 93.
    [74]C.M. Gasparski, M.J. Miller, Tetrahedron, 47 (1991) 5367.
    [75]M. Horikawa, J.B. Petersen, E.J. Corey, Tetrahedron Lett., 40 (1999) 3843.
    [76]A. Ando, T. Miura, T. Tatematsu, T. Shioiri, Tetrahedron Lett., 34 (1993) 1507.
    [77]G.S. Cortez, R.L. Tennyson, D. Romo, J. Am. Chem. Soc.,123 (2001) 7945.
    [78]G.S. Cortez, S.H. Oh, D. Romo, Synthesis, (2001) 1731.
    [79](a) H.W. Yang, D. Romo, Tetrahedron,55 (1999) 6403. (b) S.G Nelson, Z. Wan, Org. Lett., 2 (2000) 1883.
    [80]H. Wynberg, E.GJ. Staring, J. Am. Chem. Soc., 104 (1982) 166.
    [81](a) R. Tennyson, D. Romo, J. Org. Chem.,65 (2000) 7248. (b) C. Zhu, X. Shen, S.G Nelson, J. Am. Chem. Soc., 126 (2004) 5352.
    [82]K. Iseki, T. Nagai, Y. Kobayashi, Tetrahedron Lett., 35 (1994) 3137.
    [83]H. Wynberg, A.A. Smaardijk, Tetrahedron Lett., 24 (1983) 5899.
    [84]A.A. Smaardijk, S. Noorda, F.V. Bolhuis, H. Wynberg, Tetrahedron Lett., 26 (1985)493.
    [85]E.J. Corey, Angew. Chem., 114 (2002) 1724; Angew. Chem. Int. Ed., 41 (2002) 1650.
    [86]O. Riant, H.B. Kagan, Tetrahedron Lett., 30 (1989) 7403.
    [87]H. Pracejus, Liebigs Ann. Chem., 634 (1960) 9.
    [88]H. Pracejus, F.W. Wilcke, K. Hanemann, J. Prakt. Chem., 319 (1977) 219.
    [89]A. Kumar, R.V. Salunkhe, R.A. Rane, S.Y. Dike, J. Chem. Soc., Chem. Commun., (1991)485.
    [90]R. Henze, J. Duchamel, M.C. Lasne, Tetrahedron: Asymmetry,8 (1997) 3363.
    [91]S. Colonna, R. Fornasier, J. Chem. Soc., Perkin Trans. 1, (1978) 371.
    [92]M.D. Drew, N.J. Lawrence, W. Watson, S.A. Bowles, Tetrahedron Lett.,38 (1997) 5857.
    [93]T. Varga, K. Felfoldi, P. Forgo, M. Bartok, J. Mol. Catal. A, 216 (2004) 181.
    [94]H. Brunner, W. Zettlemeyer, Handbook of Enantioselective Catalysis with TransitionMetal Compounds, Wiley-VCH,Weinheim, 1993; R. Noyori, Asymmetric Catalysis in Organic Synthesis, Wiley, New York, 1994.
    [95](a) M. Heitbaum, F. Glorius and I. Escher, Angew. Chem., Int. Ed., 45 (2006) 4732; (b) N. Erathodiyil, S. Ooi, A.M. Seayad, Y. Han, S.S. Lee and J.Y. Ying, Chem. Eur. J., 14 (2008) 3118.
    [96]H.J. Federsel, Nat. Rev. Drug Discovery,4 (2005) 685.
    [97]X.H. Li, C. Li, Catal. Lett. 77 (2001) 251.
    [98]E. Toukoniitty, D.Y. Murzin, Catal. Lett., 93 (2004) 171.
    [99]M. Bartok, K. Balazsik, T. Bartok, Z. Kele, Catal. Lett.87 (2003) 235.
    [100]M. Bartok, K. Balazsik, F. Notheisz, Catal. Lett.77 (2002) 363.
    [101](a) M. von Arx, T. Mallat, A. Baiker, Top. Catal., 19 (2002) 75; (b) G Vayner, K.N. Houk, Y.K. Sun, J. Am. Chem. Soc., 126 (2004) 199.
    [102]A. Baiker, H. U. Blaser in Handbook of Heterogeneous Catalysis, Vol.5 (Eds.:G Ertl, H. Knzinger, J. Weitkamp), VCH, Weinheim, 1997, pp.2422± 2436.
    [103]G J. Hutchings, Chem. Commun. (1999) 301.
    [104]T. Mallat, A. Baiker in Fine Chemicals through Heterogeneous Catalysis (Eds.:R. A. Sheldon, H. V. Bekkum), VCH, Weinheim, 2001, pp.449±460.
    [105]G. V. Smith, F. Notheisz in Heterogeneous Catalysis in Organic Chemistry, Academic Press, San Diego, 1999.
    [106]P. B. Wells, K. E. Simons, J. A. Slipszenko, S. P. Griffiths, D. F. Ewing, J. Mol. Catal. A., 146 (1999) 159.
    [107]S. Niwa, S. Imai, Y. Orito, J. Chem. Soc. Jpn., (1982) 137.
    [108]H.U. Blaser, H.P. Jalett, J. Wiehl, J. Mol. Catal., 68 (1991) 215.
    [109]A. Torok, K. Balazsik, G Szollosi, K. Felfoldi, M. Bartok, Chirality,11 (1999) 470.
    [110]H.U. Blaser, H.P. Jalett, J. Wiehl, J. Mol. Catal.,68 (1991) 215.
    [111]A. Minder, T. Mallat, P. Skrabal, A. Baiker, Catal. Lett., 29 (1994) 115.
    [112]O. Schwalm, J. Weber, J. Margitfalvi, A. Baiker, J. Mol. Struct., 297(1993) 285.
    [113]Schwalm, B. Minder, J.Weber, A. Baiker, Catal. Lett., 23 (1994) 271.
    [114]A. Baiker, J. Mol. Catal. A Chem., 115 (1997) 473.
    [115]A. Baiker, J. Mol. Catal. A Chem., 163 (2000) 205.
    [116]M. von Arx, T. Burgi, T. Mallat, A. Baiker, Chem. Eur. J., 8 (2002) 1430.
    [117]G. Szollosi, S. Cserenyi, K. Balazsik, F. Fulop, M. Bartok, J. Mol. Catal. A: Chem., 305 (2009) 155.
    [118]N. Erathodiyil, H. Gu, H. Shao, J. Jiang, J.Y. Ying, Green Chem.,13 (2011) 3070.
    [119]K. Borszeky, H. Burgi, Z. Zhaohui, T. Mallat, A. Baiker, J. Catal., 187 (1999) 160.
    [120]A.J. Fry, In Synthetic Organic Electrochemistry, 2nd ed.; John Wiley & Sons: New York, 1989; pp 1-3.
    [121]A. Amatore, In Organic Electrochemistry; H. Lund, O. Hammerich, Eds.; Marcel Dekker, Inc.:New York, 2001; p 53.
    [122]N. Schoo, H.J. Schafer, Liebigs Ann. Chem., (1993) 601.
    [123]L. Homer, D. Degner, Tetrahedron Lett., (1968) 5889.
    [124]E. Kariv, H.A. Terni, E. Gileadi, J. Electrochem. Soc., 120 (1973) 639.
    [125]E. Kariv, H.A. Terni, E. Gileadi, Electrochimica Acta, 18 (1973) 633.
    [126]J. Kopilov, E. Kariv, L.L. Miller, J. Am. Chem. Soc., 99 (1977) 3450.
    [127]M. Vago, F.J. Williams, E.J. Calvo, Electrochem. Commun. 9 (2007) 2725.
    [128]A.K. Yadav, M. Manju, P.R. Chhinpa, Tetrahedron: Asymmetry, 14 (2003) 1079.
    [129]K. Zhang, H. Wang, S.F. Zhao, D.F. Niu, J.X. Lu, J. Electroanal. Chem.,630 (2009) 35.
    [130]S.F. Zhao, M.X. Zhu, K. Zhang, H. Wang, J.X. Lu, Tetrahedron Lett., 52 (2011)2702.
    [131]B.L. Chen, Y. Xiao, X.M. Xu, H.P. Yang, H. Wang, J.X. Lu, Electrochim. Acta 107 (2013) 320.
    [132]B.L. Chen, Z.Y. Tu, H.W. Zhu, W.W. Sun, H. Wang, J.X. Lu, Electrochim. Acta 116 (2014) 475.
    [133](a) T. Sakakura, J.C. Choi, H. Yasuda, Chem. Rev. 2007,107,2365; (b) J. Louie, Curr. Org. Chem.2005,9,605; (c) M. Aresta, A.Dibenedettob, Dalton Trans. 2007,2975.
    [134](a) Silvestri, G.; Gambino, S.; Filardo, G.;Gulotta, A. Angew. Chem., Int. Ed. Engl.1984,23,979; (b) Silvestri, G.; Gambino, S.; Filardo, G. Acta Chem. Scand. 1991,45,987.
    [135](a) Sock, O.; Troupel, M.; Perichon, J. Tetrahedron Lett. 1985,26,1509; (b) Chaussard, J.; Folest, J. C.; Nedelec, J. Y.; Perichon, J.; Sibille, S.; Troupel, M. Synthesis 1990, 369.
    [136]A.S.C. Chan, T.T. Huang, J.H. Wagenknecht, R.E. Miller, J. Org. Chem.60 (1995) 742.
    [137]A.S.C. Chan, T.T. Huang, J.H. Wagenknecht, R.E. Miller, J. Org. Chem.60 (1995) 7074.
    [138]J.H. Wagenknecht, U.S. PAT.4,582,577(1986); Chem. Abs. 105:050861. G. Silvestri, S. Gambino, G. Filardo, Tetrahedron Lett. 27 (1986) 3429. Y. Ikeda, E. Manda, Bull. Chem. Soc. Jpn. 58 (1985) 1723.
    [139]A.K. Datta, P.A. Marron, C.J.H. King, J.H. Wagenknecht, J. Appl. Electrochem. 28 (1998) 569.
    [140]A.A. Isse, A. Galia, C. Belfiore, G. Silvestri, A. Gennaro, J. Electroanal. Chem. 526 (2002) 41.
    [141]S.F. Zhao, H. Wang, Y.C. Lan, X. Liu, J.X. Lu, J. Zhang, J. Electroanal. Chem. 664 (2012) 105.
    [142]张凯,吴腊霞,胡磊磊,丁小燕,王欢,陆嘉星,高等学校化学学报,31(2010)1410.
    [143]O. Scialdone, A. Galia, C. La Rocca, G. Filardo, Electrochim. Acta 50 (2005) 3231.
    [144]O. Scialdone, C. Amatore, A. Galia, G. Filardo, J. Electroanal. Chem. 592 (2006) 163.
    [145]A.A. Isse, A. Gennaro, Collect. Czech. Chem. Commun. 68 (2003) 1379.
    [146]Peters, D. G. In Organic Electrochemistry, 4th ed.; Lund, H., Hammerich, O., Eds.; Marcel Dekker: New York, 2001; pp 341-377.
    [147]G. Silvestri, in: M. Aresta, G. Forti (Eds.), Carbon Dioxide as a Source of Carbon: Biochemical and Chemical Uses, NATO ASI Series C, vol.206, Reidel, Dordrecht, 1987, p.339.
    [148]D.A. Tyssee, J.H. Wagenknecht, M.M. Baizer, J.L. Chruma, Tetrahedron Lett.47 (1972) 4809.
    [149]S. Wawzonek, R.C. Duty, J.H. Wagenknecht, J. Electrochem. Soc.111 (1964) 74.
    [150]J.H. Wagenknecht, J. Electroanal. Chem. 52 (1974) 489.
    [151]M.M. Baizer, J.L. Chruma, J. Org. Chem. 37 (1972) 1951.
    [152]AA. Isse, A. Gennaro, J. Electrochem. Soc. 149 (2002) D113.
    [153]G. Silvestri, S. Gambion, G. Filardo, A. Gulotta, Angew. Chem., Int. Ed. Engl. 23 (1984) 979.
    [154]D.F. Niu, L.P. Xiao, A.J. Zhang, G.R. Zhang, Q.Y. Tan, J.X. Lu, Tetrahedron 64(2008)10517.
    [155]D.F. Niu, J.B. Zhang, K. Zhang, T. Xue, J.X. Lu, Chin. J. Chem., 27 (2009) 1041.
    [156]Y.C. Lan, H. Wang, L.X. Wu, S.F. Zhao, Y.Q. Gu, J.X. Lu, J. Electroanal. Chem.664 (2012) 33.
    [157]H. Wang, X.M. Xu, Y.C. Lan, H.M. Wang, J.X. Lu, Tetrahedron 70 (2014) 1140.
    [158]A.A. Isse, A. Gennaro, Chem. Commun. (2002) 2798.
    [159]O. Scialdone, A. Galia, G. Errante, A.A. Isse, A. Gennaro, G. Filardo, Electrochim. Acta 53 (2008) 2514.
    [160]O. Scialdone, A. Galia, G. Filardo, A. A. Isse, A. Gennaro, Electrochim. Acta 54 (2008) 634.
    [161]J. Damodar, S. K. Mohan, S. K. K. Lateef, S. J. Reddy, Synth. Commun. 35 (2005)1143.
    [162]W.H. Chung, P. Guo, K.Y. Wong, C.P. Lau, J. Electroanal. Chem. 486 (2000) 32.
    [163]P.L. Fabre, D.C. Chen, O. Reynes, N. Chouini-Lalanne, V. Sartor, J. Electroanal. Chem. 711 (2013) 25.
    [164]D.C. Chen, P.. Fabrea, O. Reynes, Electrochim. Acta 56 (2011) 8603.
    [165]P.L. Fabre, O. Reynes, Electrochem. Commun.12 (2010) 1360.
    [166]A. A. Isse, M. G. Ferlin, A. Gennaro, J. Electroanal. Chem. 541 (2003) 93.
    [167]A. Gennaro, A. A. Isse, F. Maran, J. Electroanal. Chem. 507 (2001) 124.
    [168]J. Damodar, S.R.K. Mohan, S.R.J. Reddy, Electrochem. Commun. 3 (2001) 762.
    [169]D. Saha, T. Maity, R. Bera, S. Koner, Polyhedron 56 (2013) 230.
    [170]S. Hosokawa, J.I. Ito, H. Nishiyama, Organometal.32 (2013) 3980.
    [171]A. Wang, Y.K. Wang, J. Jia, L.X. Feng, C.X. Zhang, L.L. Liu, J. Phys. Chem. A 117 (2013)5061.
    [172]M.D. Peterson, R.J. Holbrook, T.J. Meade, E.A. Weiss, J. Am. Chem. Soc. 135(2013)13162.
    [173]S.A.H. Elbohy, Int. J. Electrochem. Sci., 8 (2013) 12387.
    [174]C. Cappelli, C. Duce, M. Formica, V. Fusi, L. Ghezzi, L. Giorgi, M. Micheloni, P. Paoli, P. Rossi, M.R. Tine, Inorganica Chimica Acta xxx (2014) xxx In Progress.
    [175]T. Pugh, S.D. Cosham, J.A. Hamilton, A.J. Kingsley, A.L. Johnson, Inorg. Chem.52 (2013) 13719.
    [176]J. Burschka, F. Kessler, M.K. Nazeeruddin, M. Gratzel, Chem. Mater. 25 (2013)2986.
    [177]R. Rao, K.R. Reddy, K.N. Mahendra, Asian J. Biochem. Pharm. Res. 3 (2013) 130.
    [178](a) D.J. Darensbourg, M.W.C. Holtcamp, Chem. Rev. 153 (1996) 155. (b) G.W. Coates, D.R. Moore, Angew. Chem., Int. Ed. 43 (2004) 6618. (c) H. Sugimoto, S. J. Inoue, Polym. Sci., Part A: Polym. Chem 42 (2004) 5561. (d) D.J. Darensbourg, R. M. Mackiewicz, A. L. Phelps, D.R. Billodeaux, Acc. Chem. Res. 37 (2004) 836. (e) M.H. Chisholm, Z.J. Zhou, Mater. Chem. 14 (2004) 3081. (f) D.J. Darensbourg, Chem. Rev.107 (2007) 2388. (g) S. Klaus, M.W. Lehnmeier, C.E. Anderson, B.C. Rieger, Chem. Rev. 255 (2011) 1460. (h) M.R. Kember, A. Buchard, C.K. Williams, Chem. Commun. 47 (2011) 141. (i) X.B. Lu, D.J. Darensbourg, Chem. Soc. Rev. 41 (2012) 1462. (j) D.J. Darensbourg, S.J. Wilson, Green Chem. 45 (2012) 6781.
    [179]D.J. Darensbourg, S.J. Wilson, J. Am. Chem. Soc. 133 (2011) 18610.
    [180]D.J. Darensbourg, W.C. Chung, S J. Wilson, ACS Catal.3 (2013) 3050.
    [181]X.B. Lu, W.M. Ren, G.P. Wu, Acc. Chem. Res. 45 (2012) 1721.
    [182]G.P. Wu, P.X. Xu, Y.P. Zu, W.M. Ren, X.B. Lu, J. Polym. Sci., Part A: Polym. Chem. 51 (2013) 874.
    [183]J. Liu, W.M. Ren, Y. Liu, X.B. Lu, Macromolecules 46 (2013) 1343.
    [184]G.N. Schrauzer, E. Deutsch, J. Am. Chem. Soc. 91 (1969) 3341.
    [185]W. M. Coleman, L.T. Taylor, J. Am. Chem. Soc., 93 (1971) 5446.
    [186]王欢,方慧珏,林美玉,陆嘉星,化学学报,65(2007)765.
    [187]D.L. Zhou, J.X. Gao, J.F. Rusling, J. Am. Chem. Soc. 117 (1995) 1127.
    [188]P. Gomes, H. Fillon, C. Gosmini, E. Labbe, J. Perichon, Tetrahedron 58 (2002) 8417.
    [189]G.B. Maiya, B.C. Han, K.M. Kadish, Langmuir 5 (1989) 645.
    [190]A.A. Isse, A. Gennaro, E. Vianello, J. Electroanal. Chem.444 (1998) 241.
    [191]C.A. Bessel, D.R. Rolison, J. Am. Chem. Soc. 119 (1997) 12673.
    [192]A.A. Isse, A. Gennaro, E. Vianello, J. Chem. Soc., Dalton Trans. (1996) 1613.
    [193]A.A. Isse, A. Gennaro, E. Vianello, J. Chem. Soc. Dalton Trans. (1993) 2091.
    [194]A.J. Fry, U.N. Sirisoma, J. Org. Chem. 58 (1993) 4919.
    [195]J.C. Folest, J.M. Duprilot, J. Perichon, Tetrahedron Lett. 26 (1985) 2633.
    [196]S. Skljarevski, A.A. Peverly, D.G. Peters, J. Electroanal. Chem. 661 (2011) 39.
    [197]D.D. Ford, L.P.C. Nielsen, S.J. Zuend, C.B. Musgrave, E.N. Jacobsen, J. Am. Chem. Soc.135 (2013) 15595.
    [198]R.E. Key, K. Venkatasubbaiah, C.W. Jones, J. Mol. Catal. A: Chem. 366 (2013) 1.
    [199]L.P.C. Nielsen, S.J. Zuend, D.D. Ford, E.N. Jacobsen, J. Org. Chem. 77 (2012)2486.
    [200]W.M. Ren, Y.M. Wang, R. Zhang, J.Y. Jiang, X.B. Lu, J. Org. Chem.78 (2013)4801.
    [201]M. Kumar, R.I. Kureshy, A.K. Shah, A. Das, N.H. Khan, S.H.R. Abdi, H.C. Bajaj, J. Org. Chem. 78 (2013) 9076.
    [202]G.P. Wu, W.M. Ren, Y. Luo, B. Li, W.Z. Zhang, X.B. Lu, J. Am. Chem. Soc. 134 (2012)5682.
    [203]D.J. Darensbourg, S.J. Wilson, Macromolecules 46 (2013) 5929.
    [204]G.P. Wu, P.X. Xu, X.B. Lu, Y.P. Zu, S.H. Wei, W.M. Ren, D.J. Darensbourg, Macromolecules 46 (2013) 2128.
    [205]W.M. Ren, G.P. Wu, F. Lin, J.Y. Jiang, C. Liu, Y. Luo, X.B. Lu, Chem. Sci., 3(2012) 2094.
    [206]J.A. Kalow, A.G. Doyle, J. Am. Chem. Soc.133 (2011) 16001.
    [1]G. Blaschke, H.P. Kraft, H. Markgraf, Chem. Ber., 113 (1980) 2318.
    [2]N. Schoo, H.J. Schafer, Liebigs Ann. Chem., 1993 (1993) 601.
    [3]Y. Kawanami, K. Hoshino, W. Tsunoi, Tetrahedron: Asymmetry, 22 (2011) 1464.
    [4]T.D. Nixon, M.K. Whittle, J.M.J. Williams, Tetrahedron Lett., 52 (2011)6652.
    [5]O. Prakash, P. Singh, G. Mukherjee, A.K. Singh, Organomet., 31 (2012) 3379.
    [6]W.N.O. Wylie, J. Alan, H.M. Robert, Organomet., 31 (2012)2137.
    [7]K.D. Huynh, H. Ibrahim, E. Kolodziej, M. Toffano, V.T. Giang, New J. Chem., 35(2011)2622.
    [8]S.W. Wei, R. Messerer, S.B. Tsogoeva, Chem. Eur. J., 17 (2011) 14380.
    [9]R. Boshra, A. Doshi, F. Jakle, Angew. Chem. Int. Ed. Engl., 47(2008) 1134.
    [10]Y.H. Li, Y.G. Zhou, Q.X. Shi, K.L. Ding, R. Noyori, C.A. Sandoval, Adv. Synth. Catal.,353(2011)495.
    [11]T. Marziatetti, J.L.G. Fierro, P. Reyes, Catal. Today, 107-108 (2005) 235.
    [12]C. Li, Catal. Rev.46 (2004) 419.
    [13]A.M. Rouhi, P. Medalist, Chem. Eng. News, 82 (2004) 37.
    [14]D.D. Yuan, C.H. Yan, B. Lu, H.X. Wang, C.M. Zhong, Q.H. Cai, Electrochim. Acta, 54 (2009) 2912.
    [15]F.G. Xu, M. Deng, G.Y. Li, S.H. Chen, L. Wang, Electrochim. Acta,88 (2013) 59.
    [16]L.A. Estudillo-Wong, G. Santillan-Diaz, E.M. Arce-Estrada, N. Alonso-Vante, A. Manzo-Robledo, Electrochim. Acta, 88 (2013) 358.
    [17]M. Orsini, M. Feroci, G. Sotgiu, A. Inesi, Org. Biomol. Chem., 3 (2005) 1202.
    [18]M. Feroci, M. Orsini, L. Palombi, G. Sotgiu, M. Colapietro, A. Inesi, J. Org. Chem., 69 (2004) 487.
    [19]C. Amatore, Basic Concepts, in: H. Lund, O. Hammerich (Eds.), Organic Electro-chemistry, Marcel Dekker, Inc., New York, 2001, p.53, Ch.1.
    [20]R. Hazard, S. Jaouannet, A. Tallec, Tetrahedron, 38 (1982) 93.
    [21]L. Homer, D. Degner, Tetrahedron Lett., 56(1968) 5889.
    [22]A.K. Yadav, M. Manju, P.R. Chhinpa, Tetrahedron: Asymmetry, 14 (2003) 1079.
    [23]M. Schwientek, S. Pleus, C.H. Hamann, J. Electroanal. Chem., 461 (1999) 94.
    [24]E. Kariv, H.A. Terni, E. Gileadi, Electrochim. Acta, 18 (1973) 433.
    [25]J. Kopilov, E. Kariv, L.L. Miller, J. Am. Chem. Soc.,99 (1977)3450.
    [26]M. Vago, F.J. Williams, E.J. Calvo, Electrochem. Commun., 9 (2007) 2725.
    [27]J.C. Moutet, D.T. Carole, S. Menage, S. Tingry, Adv. Mater. 10 (1998) 665.
    [28]D. Seebach, H.A. Oei, Angew. Chem. Int. Ed. Engl., 87 (1975) 629.
    [29]D. Seebach, H.A. Oei, Angew. Chem. Int. Ed. Engl., 14 (1975) 634.
    [30]L. Homer, D. Degner, Electrochim. Acta, 19 (1974) 611.
    [31]D. Brown, L. Homer, Liebigs Ann. Chem.,1977 (1977) 77.
    [32]L. Homer, W. Brich, Chem. Ber.,111 (1978) 574.
    [33]M. Feroci, A. Inesi, M. Orsini, L. Palombi, Organic Letters 4 (2002) 2617.
    [34]C. Schuster, M. Knollmueller, P. Gaertner, Tetrahedron: Asymmetry, 17 (2006) 2430.
    [35]B.F. Watking, J.R. Behling, E. Kariv, L.L. Miller, J. Am. Chem. Soc., 97 (1975) 3549.
    [36]A.M. Abeysekera, J. Grimshaw, S.D. Perera, J. Chem. Soc., Perkin Trans.2, (1990) 1797.
    [37]T. Nonaka, S. Abe, T. Fuchigami, Bull. Chem. Soc. Jpn., 56 (1983) 2778.
    [38]P. Tascedda, E. Dunach, Chem. Commun.,6 (2000) 449.
    [39]K. Zhang, H. Wang, S.F. Zhao, D.F. Niu, J.X. Lu, J. Electroanal. Chem., 630 (2009) 35.
    [40]S.F. Zhao, M.X. Zhu, K. Zhang, H. Wang, J.X. Lu, Tetrahedron Lett., 52 (2011) 2702.
    [41]P. Zuman, D. Barnes, A.R. Keyjharova, Discuss. Faraday Soc., 45 (1968) 202.
    [42]Electroanalytical Method, in: A.J. Bard, M. Stratmann (Eds.), Encyclopedia ofElectrochemistry, Vol.3, Instrumentation and Electroanalytical Chemistry, P.R.Unwin, Wiley-VCH, Weinheim, 2003, p.86, Ch.2.
    [43]S.H. Wang, P.S. Singh, D.H. Evans, J. Phys. Chem. C, 113 (2009) 16686.
    [44]S.F. Zhao, L.X. Wu, H. Wang, J.X. Lu, A.M. Bond, J. Zhang, Green Chem., 13 (2011)3461.
    [45]J.M. Saveant, J. Phys. Chem., C, 111 (2007) 2819.
    [46]S.F. Zhao, J.X. Lu, A.M. Bond, J. Zhang, Chem. Eur. J., 18 (2012) 5290.
    [47]J.H. Stocker, R.M. Jenevein, J. Org. Chem., 33(1968) 294.
    [48]V.J. Puglisi, G.L. Clapper, D.H. Evans, Anal. Chem., 41 (1969) 279.
    [49]N. Kise, S. Iitaka, K. Iwasaki, N. Ueda, J, Org. Chem., 67 (2002) 8305.
    [50]M. Feroci, A. Inesi, L. Rossi, Tetrahedron Lett., 41 (2000) 963.
    [51]D.F. Niu, L.P. Xiao, A.J. Zhang, G.R. Zhang, Q.Y. Tan, J.X. Lu, Tetrahedron, 64(2008)10517.
    [52]K. Zhang, H. Wang, L.-X. Wu, J.-B. Zhang, J.-X. Lu, Chin. J. Chem., 28 (2010) 509.
    [1]M. Cokoja, C. Bruckmeier, B. Rieger, W.A. Herrmann, F.E. Kuhn, Angew. Chem. 123(2011)8662.
    [2]T. Kimura, K. Kamata, N. Mizuno, Angew. Chem. Int. Ed. 51 (2012) 1.
    [3]R. Liu, G.B. Yuan, C.L. Joe, T.E. Lightburn, K.L. Tan, D.W. Wang, Angew. Chem. Int.Ed.51 (2012)1.
    [4]X.B. Lu, Y. Wang, Angew. Chem.Int. Ed. 43 (2004) 3574.
    [5]X.B. Lu, B. Liang, Y.J. Zhang, Y.Z. Tian, Y.M. Wang, C.X. Bai, H. Wang, R. Zhang, J. Am. Chem. Soc. 126 (2004) 3732.
    [6]S. Kikuchi, K. Sekine, T. Ishida, T. Yamada, Angew. Chem. Int. Ed.51 (2012) 1.
    [7]S.H. Kim, C. Huh, S.-G. Kang, J. W. Kang, C.S. Lee, J. Chem. Eng. Data, 58 (2013) 1879.
    [8]R.D. Weinstein, K.R. Muske, S.-A. Martin, D.D. Schaeber, Ind. Eng. Chem. Res., 49(2010)7281.
    [9]C.M. Sanchez-Sanchez, V. Montiel, D.A. Tryk, A. Aldaz, A. Fujishima, Pure Appl. Chem.73 (2001) 1917.
    [10]L. Zhang, D.F. Niu, K. Zhang, G.R. Zhang, Y.W. Luo, J.X. Lu, Green Chem.10 (2008) 202.
    [11]L.X. Wu, H. Wang, Y. Xiao, Z.Y. Tu, B.B. Ding, J.X. Lu, Electrochem. Commun. 25(2012)116.
    [12]L.X. Wu, H. Wang, Z.Y. Tu, B.B. Ding, Y. Xiao, J.X. Lu, Int. J. Electrochem. Sci.,7 (2012) 11540.
    [13]L.X. Wu, H. Wang, L. He, L. Wu, A.J. Zhang, H. Kajiura, Y.M. Li, J.X. Lu, Int. J. Electrochem. Sci., 7 (2012) 5616.
    [14]H. Wang, L.X. Wu, Y.C. Lan, J.Q. Zhao, J.X. Lu, Int. J. Electrochem. Sci.,6 (2011)4218.
    [15]H. Wang, L.X. Wu, J.Q. Zhao, R.N. Li, A.J. Zhang, H. Kajiura, Y.M. Li, J.X. Lu, Greenhouse Gas Sci Technol. 2 (2012) 59.
    [16]D.D. Yuan, C.H. Yan, B. Lu, H.X. Wang, C.M. Zhong, Q.H. Cai, Electrochim. Acta 54 (2009) 2912.
    [17]M. Feroci, A. Inesi, L. Rossi, Tetrahedron Lett.41 (2000) 963.
    [18]Y.C. Lan, H. Wang, L.X. Wu, S.F. Zhao, Y.Q. Gu, J.X. Lu, J. Electroanaly. Chem.664 (2012) 33.
    [19]H. Wang, X.M. Xu, Y.C. Lan, H.M. Wang, J. X. Lu, Tetrahedron 70 (2014) 1140.
    [20]H. Wang, G.R. Zhang, Y.Z. Liu, Y.W. Luo, J.X. Lu, Electrochem. Commun.9 (2007) 2235.
    [21]G.Q. Yuan, H.F. Jiang, C. Lin, Tetrahedron 64 (2008) 5866.
    [22]A.P. Doherty, Electrochim. Acta. 47 (2002) 2963.
    [23]M.C.E. Bandeira, G. Maia, Electrochim. Acta.53 (2008) 4512.
    [24]O. Scialdone, A. Galia, A.A. Isse, A. Gennaro, M.A. Sabatino, R. Leone, G. Filardo, J. Electroanal. Chem. 609 (2007) 8.
    [25]O. Scialdone, C. Amatore, A. Galia, G. Filardo, J. Electroanal. Chem. 592 (2006) 163.
    [26]S.F. Zhao, H. Wang, Y.C. Lan, X. Liu, J.X. Lu, J. Zhang, J. Electroanal. Chem. 664 (2012) 105.
    [27]张凯,吴腊霞,胡磊磊,丁小燕,王欢,陆嘉星,高等学校化学学报,31(2010)1410.
    [28]C. Li, Catal. Rev.46 (2004) 419.
    [29]S.H. Weng, Z.H. Lin, L.X. Chen, J.Z. Zhou, Electrochimica Acta 55 (2010)2727.
    [30]I. Chiarotto, M.M.M. Feeney, M. Feroci, A. Inesi, Electrochimica Acta 54 (2009) 1638.
    [31]O. Onomura, Y. Kanda, M. Imai, Y. Matsumura, Electrochimica Acta 50 (2005) 4926.
    [32]C. Li, H.D. Zhang, D.M. Jiang, Q.H. Yang, Chem. Commun. (2007) 547.
    [33]K. Matsumoto, B. Saito, T. Katsuki, Chem. Commun.(2007) 3619.
    [34]K. Iseki, T. Nagai, Y. Kobayashi, Tetrahedron Lett. 35 (1994) 3137.
    [35]S.W. Wei, R. Messerer, S.B. Tsogoeva, Chem. Eur. J. 17 (2011) 14380.
    [36]T. Marzialetti, J.L.G. Fierro, P. Reyes, Catal. Taday 107-108(2005) 235.
    [37]T.D. Nixon, M.K. Whittlesey, J.M.J. Williams, Tetrahedron Lett. 52(2011) 6652.
    [38]G. Farkas, E. Sipos, A. Tungler, A. Sarkany, J.L. Figueiredo, J. Mol. Catal. A: Chem. 170 (2001)101.
    [39]K.D. Huynh, H. Ibrahim, E. Kolodziej, M. Toffano, G. Vo-Thanh, New J. Chem. 35(2011)2622.
    [40]M. Feroci, M. Orsini, L. Palombi, G. Sotgiu, M. Colapietro, A. Inesi, J. Org. Chem. 69 (2004) 487.
    [41]A.J. Fry, The electrochemistry of the C=C, C=O and C=N groups, in: S. Patai (Ed.),Synthetic Organic Electrochemistry, Ch.12, John Wiley & Sons, New York, 1989,pp.1-3.
    [42]A.K. Yadav, M. Manju, P.R. Chhinpa, Tetrahedron: Asymmetry 14 (2003) 1079.
    [43]M. Vago, F.J. Williams, E.J. Calvo, Electrochem. Commun. 9 (2007) 2725.
    [44]N. Schoo, H.J. Schafer, J. Liebigs Ann. Chem. (1993) 601.
    [45]M. Feroci, A. Inesi, M. Orsini, L. Palombi, Org. Lett. 4 (2002) 2617.
    [46]M. Orsini, M. Feroci, G. Sotgiub, A. Inesi, Org.Biomol. Chem. 3 (2005) 1202.
    [47]K. Zhang, H. Wang, S.F. Zhao, D.F. Niu, J.X. Lu, J. Electroanaly. Chem.630 (2009)35.
    [48]S.F. Zhao, M.X. Zhu, K. Zhang, H. Wang, J.X. Lu, Tetrahedron Lett. 52 (2011)2702.
    [49]P. Zuman, D. Barnes, A. Ryvolova-Kejharova, Discuss. Faraday Soc. 45 (1968) 202.
    [50]S.F. Zhao, L.X. Wu, H. Wang, J.X. Lu, M.A. Bond, J. Zhang, Green Chem. 13 (2011)3461.
    [51]B.L. Chen, Y. Xiao, X.M. Xu, H.P. Yang, H. Wang, J.X. Lu, Electrochim Acta 107 (2013) 320.
    [52]A.S.C. Chan, T.T. Huang, J.H. Wagenknecht, R.E. Miller, J. Org. Chem.60 (1995) 742.
    [53]E. Kariv, H.A. Terni, E. Gileadi, Electrochim. Acta 18 (1973)433.
    [54]K. Zhang, H. Wang, L.X. Wu, J.B. Zhang, J.X. Lu, Chin. J. Chem.28 (2010) 509.
    [55]V.M. Arx, T. Mallat, A. Baiker, Heterogeneous enantioselective hydrogenationof trifluoromethyl ketones, in: D.C. Sherrington, A.P. Kybett (Eds.), Sup-ported Reagents and their Applications, Royal Soc. Chem. Special Publication,Cambridge, 2001, pp.247-254.
    [56]M.V. Arx, T. Mallat, A. Baiker, Tetrahedron: Asymmetry 12 (2001) 3089.
    [57]K. Borszeky, T. Burgi, Z. Zhaohui, T. Mallat, A. Baiker, J. Catal. 187 (1999)160.
    [58]T. Varga, K. Felfoldi, P. Forgo, M. Bartok, J. Mol. Catal. A: Chem. 216 (2004) 181.
    [59]M.V. Arx, T. Burgi, T. Mallat, A. Baiker, Chem. Eur. J. 8(2002) 1430.
    [1]T. Fujihara, K. Nogi, T.H. Xu, J. Terao, Y. Tsuji, J. Am. Chem. Soc. 134 (2012) 9106.
    [2]W.M. Ren, G.P. Wu, F. L., J.Y. Jiang, C. Liu, Y. Luo, X.B. Lu, Chem. Sci. 3 (2012) 2094.
    [3]L.X. Wu, H. Wang, Y. Xiao, Z.Y. Tu, B.B. Ding, J.X. Lu, Electrochem. Commun. 25(2012)116.
    [4]R. Juarez, P. Concepcion, A. Corma, H. Garcia, Chem. Commun. 46 (2010) 4181.
    [5]H. Dossmann, C. Afonso, D. Lesage, J.C. Tabet, E. Uggerud, Angew. Chem. Int. Ed. 51(2012)1.
    [6]J. Simonet, Electrochem. Commun. 21 (2012) 22.
    [7]A.A. Isse, A. Gennaro, Chem. Commun. (2002) 2798.
    [8]L. Moreschini, A. D. Vesco, G. Carraro, Alkali metal- and alkaline earth metal salts of carboxylic acids of benzyl halides and their alkyl and/or aryl derivatives, Italian patent, IT 894274 1971-10-15.
    [9]D.F. Niu, L.P. Xiao, A.J. Zhang, G.R. Zhang, Q.Y. Tan, J.X. Lu, Tetrahedron 64 (2008) 10517.
    [10]Y.C. Lan, H. Wang, L.X. Wu, S.F. Zhao, Y.Q. Gu, J.X. Lu, J. Electroanal. Chem. 664 (2012) 33.
    [11]H. Wang, X.M. Xu, Y.C. Lan, H.M. Wang, J.X. Lu, Tetrahedron, 70 (2014) 1140
    [12]T.Y. Chen, Angew. Chem. Int. Ed. Engl.11 (1972) 460.
    [13]G. Silvestri, S. Gambino, G. Filardo, A. Gulotta, Angew. Chem. Int. Ed. Engl.23 (1984) 979.
    [14]O. Sock, M. Troupel, J. Perichon, Tetrahedron Lett.26 (1985) 1509.
    [15]J. Chaussard, M. Troupel, Y. Robin, G. Jacob, J.P. Juhasz, J. Appl. Electrochem. 19 (1989) 345.
    [16]J.F. Fauvarque, A. Jutand, M. Francois, New J. Chem. 10 (1986) 119.
    [17]J.F. Fauvarque, A. Jutand, M. Francois, J. Appl. Electrochem. 18 (1988) 109.
    [18]J.F. Fauvarque, A. Jutand, M. Francois, M.A. Petit, J. Appl. Electrochem. 18 (1988) 116.
    [19]J.F. Fauvarque, Y. De Zelicourt, C. Amatore, A. Jutand, J. Appl. Electrochem. 20 (1990) 338.
    [20]J. Damodar, S.R.K. Mohan, S.R.J. Reddy, Electrochem. Commun. 3 (2001) 762.
    [21]C. Folest, J.M. Duprilot, J. Perichon, Y. Robin, J. Devynck, Tetrahedron Lett. 26 (1985) 2633.
    [22]A. Gennaro, A.A. Isse, F. Maran, J. Electroanal. Chem.507 (2001) 124.
    [23]O. Scialdone, G. Filardo, A. Galia, D. Mantione, G. Silvestri, Acta Chem. Scand. 53 (1999) 800.
    [24]A.A. Isse, A.D. Giusti, A. Gennaro, L. Falciola, P.R. Mussini, Electrochim. Acta 51(2006)4956.
    [25]G. Zheng, M. Stradiotto, L. Li, J. Electroanal. Chem. 453 (1998) 79.
    [26]W.H. Chung, P. Guo, K.Y. Wong, C.P. Lau, J. Electroanal. Chem.486 (2000) 32.
    [27]J.R. Green, The Chemistry of Halides, in: S. Patai, Z. Rappoport (Eds.), Peseudo-Halides and Azides, Wiley, New York, 1995, pp.1275.
    [28]J.M. Duprilot, F. Bedioui, F. Bedioui, J. Devynck, J.C. Folest, C. Bied-Charreton, J. Organomet. Chem. 286 (1985) 77.
    [29]F. Bedioui, Y. Robin, J. Devynck, C. Bied-Charreton, J. Organomet, Chem. 326 (1987)117.
    [30]G.N. Shrauzer, E. Deutsch, J. Am. Chem. Soc. 91 (1969) 3341.
    [31]G.B. Maiya, B.C. Han, K.M. Kadish, Langmuir 5 (1989) 645.
    [32]B.L. Chen, Y. Xiao, X.M. Xu, H.P. Yang, H. Wang, J.X. Lu, Electrochim. Acta 107(2013) 320.
    [33]A. Merz, E. Steckhan (Eds.), Topics in Current Chemistry, Electrochemistry IV, vol.152, Springer Verlag, Berlin, 1990, pp.72.
    [34]M. Feroci, A. Inesi, M. Orsini, L. Palombi, Org. Lett. 4 (2002) 2617.
    [35]M. Feroci, M. Orsini, L. Palombi, G. Sotgiu, M. Colapietro, A. Inesi, J. Org. Chem.69 (2004) 487.
    [36]M. Orsini, M. Feroci, G. Sotgiub, A. Inesi, Org. Biomol. Chem.3 (2005) 1202.
    [37]B.L. Chen, Z.Y. Tu, H.W. Zhu, W.W. Sun, H. Wang, J.X. Lu, Electrochim. Acta 116(2014)475.
    [38]K. Zhang, H. Wang, S.F. Zhao, D.F. Niu, J.X. Lu, J. Electroanal. Chem. 630 (2009) 35.
    [39]S.F. Zhao, M.X. Zhu, K. Zhang, H. Wang, J.X. Lu, Tetrahedron Lett 52(2011) 2702.
    [40]A. Gennaro, A.A. Isse, E. Vianello, J. Electroanal. Chem. 289 (1990) 203.
    [41]A.A. Isse, A. Gennaro, E. Vianello, J. Chem. Soc., Dalton Trans., (1996) 1613.
    [42]A.A. Isse, M.G. Ferlin, A. Gennaro, J. Electroanal. Chem. 541 (2003) 93.
    [43]Electroanalytical Method, in: A.J. Bard, M. Stratmann (Eds.), Encyclopedia ofElectrochemistry, Vol.3, Instrumentation and Electroanalytical Chemistry, P.R.Unwin, Wiley-VCH, Weinheim, 2003, p.86, Ch. 2.
    [44]F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry, fifth ed., Wiley, New York, 1988, p.735.
    [45]H. Lund, K. Daasbjerg, T. Lund, D. Occhialini, S.U. Pedersen, Acta Chem. Scand. 51(1997) 135.
    [46]A.A. Isse, A. Gennaro, E. Vianello, J. Electroanal. Chem. 444 (1998) 241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700