用户名: 密码: 验证码:
络合物形成对β-胡萝卜素分子共振拉曼光谱的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
络合物作为一种常见的化合物,在日常生活、工业生产、生命科学等领域,都有着广泛的应用。两个电荷密度差别比较大的分子、原子或基团,可以通过电荷转移相互作用结合在一起,形成电荷转移络合物。电荷转移相互作用可以引起分子溶解性、稳定性、体系粘度、摩尔体积等多方面的变化,利用这些性质的改变,电荷转移络合物被应用于分析化学、生物医药、半导体学等科研领域。
     线性多烯分子由于其特有的性能使其在光电器件等领域中具有广泛的应用。类胡萝卜素作为一种特殊的线性多烯分子,广泛的存在于自然界中。β胡萝卜素、角黄素和番茄红素是类胡萝卜素中研究最多的三种类胡萝卜素。在光合作用中,β胡萝卜素具有光能采集、转移能量、淬灭单态氧等功能,使其在物理学、化学和生物学中成为研究的热点之一。
     β胡萝卜素分子中含9个共轭碳碳双键,在514.5nm激光激发下有很大的拉曼活性,拉曼散射截面可达10-23—10-20cm2mol-1Sr-1。碘与β胡萝卜素在1,2-二氯乙烷溶液混合,β胡萝卜素分子发生异构化,生成电荷转移络合物。在紫外-可见吸收光谱中,可以观察到随着电荷转移络合物的形成,β胡萝卜素在460nm处的峰逐渐消失,在1000nm处出现了β胡萝卜素与碘络合物的新峰。用514.5nm激光做激发光源,测量了溶液中未生成络合物的β胡萝卜素的共振拉曼光谱。
     本文利用共振拉曼光谱、可见吸收光谱技术、依据分子光谱相关理论,主要研究了:利用Teflon-AF光纤测量了水中β胡萝卜素的共振拉曼光谱;测量了293K—83K含碘1,2二氯乙烷溶液中的β胡萝卜素的共振拉曼光谱,得出温度变化对CC键基频、拉曼散射截面、和频(倍频)和线宽的影响,并与不含碘的β胡萝卜素做比较;测量了极性溶剂1,2-二氯乙烷含碘溶液中的β胡萝卜素的紫外-可见吸收光谱和拉曼光谱,得出碘浓度的变化对CC键基频υ1、υ2拉曼散射截面、线宽以及电子-声子耦合系数的的影响,取得了以下创新性成果:
     (1)利用Teflon-AF光纤,研究了水中β胡萝卜素的拉曼散射截面。结果表明,随着浓度的降低,β胡萝卜素分子C=C,C-C键拉曼散射截面大幅增加,可达1.22×10-21mol-1Sr-1。其机理主要是随β胡萝卜素在水中浓度降低,其分子间作用力减小,使其分子结构有序性增加,有效共轭长度增加,拉曼活性大幅度提高,即拉曼散射截面增加。
     (2)利用变换温度法,测量了293K—83K条件下极性溶剂1,2-二氯乙烷-碘溶液中的β胡萝卜素的共振拉曼光谱。结果表明,在293K—213K的液态温区和188K—83K的固态温区,随着温度的下降,β胡萝卜素的CC键基频拉曼散射截面增加,在液态到固态相变期间减小。CC键和频(倍频)与基频光谱强度比随温度降低而增加,相变期间比值更大。CC键基频的线宽随着温度的降低逐渐减小,相变期间反常。与不含碘的1,2二氯乙烷溶液中β胡萝卜素拉曼光谱相比较,含碘溶液的β胡萝卜素CC键拉曼散射截面减小,线宽宽度增加。这是由于温度降低,热无序减弱,分子有序性增强,π电子离域扩展,π电子-声子耦合对CC键同步振动调节增强,使相干弱阻尼电子—晶格振动增强,拉曼活性增加,共振拉曼效应提高,拉曼散射截面增大,线宽变窄;溶液相变期间反常。在有络合物生成的溶液中,受络合物不稳定的影响,β胡萝卜素分子有序性下降,拉曼散射截面减小,线宽增加。
     (3)利用变换浓度法,测量了室温(20℃)条件下极性溶剂1,2-二氯乙烷-碘溶液中的β胡萝卜素紫外-可见吸收光谱和拉曼光谱。结果表明,生成络合物的β胡萝卜素在460nm处的紫外-可见吸收峰消失,并在1000nm处出现β胡萝卜素与碘形成络合物的吸收峰,致使514.5nm激光激发时察觉不到络合物中β胡萝卜素离子CC键的共振拉曼光谱。随着络合物浓度的增加,溶液中没有形成络合物的β胡萝卜素CC键拉曼散射截面减小,拉曼光谱线宽增加,β胡萝卜素分子吸收峰发生蓝移,黄琨因子逐渐增大,π电子-声子耦合系数增加。这是由于随着溶液中络合物浓度增大,溶液的混乱程度增加,热无序增大, β胡萝卜素结构有序性降低,电子离域减小,有效共轭长度减小,相干弱阻尼电子晶格振动减弱而导致的。
     综上所述,本论文通过共振拉曼光谱与紫外-可见吸收光谱相结合,用改变溶液中络合物的浓度和改变温度的方法研究了络合物形成对β-胡萝卜素分子光谱的影响,为认识络合物形成对β胡萝卜素结构与光学性质的影响及电子-声子相互作用规律研究提供了新思路,也为线性多烯分子在溶液中的结构和性质的研究提供了参考资料。
Complex has a wide range of applications as a kind of common compounds inthe daily life, industrial production, life science and other fields. Two molecules,atoms or groups with a large charge density difference can form a charge transfercomplex by the charge transfer interaction. The charge transfer complex was used inanalytical chemistry, biological medicine, semiconductor science to learn scientificresearch fields due to charge transfer interactions leading to changes in molecularsolubility, stability, viscosity, molar volume.
     Linear polyene has a wide application in the field of optoelectronic devices dueto its unique property. Carotenoids exist in nature widely as a special kind of linearpolyene molecules. β-carotene, lycopene and canthaxanthin are the most widelystudied of the three ones of carotenoids. β–carotene is in use with light energycollection, energy transfer and quenching oxygen during photosynthesis, which makesits one of research hot spot in physics, chemistry and biology.
     All-trans-β-carotene is a linear polyene molecule with9conjugated doublebonds, the RSCS of its CC bonds can reach10-23—10-20cm2mol-1Sr-1at514.5nmexcitation from an Ar ion laser. It makes the charge transfer complex form that β–carotene becomes molecular isomerization and iodine is attached to the conjugateddouble bond. The absorption spectra show that the visible absorption band of thecomplex formed by all-trans-β-carotene and iodine shifts from460nm to1000nm. Inthis paper, we measured the resonance Raman spectra of the all-trans-β-carotenehaving not formed the complex.
     We use the resonance Raman and visible absorption spectroscopy technology toresearch following work according to the theory of molecular spectrum. The Ramanscattering cross section of beta carotene has been studied in water by Teflon-AFfiber. The resonance Raman spectra of the fundamental, combination, and secondharmonic modes around the C–C and C=C stretches of all-trans-β-carotene in1,2-dichloroethane with iodine solution are obtained in the range of293K to83K. We got the range of Raman scattering cross section of CC bonds of all-trans-β-carotenenot formed in complex, the ratio between the Raman spectral intensities of thecombinations (overtones), its full bandwidth broadens at different temperatures,compared with the one without iodine.The UV-vis absorption and resonance Ramanspectra of all-trans-β-carotene in polar solvent1,2-dichloroethane with iodine weremeasured at293K. We got the range of Raman scattering cross section of CC bondsof all-trans-β-carotene not formed in complex, its full bandwidth broadens andelectron-phonon parameter with different concentrations. We got the followinginnovative achievements.
     (1) The Raman scattering cross section of β-carotene has been studied in waterby Teflon-AF fiber. It shows that the RSCS of its C=C and C-C bonds can reach10-23—10-20cm2mol-1Sr-1during the reducing of concentration. Its mechanism is asthe concentration of β-carotene is reduced in the water, the Intermolecular Forcesdecrease, which makes its molecular structure order and effective conjugation lengthincrease, the Raman active is sharply higher, the Raman scattering cross section ofβ-carotene increases.
     (2) The resonance Raman spectra of the fundamental, combination, and secondharmonic modes around the C–C and C=C stretches of all-trans-β-carotene in1,2-dichloroethane with iodine solution are obtained in the range of293K to83K. TheRaman scattering cross section of the fundamentals in the liquid (293K to213K) andsolid phases (188K to83K) generally increases as the temperature decreases, exceptfor the liquid-solid phase transition, which exhibits a decreasing trend; The ratiobetween the Raman spectral intensities of the combinations (overtones) and thefundamentals of CC bonds increases with decreasing temperature, especially in theliquid-solid phase transition. The Raman bandwidths of the CC bonds graduallybecome narrow, but then reach a maximum in the phase transition. The Ramanscattering cross section of the CC bonds in solution with iodine decreases and theRaman bandwidths broaden, compared with the one without iodine. This phenomenonis attributed to the enhanced coherent weakly damped electron-lattice vibrationsassociated with the increase in the structural order. Resonant effects also lead to a high Raman intensity for the CC bonds in fundamental modes. The decreasedstructural order induces the RSCS of the fundamental modes to decrease rapidlyduring the liquid-solid phase transition. However, the strong electron-phononcoupling causes the relative Raman intensity of the combination and harmonic modesto rapidly increase as the temperature decreases. The bandwidths of CC bondsbecome narrow while abnormal in phase transition period. The molecular structuralorder decreases, the RSCS of CC bonds decreases, the bandwidth become broaden asthe complexes are formed in the solution.
     (3) The Uv-vis absorption and resonance Raman spectra of all-trans-β-carotenein polar solvent1,2-dichloroethane with iodine were measured at293K. The resultsindicated that the absorption peak of all-trans-β-carotene in the complex disappears at460nm and a new peak of the complex formed by all-trans-β-carotene and iodine isfound at1000nm, so that the all-trans-β-carotene within the complex cannot producethe resonance Raman spectrum by514.5nm excitation laser. The Raman scatteringcross section of CC bonds of all-trans-β-carotene not formed in complex decreases, itsfull bandwidth broadens and electron-phonon parameter increases with the increasingconcentration of the complex, because when the concentration of the complexincreases the disorder increases in the solution and the molecular structural orderdecreases.
     In summary, we analyse the effect of complex formation on the resonance ramanspectra of all-trans-β-carotene in iodine solution. The mechanism of generatingoptical phenomenon and the interactions between intramolecular and intermolecularhave been grasped. It has theoretical value for understanding the effect of complexformation on the structure and optical property of all-trans-β-carotene and theinfluence of electronic-phonon interaction, provides reference information in thestudy of the linear polyene as well.
引文
[1]汪丰云,顾家山,王晓锋,杨林霞.配位化学的发展史[J].化学教育,2011,2:75
    [2]叶秀林.立体化学[M].北京:北京大学,1999.
    [3]肖珊美.杨晓东配位化学的沿革与进展[J].鸡西大学学报,2001,1:56.
    [4]张清建.早期络合物理论的发展[J].大学化学,1993,8:52.
    [5]龚舒哲.过渡金属—有机配位聚合物的合成与表征[D].长春:吉林大学,2008.
    [6]游效曾等.配位化学进展[M].北京:高等教育出版社,2000.
    [7]张静静.新型含氮羧酸配合物的合成及荧光性能的研究[D].鞍山:辽宁科技大学,2011.
    [8]李贤飞.两类芳香族配体及其金属配位聚合物的合成与表征[D].杨凌:西北农林科技大学,2012.
    [9]何福兰,王娟,苏进雄,周林红.配位聚合物的研究进展[J].广州化工,2010,38:3.
    [10]胡西学. N(氮)-配和O(氧)-配有机-过渡金属聚合物的合成、结构与性能研究[D].长春:吉林大学,2004.
    [11]王微微.温度对β-胡萝卜素分子结构有序性的影响[D].长春:吉林大学,2011.
    [12]李玉.紫外可见光谱法研究吡啶与碘电荷转移络合物[D].长春:吉林大学,2005.
    [13] TOGNI A, VENNAZI L M. Nitrogen donors in organometallic chemistry andhomogeneous catalysis [J]. Angew Chem nIt Ed Engl,1994,33:497.
    [14] WELTON T. Room-temperature ionic liquids solvents for synthesis andcatalysis[J]. Chem Rev,1999,99:2071.
    [15]陈智娴.电荷转移反应与光谱法联用测定抗生素的研究[D].江苏大学,2009.
    [16] XIE P H, HOU Y J, CAO Y, et al. Spectroscopic and electrochemical propertiesof ruthenium (II) polyp idly complexes[J]. J Chem Soc,1999,4217.
    [17]赵振国.基于多氮多氧类配体与d8-d10金属配合物的合成、结构与性能[D].中国科学院福建物质结构研究所,2009.
    [18]刘阳春.稀土配位聚合物的合成、表征和性能研究[D].北京化工大学,2008.
    [19]喻芳.1,8-萘啶衍生物的合成、光化学和光物理性质[D].云南师范大学,2003.
    [20] WATSON J D, BAKER T A, BELL S P, ALEXANDER G, MICHAEL L,RICHARD L. Molecular biology of the gene[M]. New York: BenjaminCummings,2003.
    [21] PRESSMAN D, GROSSBERG A L. The structural basis of antibodyspecificity[M]. New York:W A Benjamin,1968.
    [22]韩长秀,杨秀英,付广云.甲基红褪色光度法测定食盐中碘的研究[J].分析科学学报,2003,19:370.
    [23]周旭光,蒋小珍,冯建章.磺胺嘧啶与苯醌类试剂荷移反应的研究[J].北京大学学报,1993,29:144.
    [24]汪丰云,王素凡,黄玉成,叶世勇,周涛.靛蓝锌离子络合物的结构及其光学性质的理论研究[J].高等学校化学学报,2009,30:1168.
    [25]杨丹,许文艺.CuCl2-H2O体系和FeCl3-H2O体系络合物拉曼光谱研究与溶液拉曼定量分析探索[J].光谱学与光谱分析,2011,31:2742.
    [26]凌启淡,杨慕杰,章文贡,王文,林美娟.含稀土铕络合物的三元共聚物的光电性质[J].高分子学报,2005,5:698.
    [27]张瑞十.挤出滚圆法制备球形颗粒的一些关键技术的研究[D].上海:华东理工大学,2010.
    [28]华峰,云峰,李泉.含Al–H键络合物储氢材料研究进展[J].稀有金属材料与工程,2009,38:1500.
    [29]钟丽琴,唐瑞仁,杨青.手性pybox-金属络合物及其在不对称催化反应中的应用[J].化学进展,2007,19:902.
    [30]王成涛,马玉君,朱桂华,牛天贵.食用酵母对无机碘的转化及发酵条件的研究[J].微生物学杂志,2000,20:15.
    [31]童沈阳,李娜.分光光度法研究氨基酸与四氯苯醌形成的荷移配合物[J].高等学校化学学报,1992,13:1371.
    [32]刘立华,刘冬莲,刘会媛.靛蓝胭脂红褪色光度法测定食盐中碘的研究[J].食品科学,2009,30:174.
    [33]张琳萍,侯红卫,樊耀亭,程凤宏.配位聚合物[J].无机化学学报,2000,16:1.
    [34]翟艳丽,惠伯棣,蔡靳,刘蕊,王英明.类胡萝卜素与癌症风险相关性的研究[J].食品科学,2013,13:307.
    [35]刘长付,陈媛梅,郑彩霞.HPCE法研究番茄中类胡萝卜素的动态变化[J].中国农业大学学报,2013,4:84.
    [36]陈玉萍,陈素琴,裴成鹏,王希辉.辣椒中β-胡萝卜素的提取工艺及稳定性研究[J].内蒙古农业大学学报(自然科学版),2014,1:73.
    [37]咸瑞卿,李启艳,刁飞燕,王小兵,胡德福.快速溶剂萃取-超高效液相色谱法测定螺旋藻中β-胡萝卜素的含量[J].现代食品科技,2014,3:239.
    [38]党宏万,王欣瑜,杨小英,魏世杰,戴贵东.枸杞中甜菜碱、牛磺酸、枸杞多糖对β-胡萝卜素在比格犬体内药动学的影响[J].中国药学杂志,2013,23:2034.
    [39]田艳杰. Beta-胡萝卜素的共振拉曼散射及其荧光增强受激拉曼散射研究[D].长春:吉林大学,2007.
    [1]李云,邢生凯,赵学庄.共轭多烯及其取代物的模糊对称性[J].南开大学学报,2011,44:80-89.
    [2]唐教庆等.分子轨道图形理论[J].科学出版社,1980.
    [3] YAMADE T, TANAKA K, TERAMA-E H, et al. Electronic properties of pure anddoped polyacetylenes[J]. J.Phys.C1979,12:L257-L262.
    [4]孙仁安.聚乙炔一维共轭多烯半导体[J].辽宁师范大学学报,1988,3:44-48.
    [5] NANBA O, SATOH K. Isolation of a photosystem II reaction center consisting ofD-1and D-2polypeptides and cytochrome b-559[J]. Proc. Natl. Acad. Sci.,1987,84(1):109-112.
    [6] BARBER J. Trends in Photosynthesis Research, Edited by J Barber,1992b,29,Intercept Ltd, PO Box716, Andover, Hampshire SP101YG, U K.
    [7] CHAPMAN D J, GOUNARIS K, BARBER J. Electron-transport properties of theisolated D1-D2-cytochrome b-559Photosystem II reaction centre[J]. Biochim.Biophys. Acta.,1988,933(3):423-431.
    [8] VAN DORSSEN R J, BRETON J, PLIJTER J J, et al. Spectroscopic properties ofthe reaction center and of the47kDa chlorophyll protein of photosystem II[J].Biochim. Biophys. Acta,1987,893(2):267-274.
    [9] LUTZ M, AGALIDIS I, HERVO G, et al. On the state of carotenoids bound toreaction centers of photosynthetic bacteria: a resonance Raman study[J]. Biochim.Biophys. Acta,1978,503(2):287-303.
    [10] LU R H, KUANG T Y, YU Z B, et al. The Resonance Raman Spectra of-Carotene Molecules in the Photosystem I Reaction Center D1/D2/Cyt b-559Complex[J]. Acta Botanica Sinica,1996,38:180-185.
    [11] TSUKIDA K, SAIKI K, TAKII T, et al. Separation and determination of cis/trans-β-carotenes by high-performance liquid chromatography[J]. Journal ofChromatography A,1982,245(3):359-364.
    [12] KUKI M, KOYAMA Y, NAGAE H. Triplet-sensitized and thermalisomerization of all-trans,7-cis,9-cis,13-cis and15-cis isomers of. beta.-carotene:configurational dependence of the quantum yield of isomerization via the T1state[J]. The Journal of Physical Chemistry,1991,95(19):7171-7180.
    [13] SEIFERT G, ESCHRIG H. LCAO X. Calculations of transition metal clustersPhys. Stat. Sol. B,1985,127(11):573-585.
    [14] KOYAMA Y, TAKII T, SAIKI K, et al. Configuration of the carotenoid in thereaction centers of photosynthetic bacteria.2) Comparison of the resonanceRaman lines of the reaction centers with those of the14different cis-trans isomersof β-carotene[J]. Photobiochem Photobiophys,1983,5:139-150.
    [15] GOPPERT-MAYER M. Elementary acts with two quantum jumps[J]. Ann Physik,1931,9:273.
    [16] KLEIN O. Elektrodynamik und willenmechanik vom standpunkt deskorrespondenzprinzips[J]. Zeit F Physik,1927,41:407.
    [17] PLACZEK G. Rayleigh-streuung und Raman-effekt, in handbuch der radiologie,Vol VI, Marx E (ed)[M]. Leipzig: Academische Verlag,1934.
    [18] LONG D A. The Raman effect: a unified treatment of the theory of Ramanscattering by molecules[M]. Chichester: John Wiley&Sons Ltd,2002.
    [19] LONG D A. Raman spectroscopy[M]. McGraw-Hill International BookCompany,1977.
    [20]吴国桢.分子振动光谱学[M].北京:清华大学出版社,2001.
    [21]程光煦.拉曼、布里源散射-原理及应用[M].北京:科学出版社,2001.
    [22] REICHARDT C. Thomas Welton solvents and solvent effects in organicchemistry[M]. Germany: Wiley-VCH,2010.
    [1]吴国桢.分子振动光谱学[M].北京:清华大学出版社,2001.
    [2] MCHALE J L. Molecular spectroscopy[M]. Prentice Hall Books,1999.
    [3] HIZHNYAKOV V V, TEHVER I J. Resonance Raman profile with considerationfor quadratic vibronic coupling[J]. Opt Commun,1980,32:419.
    [4] TONKS D L, Page J B. First-order Resonance Raman profile lineshapes fromoptical absorption lineshapes-a consistency test of standard theoreticalassumptions[J]. Chem Phys Letters,1979,66:449.
    [5] BLAZEJ D C, PETICOLAS W. J. Ultraviolet resonance Raman excitation profilesof pyrimidine nucleotides[J]. Chem Phys,1980,72:3134.
    [6] HELLER E J, SUNDBERG R L, TANNOR D. Simple aspects of Ramanscattering[J]. J Phys Chem,1982,86:1822.
    [7]程光煦.拉曼、布里源散射-原理及应用[M].北京:科学出版社,2001.
    [8] TREBST A. Function of β-carotene and tocopherol in photosystem II[J]. ZNaturforsch,2003,58c:609.
    [9] MATTIOLI T A, HALEY L V, KONINGSTEIN J A. Wavelength-selectiveresonance Raman spectroscopy of a finite polyene: solid-stateall-trans-β-carotene[J]. J Raman Spectrosc,1987,18:53.
    [10] MCCAMANT D W, KIM J E, MATHIES R A. Vibrational relaxation inβ-carotene probed by picosecond stokes and anti-stokes resonance Ramanspectroscopy[J]. J Phys Chem A,2002,106:6030.
    [11] SUE J, MUKAMEL S. Solvation dynamics in coherent and spontaneous Ramanspectroscopy: application to β-carotene[J]. J Opt Soc Am B,1988,5:1462.
    [12] BURT J A, ZHAO X H, MCHALE J L. Inertial solvent dynamics and theanalysis of spectral line shapes: temperature-dependent absorption spectrum ofβ-carotene in nonpolar solvent[J]. J Chem Phys,2004,120:4344.
    [13] MCLANGHLIN R P, NYHOLM B P, REID P J. Absolute Resonance Ramanintensity analysis of isopropyl nitrate in the condensed phase[J]. J Phys Chem A,2003,107:9105.
    [14] SHAFER-PELTIER K E, HAYNES C L, GLUCKSBERG M R, VAN DUYNE RP. Toward a glucose biosensor based on surface-enhanced Raman scattering[J]. JAm Chem Soc,2003,125:588.
    [15] SIMONELLI D, SHULTZ M J. Temperature dependence for the relative Ramancross section of the ammonia/water complex[J]. J Mol Spectrosc,2001,205:221.
    [16] BERDYUGIN V V, BURSHTEIN K Y, SHORYGIN P P. Cross section ofresonance Raman scattering of light by polyenes[J]. Opt Spectrosc,1986,61:192.
    [17] TIAN Y J, ZHANG L Y, ZUO J, LI Z W, GAO S Q, LU G H. Raman sensitivityenhancement for aqueous absorbing sample using Teflon-AF2400liquid coreoptical fibre cell[J]. Anal Chim Acta,2007,581:154.
    [18] REICHARDT C. Thomas Welton solvents and solvent effects in organicchemistry[M]. Germany: Wiley-VCH,2010.
    [19] YIN J H, LI Z W, TIAN Y J, SUN Z W, SONG X L. A study on Raman scatteringcross section of carbon tetrachloride at low concentrations[J]. Appl Phys B,2005,80:573.
    [20] LUER L, MANZONI C, CERULLO G, LANZANI G, VARDENY Z V.Intra-chain exciton generation by charge recombination in substitutedpolyacetylenes[J]. Chemical Physics Letter,2007,444:61.
    [21] BARANSKA M, SCHUTZE W, SCHULZ H. Determination of Lycopene andβ-carotene content in tomato fruits and related products: comparison ofFT-Raman, ATR-IR, and NIR spectroscopy[J]. Anal Chem,2006,78:8456.
    [22] DARVIN M E, GERSONDE I, ALBRECHT H, MEINKE M, STERRY W,LADEMANN J. Non-invasive in vivo detection of the carotenoid antioxidantsubstance lycopene in the human skin using the resonance Raman spectroscopy[J].Laser Phys Lett,2006,3:460.
    [23] CHU B S, ICHIKAWA S, KANAFUSA S. Preparation of protein-stabilizedβ-carotene nanodispersions by emulsification–evaporation method[J]. J Am OilChem Soc,2007,84:1053.
    [24] SUGISAKI M, FUJIWARA M, NAIR S V, RUDA H E, COGDELL R J,HASHIMOTO H. Excitation-energy dependence of transient grating spectroscopyin β-carotene[J]. Phys Rev B,2009,80:035118.
    [25] GHOSH B C, DEB N, MUKHERJEE A K. Determination of individual protonaffinities of reserpine from its UV Vis and charge-transfer spectra[J]. J PhysChem A,2008,112:6929.
    [26] GRANT J L, KRAMER V J, DING R, KISPERT L D. Carotenoid cation radicals:electrochemical, optical, and EPR study[J]. J Am Chem Soc,1988,110:2151.
    [27] LUPINSKI J H. The charge transfer complex betweenβ-carotene and iodine IIcharacterization of complex[J]. J Phys Chem,1963,67:2725.
    [28] VARDENY Z, EHRENFREUND E, BRAFMAN O. Resonant Raman scatteringfrom amplitude modes in trans-(CH)x and-(CD)x[J]. Phys Rev Lett,1983,51:2326.
    [29] TIAN Y J, ZUO J, ZHANG L Y,LI Z W,GAO S Q,LU G H. Study ofresonance Raman cross section of aqueous β-carotene at low concentrations[J].Appl Phys B,2007,87:727.
    [30] PARASCHUK D Y, GOLOVNIN I V, SMEKHOVA A G, KOBRYANSKII V M.Anomalously high raman scattering cross section for carbon-carbon vibrationsintrans-nanopolyacetylene[J]. JETP Lett,2002,76:572.
    [31] LIU W L, ZHENG Z R, ZHU R B, LIU Z G, XU D P, YU H M, WU W Z, LI AH, YANG Y Q, SU W H. Effect of pressure and solvent on Raman spectra ofall-trans-β-carotene[J]. J Phys Chem A,2007,111:10044.
    [32] DUDIK J M, JOHOSON C R, ASHER S A. Wavelength dependence of thepreresonance Raman cross sections of CH3CN, SO42, ClO4, and NO3[J]. JChem Phys,1985,82:1732.
    [33] BISWAS N, UMAPATHY S. Simple approach to determining absolute Ramancross sections using an optical parametric oscillator[J]. Appl Spectrosc,1998,52:496.
    [34] Oliveira F A C, Cury L A, Righi A, Moreira R L, Guimaraes P S S, Matinaga F M,Pimenta M A, Nogueira R A. Temperature effects on the vibronic spectra ofBEH–PPV conjugated polymer films[J]. J Chem Phys,2003,119:9777.
    [1] LUER L, MANZONI C, CERULLO G, LANZANI G, VARDENY Z V. Intra-chainexciton generation by charge recombination in substituted polyacetylenes[J].Chemical Physics Letter,2007,444:61.
    [2] BARANSKA M, SCHUTZE W, SCHULZ H. Determination of Lycopene andβ-carotene content in tomato fruits and related products: comparison ofFT-Raman, ATR-IR, and NIR spectroscopy[J]. Anal Chem,2006,78:8456.
    [3] DARVIN M E, GERSONDE I, ALBRECHT H, MEINKE M, STERRY W,LADEMANN J. Non-invasive in vivo detection of the carotenoid antioxidantsubstance lycopene in the human skin using the resonance Raman spectroscopy[J].Laser Phys Lett,2006,3:460.
    [4] CHU B S, ICHIKAWA S, KANAFUSA S. Preparation of protein-stabilizedβ-carotene nanodispersions by emulsification–evaporation method[J]. J Am OilChem Soc,2007,84:1053.
    [5] SUGISAKI M, FUJIWARA M, NAIR S V, RUDA H E, COGDELL R J,HASHIMOTO H. Excitation-energy dependence of transient grating spectroscopyin β-carotene[J]. Phys Rev B,2009,80:035118.
    [6] GHOSH B C, DEB N, MUKHERJEE A K. Determination of individual protonaffinities of reserpine from its UV Vis and charge-transfer spectra[J]. J PhysChem A,2008,112:6929.
    [7] TIAN Y J, ZUO J, ZHANG L Y,LI Z W,GAO S Q,LU G H. Study of resonanceRaman cross section of aqueous β-carotene at low concentrations[J]. Appl Phys B,2007,87:727.
    [8]李占龙,欧阳顺利,曹彪,周密,里佐威,高淑琴.溶剂折射率对β-胡萝卜素拉曼散射截面的影响[J].物理学报,2009,58:6908.
    [9] PARASCHUK D Y, GOLOVNIN I V, SMEKHOVA A G, KOBRYANSKII V M.Anomalously high raman scattering cross section for carbon-carbon vibrationsintrans-nanopolyacetylene[J]. JETP Lett,2002,76:572.
    [10] PARASCHUK D Y, KOBRYANSKII V M.. Coherent electron-lattice vibrationsin trans-nanopolyacetylene probed by Raman scattering[J]. Phys Rev Lett,2001,87:207402.
    [11]王孟舟,姜永恒,刘天元,孙成林,里佐威.络合物形成对电子-声子耦合的影响[J].物理学报,2013,62:187802.
    [12]孙成林,张学亚,李占龙,周密,欧阳顺利,里佐威,高淑琴,周强.电荷转移络合物对β-胡萝卜素共振拉曼散射截面的影响[J].高等学校化学学报,2010,31:1218.
    [13] GRANT J L, KRAMER V J, DING R, KISPERT L D. Carotenoid cation radicalselectrochemical, optical, and EPR study[J]. J Am Chem Soc,1988,110:2151.
    [14] LUPINSKI J H. The charge transfer complex betweenβ-carotene and iodine IIcharacterization of complex[J]. J Phys Chem,1963,67:2725.
    [15] SAITO S, TASUMI M J. Normal-coordinate analysis of β-carotene isomers andassignments of the Raman and infrared bands[J]. J Raman Spectrosc,1983,14:310.
    [16] VARDENY Z, EHRENFREUND E, BRAFMAN O. Resonant Raman scatteringfrom amplitude modes in trans-(CH)x and-(CD)x[J]. Phys Rev Lett,1983,51:2326.
    [17] DUDIK J M, JOHOSON C R, ASHER S A. Wavelength dependence of thepreresonance Raman cross sections of CH3CN, SO42, ClO4, and NO3[J]. JChem Phys,1985,82:1732.
    [18] BISWAS N, UMAPATHY S. Simple approach to determining absolute Ramancross sections using an optical parametric oscillator[J]. Appl Spectrosc,1998,52:496.
    [19] HENDERSON B, IMBUSCH G F. Optical spectroscopy of inorganic solids[M].Oxford University Press,1989.
    [20] PEETERS E, RAMOS A M, MESKORS SCJ, JANSSEN RAJ. Singlet andtriplet excitations of chiral dialkoxy-p-phenylene vinylene oligomers[J]. J ChemPhys,2000,112:9445.
    [21] HAGLER T W, PAKBAZ K, VOSS K F, HEEGER A J. Enhanced order andelectronic delocalization in conjugated polymers oriented by gel processing inpolyethylene[J]. Phys Rev B,1991,44:8652.
    [22] TUBIO R, DORDINVILLE R, LAM W, ALFANO R R, BIRMAN J L. Opticalproperties and photoexcitation of a novel liquid form of soluble polyacetylene[J].Phys Rev B,1984,30:6601.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700