用户名: 密码: 验证码:
獐牙菜苦苷生物转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
藏茵陈主要来源于龙胆科(Gentianaceac)獐牙菜属(Swertia)植物,该属植物多种中药、民族药及民间药均有长期治疗肝炎的临床背景。藏茵陈在《晶珠本草》、《四部医典》及《甘露本草明镜》等藏药经典著作中均有记载,主要功能为清热消炎、利胆退黄。主治各种热病,尤以治疗肝炎后高胆红素血症、急性黄胆肝炎、慢性肝炎而著称。獐牙菜苦苷是藏茵陈的主要活性成分之一。
     采用三株真菌:黑曲霉、米曲霉和康氏木霉及二株肠内菌:短乳杆菌和大肠杆菌对獐牙菜苦苷转化后发现,短乳杆菌和大肠杆菌对獐牙菜苦苷没有可见的转化作用;三株真菌均对獐牙菜苦苷起到了一定程度的转化作用,生成了三个产物。黑曲霉对獐牙菜苦苷的转化率最高,达到36%,米曲霉和康氏木霉次之,分别为15%和8%。
     獐牙菜苦苷转化液经分离、纯化得到两个转化产物,经过波谱解析鉴定为:(5Z)-5-ethylidene-8-hydroxy-3,4,5,6,7,8-hexahydro-1H-pyrano[3,4-c]pyridin-1-one(M1)和红百金花内酯(M3)。红百金花内酯是一个已知的活性化合物,具有保护皮肤细胞的作用;M1为一个新化合物。体外抗菌活性研究表明,M1对金黄色葡萄球菌和大肠杆菌具有一定程度的抑制活性。
     黑曲霉培养液经硫酸铵沉淀、透析及DEAE-Sepharose凝胶柱分离、纯化,得到了一个与獐牙菜苦苷转化相关的β-葡萄糖苷酶。经测定此酶分子量约为88 KDa,最适pH 5.0-6.0,最适温度为50-60℃。在60℃以下有良好的热稳定性。Mg2+和Mn2+对此酶具有一定的激活作用,而Ca2+、Zn2+、Fe3+和Cu2+则能抑制该酶;ρ-NPG与纤维二糖是其合适的底物,獐牙菜苦苷次之;葡萄糖对该酶的抑制常数为0.25 mM,表明葡萄糖对该酶具有较强的抑制能力。
     转化条件优化结果表明,在变温培养条件下,产M1的最优转化培养基为MgSO_4·7H_2O 5.14 mg/mL,MnSO_4·4H_2O 3.42 mg/mL,葡萄糖9.95 mg/mL,蛋白胨9.24 mg/mL,pH 5.80,M1的最大转化产率为17.64 %;产M3的最优化转化培养基为:MgSO_4·7H_2O 4.09 mg/mL,MnSO_4·4H_2O 6.07 mg/mL,葡萄糖7.37 mg/mL,酵母膏7.37 mg/mL,pH 5.73,M_3的最大转化产率为8.81 %。
Three fungi (Aspergillus niger, Aspergillus oryzae and Trichoderma koningii) and two intestinal bacteria (Lactobacillus brevis CICC 6004 and Escherichia coli CICC 10032) were applied to the biotransformation of swertiamarin. The result showed that only the three fungi are able to transform swertiamarin into three metabolites. Of the three fungi, Aspergillus niger was found to has the highest ability of metabolizing swertiamarin (approximately 36%).
     The purification of the metabolites was carried out by liquid-liquid extraction followed by semi-preparative HPLC separation. As a result, 11 mg of M1 (96% in purification) and 6 mg of M3 (95%in purification) were obtained. The structures of two metabolites were identified by NMR, high resolution MS, UV and IR spectra as (5Z)-5-ethylidene-8-hydroxy-3,4,5,6,7,8-hexahydro-1H-pyrano[3,4-c]pyridin-1-one and erythrocentaurin. Erythrocentaurin is a known active compound and the former was a novel compound. The following study of the in vitro anti-bacteria action showed that the novel compound has an activity of inhibiting the growth of Staphylococcus aureus and Escherichia coli.
     Theβ-glucosidase participating in the transformation of swertiamarin was isolated and purified from the broth of Aspergillus niger. The molecular weight of this enzyme was determined as approximately 88 KDa. The optimal pH and temperature were tested as 5.0-6.0 and 50-60℃, respectively. The enzyme was stable under the temperature lower than 60℃for 12 h. Mg2+ and Mn2+ activate, but Ca2+, Zn2+, Fe3+ and Cu2+ inhibit the enzyme. The enzyme has a high affinity atρ-NPG and cellobiose, but swertiamarin was proved to be a poor substrate of the enzyme. The inhibition constant of glucose on the enzyme was 0.25mM, which suggested that theβ-glucosidase could be completely inhibited by high concentration of glucose.
     The optimization of medium showed that the optimal concentrations of components of medium for producing M1 were MgSO4·7H2O 5.14mg/mL, MnSO4·4H2O 3.42 mg/mL, glucose 9.95mg/mL, peptone 9.24mg/mL and pH 5.80, and the biotransformation ratio for M1 was 17.64 %. The optimal concentrations of components of medium for producing M3 were MgSO4·7H2O 4.09mg/mL, MnSO4·4H2O 6.07mg/mL, glucose 7.37mg/mL, yeast extracts 7.37mg/mL and pH 5.73, and biotransformation ratio for M3 was 8.81 %.
引文
[1] Takashi K., Yutaka T., The structure of swertiamarin, Tetrahedron Letters, 1961, 2(5): 176-182.
    [2]中国科学院植物志编辑委员会,中国植物志,北京:科学出版社,1988,354-411.
    [3]淮虎银,郭继明,胡芳弟,国产獐牙菜属药用植物资源,甘肃科学学报,1995,7(4):29-32.
    [4]郭爱华,龙胆科獐牙菜属药用植物化学成分和药理作用的研究进展,山西中医学院学报,2005,6(1):57-59.
    [5]李福双,徐康平,谭健兵,高效液相色谱法测定川东獐牙菜中獐牙菜苦苷,中南药学,2003,1(3):475-476.
    [6]王世盛,徐青,肖红斌,抱茎獐牙菜中的苷类成分,中草药,2004,35(8): 847-849.
    [7]孙洪发,胡伯林,丁经业等,川西獐牙菜甙类成分,植物学报,1991,38(1):31-37.
    [8]李玉林,丁晨旭,刘健全等,红直獐牙菜的苷类成分,中草药,2002,33(02):104-106.
    [9]陈家春,程改平,乔明等,高效液相色谱法测定紫红獐牙菜中獐牙菜苦甙的含量,中国医院药学杂志,1994,14(8):356-358.
    [10] Helen M.B., Rahman M., Gray M., Alexander I., et al, Swertiamarin from Enicostemma axillare subsp.Axillare (gentianaceae), Biochemical Systematics and Ecology, 2003, 31(5): 553-555.
    [11]陈家春,川、鄂獐牙菜属药用植物的品质和贵州獐牙菜化学成分的研究,博士学位论文,成都中医药大学,2003.
    [12]王志平,张玉臣,王宁平等,复方藏茵陈胶囊药理研究,青海医药杂志,1998,28(2):54-55.
    [13] Yujiro N., Takashi Y., Yoshijiro N., et al, Gastroprotective effects of bitter principles isolated from gentian root and swertia herb on experimentally-induced gastric lesions in rats, J Nat Med, 2006, (60): 82-88.
    [14]参木娜,藏茵陈治疗急性黄疸型肝炎疗效观察,西藏科技,1996,(71):38-39.
    [15] Johji Y., Makoto K., Hisashi M., et al, Anticholinergic action of Swertia japonica and an active constituent, Journal of Ethnopharmacology, 1991, 33(1): 31-35.
    [16] Kumarasamy Y., Nahar L., Cox P.J., et al, Bioactivity of secoiridoid glycosides from Centaurium erythraea, Phytomedicine, 2003, 10(4): 344-347.
    [17] Bhattacharya S.K., Reddy P.K., Ghosal S., et al, Chemical constituents of gentianaceae xix: cns-depressant effects of swertiamarin, J Pharm Sci, 1976, 65(10): 1547-1549.
    [18]陈千良,孙文基,裂环烯醚萜类化合物研究进展,国外医药.植物药分册,2003,18(2):58-63.
    [19]乔卫,张彦文,吴寿金,天然环烯醚萜苷类化合物的生物活性,国外医药.植物分册,2001,16(2):65-67.
    [20]王芸,杨峻山,獐牙属植物的研究概况,天然产物研究与开发,1992,(3):99-114.
    [21]卞庆亚,侯翠英,陈建民,抱萼獐牙菜的化学成分研究,天然产物研究与开发,1996,10(1):1-5.
    [22] Karan M., Activity of Swertia chirata against paracetamol and D-galactosamine-induced liver injury in rats, Phytother, 1999, 13(2): 95-101.
    [23]彭芳,方春生,刘晓波等,紫红獐牙菜对实验性慢性肝损伤的保护作用,中成药,2004,26(4):306-308.
    [24]杜继曾,李庆芬,陈晓光,川西獐牙菜对低张性低氧肝损伤的保护作用,药学学报,1983,18(3):174-178.
    [25]刘占文,陈长勤,金若敏,龙胆苦甙的保肝作用研究,中草药,2002,33(1):47-50.
    [26]李富银,丁经业,藏药“藏茵陈”系列治疗肝炎的进展,中国药房,1995,6(3):38-39.
    [27] Changrasekar B., Bajpai M.B., Mukherjee S.K., Hypolglycemic activity of Swertia chirayita, Indian J Exp.Biol, 1990, 28(7): 616-618.
    [28] Saxena A.M., Bjpai M.B., Mukherjee S.K., Swerchirin indeced blood sugar lowering of streptozotocin treated by hyperglycemic rats, Indian J Exp.Biol, 1991, 29(7): 674-675.
    [29] Bajpai M.B., Asthana R.K., Sharma N.K., Hypoglycemic effect of swerchirin from hexane fraction of Swertia chirayita, India J Exp.Biol, 1991, 57(2): 102-104.
    [30] Saxena A.M., Bjapai M.B., MUrthy P.S., Mechanism of blood sugae lowering by a hexane fraction of Swertia chirayita, Indian J Exp.Biol, 1993, 31(2): 178-181.
    [31]彭芳,刘光明,刘晓波等,云南彝族药紫红獐牙菜的研究进展,中华现代医学与临床,2005,2(7):3-4.
    [32]彭芳,方春生,紫红獐牙菜对实验性糖尿病保护作用的研究,中国中医药科技,2003,10(2):96-97.
    [33] Rafatullah S., Tariq M., Mossa J.S., Protective effect of Swertia chirata against indomethacin and other ulcerogenic agent-induced gastric ulcers, Drugs Exp.Clin.Res, 1993, 19(2): 69-73.
    [34]吕小满,徐芳雄,彭芳,紫红獐牙菜对在体及离体肠肌的影响,大理学院学报:综合版,2006,5(8):73-75.
    [35] Ramesh N., Viswanathan M.B., Saraswathy A., Antimicrobial and phytochemical studies of Swertia corymbosa, Fitoterapia, 2002, 73: 160-164.
    [36] Rodriguez S., WolfenderJ.L., Hakizamurgu E., An antifungal naphthoquinone, xanthones and secoiridoids from Swetia calysina, planta medica, 1995, 61(4): 362-364.
    [37]曹长年,米琴,屠兰英等,川西獐牙菜有效成分的分离及其抑菌活性测定,青海大学学报:自然科学版,2004,22(1):16-18.
    [38]孔德云,徐康平,徐平声,伸梗獐牙菜的甙类成分,中草药,1995,26(1):7-10.
    [39]田峦鸢,黄凤娇,张秀桥等,紫红獐牙菜醋酸乙酯部位体外抗乙型肝炎病毒作用的研究,湖北中医学院学报,2006,8(1):5-7.
    [40] Mandal S., Dos P.C., Joshi P.C., Anti-inflammatory action of Swertia chirata, Fitoterapia, 1992, 63(2): 122-128.
    [41]乔慧军,赵兴涛,彭芳,紫红獐牙菜抗炎作用的实验研究,大理学院学报:综合版,2005,4(5):38-40.
    [42]徐芳雄,吕小满,彭芳,紫红獐牙菜对戊巴比妥钠作用的影响,大理学院学报:综合版,2006,5(8):76-77.
    [43] Ashida S., Noguchi S.F., Suzuki T., Antioxidative components, xanthone derivatives in Swertia japonica, J AM.Oil.Chem.Soc, 1994, 71(10): 1095-1099.
    [44]《中药辞海》,北京:中国医药科技出版社,1996,990-901.
    [45]赵李剑,左泽乘,邹洪波等,川东獐牙菜苦甙类成分的提取及其体外抗肿瘤作用研究,中医药导报,2006,12(5):62-64.
    [46]彭芳,刘晓波,方春生等,紫红獐牙菜利胆作用的实验研究,大理学院学报:综合版,2005,4(1):27-28.
    [47]王世盛,藏茵陈活性组分的制备分离和化学表征,博士学位论文,中国科学院研究生院,2004.
    [48] Shimizu S., Hatton S., Hata H., et al, Stereoselective enzymatic oxidation and reduction system for the production of d-(-)-pantoyl lactone from a racemic mixture of pantoyl lactone, Enzyme Microb. Technol, 1987, 9(4): 411-416.
    [49] himizu S., Hattori S., Hata H., et al, One-step microbial conversion of a racemic mixture of pantoyl lactone to optically active d-(-)-pantoyl lactone, Applied and Environmental Microbiology, 1987, 53(3): 519-522.
    [50] Glanzer B. I., Faber K., Griengi H., Mocrobial resolution of o-acetylpantoyl lactone, Enzyme Micro. Technol., 1988, 10(11): 689-690.
    [51]诸志义,生物合成药物学,上海:上医科大学出版社,1991,92-100.
    [52]宋正孝,李晓敏,王诊等,固定化米曲霉菌体细胞光学拆分d,l-丙氨酸,生物工程学报,1997,13(1):168-173.
    [53]王俊,李保安,陈长治,梨头霉菌在有机相中的最适固定化条件及其反应特性的研究,工业微生物,1996,26(1):12-16.
    [54] Nakamura K., Kawai Y., Oka S., et al, A new method for stereochemical control of microbial reduction.reduction ofβ-keto esters with bakers' yeast immobilized by magnesium alginate, Tetrahedron Letters, 1989, 30(17): 2245-2246.
    [55] Nakamura K., Higaki M., Ushio K., Oka S., Ohno A., et al, Stereochemical control of microbial reduction. 2. Reduction ofβ-keto esters by immobilized bakers' yeast, Tetrahedron Letters, 1985, 26(35): 4213-4216.
    [56] Nakamura K., Ushio K., Shinazaburo O., et al, Stereochemical control in yeast reduction, Tetrahedron Letters, 1994, 25(36): 3979-3982.
    [57] Ushio K., Inouye K., Nakamura K., et al, Stereochemical control in yeast reduction 4. Effect of cultivation conditions on the reduction of p-keto esters by methylotrophic yeasts, Tetrahedron Letters, 1986, 27(23): 2657-2660.
    [58]吴少杰,杨志娟,朱丽华,甘草皂苷生物转化的研究,中草药,2003,34(6): 516-518.
    [59] Simon H., Bader J., Gtlnther H., et al, Chiral compounds synthesized by biocatalytic reductions, Angew. Chem. Int. Ed. Engl., 1985, 24(7): 539-553.
    [60] Keshetty S., Ciddi V., Biotransformation of drugs by microbial cultures for predicting mammalian drug metabolism, Biotechnology Advances, 2003, 21: 3-39.
    [61] Ogawa J., Shimizu S., Microbial enzymes: new industrial applications from traditional screening, Tibtech, 1999, 17 (1): 13-20.
    [62]沈同,王镜岩,生物化学,北京:高等教育出版社,1990.
    [63] Suzukl T., Idogaki H., Kasia N., Dual production of highly pure methyl (r)-4-chlaro-3-hydroxybutyrate and (s)-3-hydroxy-γ-butyrolactone with Enterobacter sp, Enzyme and Microbial Technology, 1999, 24: 13-20.
    [64] Bernardi R., Cardillo R., Ghiringhelli D., Production of (R)-1-(1, 3-dithian-2-yl) propan-2-ol by microbial reduction, Journal of the Chemical Society-Perkin Transactions.1, 1987: 1607-1608.
    [65]夏仕文,尉迟力,李树本,单相和两相发酵体系中methylomonas z201细胞的生长和环氧丙烷的合成,微生物学报,1998,38(5):371-375.
    [66]夏仕文,尉迟力,李树本,水-有机溶剂两相体系中甲基单胞菌z201催化丙烯环氧化的初步研究,生物工程学报,1997,13(4):446-449.
    [67] Shimizu S., Kataoka M., Katoh M., Morikawa T., Miyoshi T., Yamada H., Stereoselective reduction of ethyl 4-chloro-3-oxobutanoate by a microbial aldehyde reductase in an organic solvent-water diphasic system, Applied and Environment Microbiology, 1990, 56(8): 2374-2377.
    [68] Molinari F., Occhiato E.G., Aragozzini F., et al, Microbial biotransformations in water/organic solvent system——enantioselective reduction of aromaticβ-andγ-nitroketones, Tetrahedron: Asymmetry, 1998, 9: 1389-1394.
    [69] North N., Baker's yeast reduction ofβ-keto esters in petrol, Tetrahedron Letters, 1996, 37(10): 1699-1702.
    [70] Yang H., Jonsson A., Wehtje E., et al, The enantiomeric purity of alcohols formed by enzymatic reduction of ketones can be improved by optimization of the temperature and by using a high co-substrate concentration, Biochimica Biophysica Acta, 1997, 1336 (1): 51-58.
    [71] Dahl A.C., Madsen J., Production of d- and l-3-hydroxy esters, Tetrahedron: Asymmetiy, 1998, 9: 4395-4417.
    [72] Wada M., Kataoka M., Kawabata H., et al, Purification and characterization of nadph-dependent carbonyl reductase, involved in stereoselective reduction of ethyl 4-chloro-3-oxobutanonate, from candida magnoliae, Biosci. Biotechnol. Biochem., 1998, 62(2): 280-285.
    [73] Shimizu S., Kataoka M., Kita K., Chiral alcohol synthesis with yeast carbonyl reductases, Journal of Molecular Catalysis B: Enzymatic, 1998, 5: 321-325.
    [74] Nakamura K., Kawai Y., Nakajima N., et al, Tereochemical control of microbial reduction. 17. A method for controlling the enantioselectivity of reductions with bakers' yeast, J. Org. Chem., 1991, 56: 4778-4783.
    [75] Wong C., Drueckhammer D., Sweers H.M., Enzymatic vs. Fermentative synthesis: thermostable glucose dehydrogenase catalyzed regeneration of NAD(P)H for use in enzymatic synthesis, J. Am.Chem. SoC., 1985, 107: 4028-4031.
    [76] Davoli P., Forni A., Moretti I., et al, (r)-(+) and (s)-(-)ethyl 4,4,4-trifluoro-3-hydroxy butanoate by enantioselective baker's yeast reduction, Enzyme and Microbial Technology, 1999, 25: 149-152.
    [77] Dahl A.C., Fjeldberg M., Madsen J., Baker's yeast: improving the d-stereoselectivity in reduction of 3-oxo esters, etrahedron.Asymmetry, 1999, 10: 551-559.
    [78] Shimizu S., Kataoka M., Morishita A., et al, Microbial asymmetric reduction of ethyl 4-chloro-3-oxobutanoate to optically active ethyl 4-chloro-3-hydroxybutanoate, Biotechnology Letters, 1990, 12(8): 593-596.
    [79] Nakamura K., Kawai Y., Oka S., et al, Stereochemieal control in microbial reduction.8.stereochemical control in microbial reduction ofβ-keto esters, Bull. Chem. Soc.Jpn, 1989, 62: 875-879.
    [80] Rao G.P., Davis P.J., Microbial models of mammalian metabolism. Biotransformations of hp 749 (besipirdine) using cunninghamella elegans, Drug Metab Dispos, 1997, 25(6): 709-715.
    [81] Zhan J.X., Guo H.Z., HAN J., et al, Biotransformation of artemisinin by fermentation of rhizopus chinensis and Cunninghanella elegans, Chinese Traditional and Herbal Drugs, 2002, 33(10): 869-872.
    [82]刘磊,黄海华,孙璐等,短刺小克银汉霉菌对维拉帕米转化的能力,中国药理学与毒理学杂志,2002,16(4):292-298.
    [83]钦松,长林,小克银汉霉属的微生物转化在体外药物代谢模型研究中的应用,海峡药学,2004,16(1):4-8.
    [84] Smith R.V., Rosazza J.P., Microbial models of mammalian metabolism. Aromatic hydroxylation, Arch Biochem Biophys, 1974, 161(2): 551-558.
    [85]黄海华,钟大放,刘瑶等,黑曲霉菌对sfz一47的代谢转化,沈阳药科大学学报,1997,14(3):199-205.
    [86] Edyta K.S., Jadwiga D.G., Aganta B., et al, Microbial transformations of flavanone and 6-hydroxyflavanone by Aspergillus niger strains, Journal of Molecular Catalysis B: Enzymatic, 2006, 39: 18-23.
    [87] Hassane L.E., Yoshiaki N., Toshihiro H., et al, Microbial transformation of dehydropinguisenol by Aspergillus sp, Phytochemistry, 2000, 54: 455-460.
    [88] Mitsuo M., Katsuyuki Y., Hiromu K., Biotransformation of the monoterpenoid, rose oxide, by aspergillus niger, Phytochemistry, 1995, 39(1): 85-89.
    [89] Zhang W., Zhan J.X., Ying C.J., et al, Biotrnasformation of three free anthraquinones by Mucor spinosus, Chin J Nat Med, 2003, 1(4): 219-223.
    [90] Zhang D., Frederick E.E., James F.P., et al, Formation of mammalian metabolites of cyclobenzaprine by the fungus, Cunninghamella elegans, Chemico-Biological Interactions, 1996, 102(2): 79-92.
    [91] Joanna D., Moody, Zhang D., Thomas M., Heinze, Cerniglia C.E., Transformation of amoxapine by Cunninghamella elegans, Applied and Environmental Microbiology, 2000, 66(8): 3646-3649.
    [92] Zhang D., Evans F.E., Freeman J.P., Duhart B., Cerniglia C.E., Biotransformation of amitriptyline by Cunninghamella elegans, 1995, 23(12): 1417-1425.
    [93] Foster G.R., Lister D.L., Zamecnic J., et al, The biotransformation of tranylcypromine by Cunninghamella echinulata, Can J Microbiol, 1991, 37: 791-795.
    [94] Foster B.C., Buttar H.S., Qureshi S.A., et al, Propranolol metabolism by Cunnighamella bainieri, Xenobiotica, 1989, 19: 539-546.
    [95] Takashi K., Yutaka T., Derivatfon of gentianin from swertiamarin, Tetrahedron Letters, 1961, (14): 453-454.
    [96]杨肖锋,宋纯清,天然产物研究中的人工产物,药学学报,1999,34(12):949-954.
    [97] Takashi K., Yutaka T., Derivation of gentianin from swertiamarin, Tetrahedron Letters, 1961, 2(13): 453-454.
    [98]小桥恭一,肠内フロ一ラによる药物代谢,微生物,1(4):26-31.
    [99]陈千良,孙文基,裂环烯醚萜类化合物研究进展,国外医药·植物药分册,2003,18(2):58-63.
    [100] Adell E.S., Shu Y.Z., Hattori K.M., et al, Metabolism of swertiamarin from Swertia japonica by human intestinal bacterial, Planta Medica, 1989, (55): 147-150.
    [101] Adell E.S., Hattori M., Kobashi, Metabolism of gentiopicroside (gentiopicrin) by human instestinal bacteria, Chem.Pharm.Bull, 1989, 37(9): 2435-2437.
    [102]杨肖锋,宋纯清,龙胆苦苷的肠内菌群代谢研究,25(11):673-670.
    [103]杨秀伟,郝美荣,服部征雄,中药成分代谢分析,北京:中国医药科技出版社,2003.
    [104]冯伟力,彭宝珠,藏茵陈等几种中藏药对小鼠免疫性肝炎的疗效观察,青海医学院学报,196,17(2):85~87.
    [105]杨顺标,中西医结合治疗肝炎后高胆红素血症36例,实用中医药内科杂志,2005,19(2):138.
    [106]苏海滨,王慧芬,李捍卫等,藏茵陈对肝脏慢性炎症治疗作用的观察,传染病信息,2003,16(3):132-133.
    [107]杨慧玲,刘建全,9种“藏茵陈”原植物中的7种有效化学成分研究,中草药,2005,36(8):1233-1237.
    [108]丁经业,孙洪发,藏茵陈抗肝炎有效成分的研究,中草药,1980,11(9):391-392.
    [109]国家中医药管理局,中华本草藏药卷,上海:上海科学技术出版社,2001,168-169.
    [110]青海省药品检验所编,中国藏药,上海:上海科学技术出版社,1990,157-160.
    [111]杨维霞,龙胆科药用植物化学成分的研究现状,中草药,1998,19(6):165-168.
    [112]国家医药管理局中草药情报中心站,植物药有效成分手册,北京:人民卫生出版社,1986,1008.
    [113]罗跃华,聂瑞麟,紫红獐牙菜的单萜环烯醚甙,云南植物研究,1993,15(1):97-100.
    [114]杨柳,许舜军,曾星,人参皂苷rb1在大鼠体内的药物代谢研究,高等学校化学学报,2006,27(6):1042-1044.
    [115]董阿玲,崔亚君,郭洪祝,人参皂苷rg1的微生物转化研究,中国药学:英文版,2001,10(3): 115-118.
    [116]陈继永,吴立军,滕厚雷,肠内菌群对七叶皂苷体外代谢转化产物的研究,中草药,2003,34(11):970-973.
    [117]史青,原人参萜二醇皂苷的肠细菌代谢物对肿瘤诱导新血管形成的抑制作用,国外医学:中医中药分册,2002,24(1):42-43.
    [118]沈岚,徐德生,冯怡,大鼠肠内菌对麦冬皂苷d代谢的研究,中国中药杂志,2005,30(8):618-620.
    [119]汤树良,松脂素二葡糖苷通过人肠微生物区系的生物转化,国外医学:中医中药分册,2004,26(2):114-114.
    [120]孙艳,李雪驼,殷素兰,肠道内微生态环境对中草药体内代谢的影响,中草药,2001,32(4):375-377.
    [121]孙力军,沈爱光,熊晓辉等,β-葡萄糖苷酶产酶发酵条件的优化研究,食品工业科技,1998,(5):22-24.
    [122]孙迎庆,曹淑桂,韩四平,β-葡萄糖苷酶的分离纯化和性质研究,生物学杂志,1997,14(5):12-15.
    [123]李平,宛晓春,丁霄霖等,黑曲霉β-葡萄糖苷酶的活力测定和酶学性质,安徽农业大学学报,1998,25(3):304-309.
    [124]王沁,赵学慧,黑曲霉β-葡萄糖苷酶的催化性质,天然产生研究与开发,1994,6(4):36-39.
    [125]刘小杰,陶飞,童纪峰,黑曲霉zj1摇瓶发酵产β-葡萄糖苷酶的研究,中国食品添加剂,2004,(3):27-31.
    [126] Sachiko M., Yong Y., Satya S.P., et al, Overproduction of [beta]-glucosidase in active form by an Escherichia coli system coexpressing the chaperonin groel/es, FEMS Microbiology Letters, 1998, 159(1): 41-46.
    [127] Masson L.T., Patrice P., Purification and characterization of two [beta]-glucosidases from an Aspergillus niger enzyme preparation: affinity and specificity toward glucosylated compounds characteristic of the processing of fruits, Enzyme and Microbial Technology, 1998, 22(5): 374-382.
    [128] Adell E.S., Hattori M., Kobashi K., Metabolism of gentiopicroside (gentiopicrin) by human intestinal bacteria, Chem Pharm Bull, 1989, 37(9): 2435-2437.
    [129] Adel E.S., Hattori M., Kobashi K., Metablism of sweroside from Swertia japonica by human intestinal bacteria, Shoyakugaku Zasshi, 1990, 44(2): 122-126.
    [130] Harrori M., Shu Y.Z., Shimizu M., Metabolism of paeoniflorin and related compounds by human interstinal bacteriaⅠ, Chem Pharm Bull, 1985, 33: 3838-3846.
    [131] Shu Y.Z., Hattori M., Akao T., Metabolism of paeoniflorin and related compounds by human intestinal bacteriaⅡ. Structures of 7s-and 7r-paeonimetabolinsⅰandⅱformed by Bacteroids fragilis and Lactobacillus brevis, Chem Pharm Bull, 1987, 35: 3726-3733.
    [132] Yang X.W., Zou C.T., Hattori M., HarpagometaboinsⅠandⅡ, two new metabolites from harpagoside by human interstinal bacteria, Chin Chem Lett, 2000, 11(9): 779-782.
    [133] Kawata Y., Hattori M., Akao T., Formation of nitrogen-containing metabolites from geniposide and gardenoside by human interstinal bacteria, Planta Medica, 1991, 57: 536-542.
    [134] Akao T., Kaobashi K., Aburada M., Enzymic studies on the animal and intestinal bacteria metabolism of geniposide, Pharm Bull, 1994, 17: 1573-1576.
    [135] Hattori M., Kawata Y., Inoue K., Transformation of aucubin to new pridine monoterpene alkaloids, aucubinines a and aucubinines b, by human intestinal bacteria, Phytotherapy Research, 1990, 4(2): 66-70.
    [136]董淑华,陈波,人参皂苷的体内代谢反应研究,人参研究,2003,15(1):2-6.
    [137]徐萌萌,王建芳,徐春等,微生物转化苷类中药的机理及应用,世界科学技术:中医药现代化,2006,8(2):24-27.
    [138] Bisaria V.S., Mishra S., Cellulase biosynthesis and regulation, CRC Crit.Rev.Biotechnol, 1989, 5: 61-103.
    [139] Sethi B., Mishra S., Bisaria V.S., Sorbose mediated enchancement of cellulase biosynthesis in Trichoderma reesei, Biotechnology and Bioprocess Engineering, 1995, 4(3): 189-194.
    [140] Decker C.H., Visser J., Schreier P.,β-glucosidase multiplicity from Aspergillus tubingensis cbs 643.92: purification and characterization of fourβ-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance, 2001, 55(2): 157-163.
    [141]彭喜春,彭志英,β-葡萄糖苷酶的研究现状及应用前景,江苏食品与发酵,2001,4(107):22-25.
    [142]闫会平,陈士华,吴兴泉,黑曲霉β-葡萄糖苷酶的研究进展,纤维素科学与技术,2007,15(1):59-53.
    [143]顾卫民,郭海风,沈爱光,β-葡萄糖苷酶产生菌、发酵条件的优化、粗分离及其特性研究,江苏食品与发酵,2001,4(107):12-16.
    [144] Bravo V., Paez M. P., Aoulad M., et al, The influence of temperature upon the hydrolysis of cellobiose by [beta]-1,4-glucosidases from Aspergillus niger, Enzyme and Microbial Technology, 2000, 26(8): 614-620.
    [145] Gnata Z., Vallier M., Production of a highly glucose-tolerant extracellularβ-glucosidase by three Aspergillus strains, Biotechnology Letters, 1999, 21(3): 219-223.
    [146] Adell E.S., Hattori M., Kobashi, Metabolism of sweroside from Swertia japonica by human instestinal bacteria, Shoyakugaku Zasshi, 1990, 44(2): 122-126.
    [147] Kawata Y., Hattori M., Akao T., Formation of nitro-containing metabolites from geniposide and gardenoside by human bacteria, Planta Medica, 1991, 57(2): 536-542.
    [148] Miyagoshi M., Amagawa S., Ogihara Y., Structure transformation of geniposide, gardenoside, and related compounds in rat gasterointestinal content, Planta Medica, 1988, 54: 556-557.
    [149] AdelI E.S., Shu Y.Z., Masao H., et al, Metabolism of swertiamarin from Swertia japonica by human intestinal bacteria, Planta Medica, 1988, 55: 147-150.
    [150] Decker C.H., Visser J., Schreier P.,β-glucosidase multiplicity from Aspergillus tubingensis cbs 643.92: purification and characterization of fourβ-glucosidases and their differentiation with respect to substrate specificity, glucose inhibition and acid tolerance, Applied Microbiology and Biotechnology, 2001, 55(2): 157-163.
    [151] Diomi M., Dimitris H.G., Paul C., Biochemical and catalytic properties of two intracellular [beta]-glucosidases from the fungus Penicillium decumbens active on flavonoid glucosides, Journal of Molecular Catalysis B: Enzymatic, 2004, 27(4-6): 183-190.
    [152]刘欣,崔昱,杨凌,糖苷酶与药物研发,天然产物研究与开发,2005,17(2): 223-228.
    [153]董淑华,陈波等,人参皂苷的体内代谢反应研究,人参研究,2003,15(1): 2-6.
    [154]马吉胜,周秋丽,真菌对人参皂苷rb1及人参二醇系皂苷的代谢作用,药学学报,2001,36(8):603-605.
    [155]冯冰,马百平,天然产物的生物转化研究进展,中草药,2005,36(6): 941-945.
    [156] Leskovac, Vladimir, Comprehensive enzyme kinetics, New York: Kluwer Academic Publishers, 2003.
    [157]王文仲,应用微生物学——现代生物技术,北京:中国医药出版社,1996.
    [158]金赞敏,鱼红闪,金凤燮,人参皂苷-α-鼠李糖苷酶分离提纯及其酶性质,大连轻工业学院学院,2003,22(3):103-106.
    [159] Paloma M., Hetty C., Vanden B., et al, Puritification and characterization of two differentα-L-rhamnosidases, rhaa and rhab, from Aspergillus aculeatus, Applied and Enviromental Micromology, 2001, 67(5): 2230-2234.
    [160] Manzanares P., Orejas M., Ibanez E., et al, Purification and characterization of anα-L-rhamnosidase from Aspergillus nidulans, Letter in Applied Mciromology, 2000, 31: 198-202.
    [161] Paloma M., Graaff Leo H., Visser J., Purification and characterization of aα-L-rhamnosidases from Aspergillus niger, FEMS Microbiology Letters, 1997, (157): 279-283.
    [162]潘锋,杨树林,吏小丽,黑曲霉纤维素酶的纯化及酶学性质研究,生物技术,2001,11(3):7-8.
    [163]钟琦,关怡新,姚善泾,米曲氨基酰化酶的提取及其酶学性质的表征,食品与发酵工业,2004,30(3):36-41.
    [164]田亚平,金其荣,黑曲霉β-D-甘露聚糖酶的纯化及其本性质,无锡轻工大学学报,1998,17(2):16-21.
    [165]曹健,郭德宪,曾实,里氏木霉纤维素酶的纯化和性质,食品科学,2003,24(5):72-75.
    [166] Daniela M., Andrea P., Vladimir K., Generation of aα-L-rhamnosidase library and its application for the selective derhamnosylation of natural products, Biotechnology and Bioengineering, 2004, 87(6): 763-771.
    [167]马百平,冯冰,熊呈琦,甾体皂苷的生物转化研究,第二届全国天然活性质生物转化学术研讨会,大连2004,35.
    [168]王亮,游松,蒋雅红,利用重组f26g酶实现呋甾皂苷向螺甾皂苷的体外生物转化,中国药物化学杂志,2001,11(6):326-328.
    [169] Jin J.M., Liu X.K., Teng R.W., Enzymatic degradation of parvifoside, Acta Botanica Sinica, 2002, 44(10): 1243-1249.
    [170]王振宇,鱼红闪,金凤燮,高温厌氧菌产纤维素内切酶和β-葡萄糖苷酶的活性,大连轻工业学院学报,2005,24(2):110-114.
    [171]祝长青,李艳红,周辉等,黑曲霉β-葡萄糖苷酶基因的分离,华中师范大学学报(自然科学版),2007,41(1):102-107.
    [172]李剑梅,修翠娟,李莉等,菌源性β-葡萄糖苷酶特性的研究,饲料工业,2007,28(2):32-34.
    [173]夏涛,童启庆,董尚胜等,红茶萎凋发酵中β-葡萄糖苷酶的活性变化,茶叶科学,1996,16(1):63-66.
    [174]李志强,廖祥儒,陆芳,碧桃(Prunus persica)叶中β-葡萄糖苷酶的分离纯化和某些特性分析,植物生理学通讯,2007,43(2):359-362.
    [175]潘利华,罗建平,桂蕾等,蚕豆β-葡萄糖苷酶的分离纯化及其性质研究,精深加工,2007,(2):88-91.
    [176]车建美,刘波,朱育菁等,黄瓜尖孢镰刀茵发酵过程中β-D-葡萄糖苷酶活性的变化,武夷科学,2006,22(6):166-169.
    [177] Maria A.V., Juan U.I., Sarath G.B., et al, Characterization of an exocellular [beta]-glucosidase from Debaryomyces pseudopolymorphus, Enzyme and Microbial Technology, 2006, 39(2): 229-234.
    [178] Hu Y., Luan H.W., Hao D.C., et al, Purification and characterization of a novel ginsenoside-hydrolyzingβ-D-glucoseidase form the China white Jade snail (achatina fulica), Enzyme and Microbial Technology, 2007, 40(5): 1358-1366.
    [179] Barbagallo R.N., Palmeri R., Fabiano S., et al, Characteristic ofβ-glucosidase from sicilian blood oranges in relation to anthocyanin degradation, Enzyme and Microbial Technology, 2007, 41: 570-575.
    [180] Gunata Z., Vallier J., Sapis J.C., et al, Enzymatic synthesis of monoterpenylβ-D-glucosidases by variousβ-glucosidases, Enzyme and Microbial Technology, 1994, 16(12): 1055-1058.
    [181] Shinoyama H., Takei K., Ando A., et al, Enzymatic synthesis of useful alkyl-β-glucosidases, Agric. Biol. Chem, 1991, 55(6): 1679-1681.
    [182] Rodrigo S.R.L., Eleni G., Roberto D.S., Characterization and comparison of thermostability of purifiedβ-glucosidases form a mesophilic Aureobasidium pullulans and a thermophilic Thermoascus aurantiacus, Process Biochemistry, 2007, 42: 1101-1106.
    [183] Mozhaev V.V., Martinek K., Structure-stability relationship in proteins: a guide to approaches to stabilizing enzymes, Advance of Drug Delivery Review, 1990, 4: 387-419.
    [184] Venturi L.L., Polizeli M.D.L., Terenzi H.F., et al, Extracellularβ-D-glucosidase from Chaetomium var. Coprophilum: production, purification and some biochemical properties, Journal of microbiology, 2002, 42(1): 55-66.
    [185] Bravo V., Paez M.P., Aoulad M., et al, The influcence of temperature upon the hydrolysis of cellobiose byβ-1,4-glucosidase from Aspergillus niger, Enzyme and Microbial Technology, 2000, 26: 614-620.
    [186] Mchale A., Coughan M.P., Properties of theβ-glucosidases of Talaromyces emersonii, Journal of General Microbiology, 1982, 128: 2327-2331.
    [187] Watanabe T., Sato T., Yoshioka S., et al, Purification and properties of Aspergillus nigerβ-glucosidase, European Journal of Biochemistry, 1992, 209: 651-659.
    [188] Zhang C.Z., Li D., Yu H.S., et al, Purification and characterization of piceid-β-D-glucosidase from Aspergillus oryzae, Process Biochemistry, 2007, 42: 83-88.
    [189] Dekker R.F.H., Kinetic, inhibition, and stability properties of a commercialβ-D-glucosidase (cellobiase) preparation from Aspergillus niger and its suitability in the hydrolysis of ligno cellulose, Biotechnology and Bioengineering, 1986, 28: 1438-1442.
    [190] Villena M.A., Iranzo J.F.U., Gundllapalli S.B., et al, Characterization of an exocellularβ-glucosidase from Debaryomyces pseudopolymorphus, Enzyme and Microbial Technology, 2006, 39(2): 229-234.
    [191] Nakkharat P., Dietmar H., Purification and characterisation of an intracellular enzyme withβ-glucosidase and galactosidase activity from the thermophilic fungus Talaromyces thermophilus cbs 236.58, Journal of Biotechnology, 2006, 123: 304-313.
    [192] Oykola O.O., Ngesi N., Whiteley C.G., Isolation,purification and characterisation of an endoglucanase andβ-glucosidase from an anaerobic Sulphidogenic bioreactor, Enzyme and Microbial Technology, 2007, 40: 637-644.
    [193] Fukuda K., Mori H., Okuyama M., et al, Identification of essential inoizable group and evaluation of subsite affinities in the active site ofβ-d-glucosidase f1 from a Streptomyces sp, Biosco. Biotechnol. Biotechem, 2002, 66(10): 2060-2067.
    [194] Decher C.H., Visser J., Schreier P.,β-glucosidase multiplicity from Aspergillus tubingensis cbs 643.92: purification and characterization of fourβ-glucosidase and their differentation with respect to substrate specificity, glucose inhibition and acid tolerance, Appled Micorbiology and Biotechnology, 2001, 55: 157-163.
    [195] Mamma D., Dimitris, Hatzinilolaou G., et al, Biochemical and catalytic properties of two intracellularβ-glucosidases from the fungus Penicillium decumbens active on flavonoid glucisidse, Journal of Molecular Catalysis B: Enzymatic, 2004, 27: 183-190.
    [196] Wallecha A., Mishra S., Purification and characterization of twoβ-glucosidases from a thermo-tolerant yeast Pichia etchellsii, Biochimica et Biophysica Acta, 2003, 1649: 74-84.
    [197] Woodward J., Wiseman A., Fungal and otherβ-glucosidases—their properties and applications, Enzymes Microb.Technol, 1982, 4: 73-79.
    [198] Kwon S.K., Kang H.G., Hah Y.C., Purification and characterization of two extracellularβ-glucosidase from Aspergilus nidulans, FEMS Microbiol, 1992, 97: 149-154.
    [199] Yang T.R., Lin C.L., Purification and characterization of a glucose-tolerantβ-glucosidase from Aspergillus niger ccrc 3149, Biosci.Biotechnol.Biochem, 1997, 61: 965-970.
    [200] Riou C., Salmon J.M., Vallier M.J., et al, Purification, characterization and substrate specificity of a novel highly glucose-tolerantβ-glucosidase from Aspergillus niger, Applied and Enviromental Microbiology, 1998, 64(10): 3607-3614.
    [201] Yan T.R., Lin C.L., Purification and characterization of a glucose-tolerantβ-glucosidase from Aspergillus niger ccrc 31494, Bioscience, Biotechnology and Biochemistry, 1997, 61(6): 965-970.
    [202] Legler G., Glycoside hydrolases: mechanistic information from studies with reversible and irreversible inhibitors, Adv Carbohyd Chem Biochem, 1990, 48: 319-323.
    [203]于海,郭秀梅,方慧英等,洛伐他汀转化菌株的筛选及发酵条件,无锡轻工大学学报,2003,22(1):96-98.
    [204] Josep A., Perez P., Xavier R., et al, Induction and premiliminary characterization of intracellularβ-glucosidases from a Cellulolytic streptomyces strain, FEMS Microbiology Letters, 1995, 128: 235-239.
    [205] Gokhale D.V., Patil S.G., Bastawde K.B., Protection of Aspergillus niger cellulases by urea during growth on glucose or glycerol supplemented media, Applied Biochemistry and Biotechnology, 1992, 37: 11-17.
    [206] Matsuoka T., Miyakoshi S., Tanzawa K., Purification and characterization of cytochrome P450 from Streptomyces carbophilun , European Journal of Biochemistry, 1998, 184: 707-713.
    [207] Nemeth K., Plumb G.W., Berrin J.W., et al, Deglycosylation by small intestinal epithelial cellβ-glucosidases is a criticle step in the absorption and metabolism of dietary flavonoid glycosides in humans, European Journal of Nutrition, 2003, 42: 29-42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700