用户名: 密码: 验证码:
水力自动滚筒闸门振动特性的试验研究及数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着工农业发展,在我国原本水资源短缺的北方地区,水资源供需矛盾更加突出。即便这样,对于现有的水资源,有些却不能得到合理的利用,如多泥沙洪水资源的利用就一直难以实现。本文研究的水力自动滚筒闸门,在泥沙淤积的情况下仍可实现开启自如,有效利用洪水资源。之前的研究工作充分证实了新型水力自动滚筒闸门在泥沙淤积情况下可以自如开启的可行性,目前为将这一构想应用于实践工程,须对滚筒闸体在动水压力作用下的强度、刚度和稳定性等工程问题进行研究。水力自动滚筒闸门开启前的闸体于静水压力作用下的强度、刚度和稳定性比较容易计算。但滚筒闸门在开启后,若要计算作用在其上的动水压力引起的闸体振动特性,尤其是关于振动和稳定性的设计及计算,目前为止尚未见现成的计算方法可供参考。本文在模型试验和数值模拟的基础上,结合理论分析,研究了水力自动滚筒闸门在动水压力作用下的变形及振动分布规律。具体如下:
     (1)通过模型试验,研究了在不同筒下开度和上游水深的工况下,圆筒表面各特征点在动水压力作用下的振动加速度、振动幅值及振动频率的变化规律。
     (2)采用数值方法模拟研究了水流中水力自动滚筒闸门的动力学特性。通过数值模拟方法将动水压力作用在圆筒表面,进一步确定圆筒闸体表面的应力、应变分布及振动变形变化规律。对横置于水流中滚筒闸体表面振动幅值分布情况与试验结果进行比较研究,据此对水力自动滚筒闸门在今后的设计提供指导。
     (3)采用数值模拟方法对浸入水中的圆柱壳体进行模态分析,确定圆柱壳体在水中的振动频率及振型分布情况,为水力自动滚筒闸门在未来的合理设计提供依据。
     主要结论如下:
     (1)滚筒闸体沿迎水面从圆筒顶部至底部在动水压力作用下振动加速度分布呈先增大后减小再增大的趋势,在圆筒中心线以下振动加速度值最小,在靠近圆筒底部及顶部振动加速度值较大。
     (2)筒下开度h一定,圆筒表面振动位移幅值随闸体上游水深H的升高而增大。当闸体上游水深在筒顶附近时,圆筒闸体振动位移值最大,随后随上游水位的继续增高而逐渐减小。
     (3)当闸体上游水深H一定,筒下开度h变化,上游水深在筒顶以上时,圆筒闸体振动幅值随筒下开度的增加主要呈现增大的趋势。而当水面线在筒顶以下时圆筒闸体的振动随筒下开度的增大呈减小的趋势。
     (4)通过加速度功率谱分析结果确定了圆筒闸体的振动主要表现为低频振动,远离脉动水压的脉动主频f=50Hz,表明筒体结构的模型试验设计是合理的。
     (5)通过单向及双向流固耦合的比较分析表明,双向流固耦合结果与实测结果更加接近,符合实际情况。最终确定采用双向流固耦合方法进行数值模拟分析。
     (6)在模拟计算结果中可以看出筒体在动水压力作用下的最大位移主要发生在沿水流方向的筒顶位置。同时在底部的铰接点处应力、应变最大,需要在运行中加以注意。
     (7)通过模拟计算结果与实验所测定结果的比较,证明了其变化趋势基本吻合,均当圆筒顶部在水面线附近时闸体的振动位移达到最大。
     (8)通过数值模拟方法进行了圆柱筒体在水中模态的分析,为最终筒体的合理设计提供依据。
With development of industry and agriculture, water resources contradictionbetween supply and demand is increasingly prominent in the North areas of China, inwhich short of water resources. However it is true that the existing water resources can notbe used reasonably. For example, there are a series of problem in the process of utilizingsediment-laden and high silt concentration flood resources. With study on the new typehydro-automatic roller gate which can be open and close automatically under sedimentdeposition situation, it is possible to utilize such flood resources effectively. A series ofhydraulic-model experiments approved the assumption about new type hydro-automaticroller gate in this paper feasible. Such gate could work automatically under the waterpressure while silting in front of the gate. In order to design the hydro-automatic roller gatecorrectly, it is important to study the strength, stiffness and stability of the hydro-automaticroller gate which is subjected to the hydrodynamic pressure accurately. It is easy to solvethe problems about the strength, stiffness and stability of the hydro-automatic roller gatewhich is under hydrostatic pressure before the gate is opening. However after the gateopening, the related calculation method about the gate under the hydrodynamic pressure isnot available, especially the calculation and design method about vibration anddeformation of Automatic Rolling Gate. In this thesis the distribution Law of deformationand vibration of cylinder gate under the hydrodynamic pressure, which is transverselyplaced in the water flow, are studied with methods of model experiments, numericalstimulation and theory analysis.
     Main research contents are as follows:
     (1)Through hydraulic-model experiments, variation law of vibration acceleration, vibrationamplitude and vibration frequency under the hydrodynamic pressure for the eachcharacteristic points on the cylinder gate surface are discussed under different upper leveland jaw opening situations.
     (2) Mathematical modeling is built on the base of physical model. So the hydrauliccharacteristic of the cylinder gate that is transversely placed in the water flow is analysis by the numerical simulation method. The hydrodynamic pressure are placed on thecylinder gate surface by the numerical simulation method to determinate the distribution ofstress and strain, and variation law of deformation on it. The distribution situation ofvibration amplitude of the cylinder gate that is transversely placed in the water flow isresearched, so that the safety operation of the Hydraulic Automatic Rolling Gate is ensuredin the future.
     (3)A modal analysis to the cylindrical shell is carried out by applying numericalstimulation method to fix vibration frequency and distribution mode of vibration of thecylindrical shell immerged under water. It will provide reasonable foundation for theHydraulic Automatic Rolling Gate design in the future.
     The main results from hydraulic-model experiments and numerical simulation are asfollows:
     (1) The distribution trend of vibration acceleration along the upstream face of theHydraulic Automatic Rolling Gate is increasing first, then reducing, and increasing againfrom top to the bottom of the gate under the hydrodynamic pressure. The value of vibrationacceleration reaches minimum atφ=135°, below centre line of the cylindrical tank.Whereas the related value atφ=45°andφ=180°is comparatively larger
     (2) When jaw opening, h under the cylindrical tank is invariable, vibration displacementamplitude on the Rolling Gate is increasing gradually with Upstream depth, H is rising.The value of vibration displacement of the Rolling Gate reaches the maximum whileupstream depth is near the top of the Rolling Gate. But when the upstream water levelkeeps raising, the value will be decreasing.
     (3) When upstream depth, H is a constant, whereas jaw opening, h is a variable, and theupstream depth is over the top of cylindrical tank, vibration amplitude of the Rolling Gateshows an enhanced trend with jaw opening, h under the cylindrical tank increasing. Ifwater level is below the top of cylindrical tank, the Rolling Gate vibration presents reducedtrend with jaw opening, h under the cylindrical tank increasing.
     (4) Through the analysis result of the acceleration spectrum, it can be manifested thatvibration of the cylindrical tank is the low frequency vibration, which is far from the basicpulsation pressure frequency, about f=50Hz. That illustrates that structure design of thecylindrical tank is safe and reasonable.
     (5) Compared analysis result of bidirectional fluid-solid coupling with that ofunidirectional fluid-solid coupling, it is found that the result is tally with the actualsituation more. So analysis method of bidirectional fluid-solid coupling is applied in this thesis.
     (6) From the result of the simulation, it is demonstrated that the max displacement of thecylindrical tank is on its top where along the flow direction under the effect ofhydrodynamic pressure. Moreover hinged joint at the bottom of the Rolling Gate should bepaid more attentions, because stress and strain in the hinged joint is max.
     (7) It is testified that the change trend basically tallies by the comparison betweensimulation result and experiment result. Vibration displacement of the cylindrical tankreaches maximum on the top of tank near water surface profile.
     (8) The related mathematical modeling is set up to analysis modal of the cylindrical tank inthe water. Finally it will provide a solid foundation for reasonable design of the hydraulicautomatic rolling gate.
引文
1何龙,何勇.微灌工程技术与装备[M].北京:中国农业科学技术出版社,2006
    2景可,李凤新.泥沙灾害类型及成因机制分析[J].泥沙研究,2002(5):12-17
    3赵文林,张红武,潘贤娣.黄河泥沙[M].郑州:黄河水利出版社,1998
    4蔺秋生.泥沙灾害浅析[J].水利电力科技,2008(1):23-27
    5刘艳林.新型水力自控闸门动水压力的研究[D].呼和浩特:内蒙古农业大学硕士学位论文,2008
    6王嗣飞.我国北方中小型水库泥沙淤积治理问题探讨[J].2008(15):23-25
    7刘旭东,李贵启.我国低水头引水枢纽引水防沙问题的实践及其试验研究[J].泥沙研究,1983(2):45-49
    8文恒,牟献友,赵宇明.多泥沙和高含沙洪水资源的利用[C].第六届全国泥沙基本理论研究学术会议论文集,郑州:黄河水利出版社,2005(11):1155-1162
    9聂源宏,马振海.四零四厂取水枢纽引水防沙试验研究[J].西北水资源与水工程.2002,13(3):32-35
    10Litrico X; Belaud G; Baume J.P, et al. Hydraulic modeling of an automatic upstream water-levelcontrol gate[J], Journal of Irrigation and Drainage Engineering,2005,131(2):176-189
    11赵宇明.高含沙洪水资源中的自控闸门的研究[D].呼和浩特:内蒙古农业大学硕士学位论文.2005
    12徐洲元.水工弧形闸门的结构布置及三维有限元分析[D].西安:西安理工大学.2006
    13蔡云林.弧形闸门动水压力计算公式的化简及探讨[J].华东水电技术,1989(2):31-35
    14周经渊.水力自动翻板闸门的研究应用[J].水力发电学报,2007,26(6):73-76
    15罗银淼,朱位秋.大型翻板闸门流体激振的双模型试验研究[J].浙江大学学报,2006,40(8):1401-1403
    16任广云,王明安,时伯华,等.渐开式翻板门的几个设计问题[J].水利水电科技进展,1999,19(5):49-50
    17侯石华,沈长松,孙学智.水力自动翻板闸门门型发展概述[J].水利水电科技进展,2003(23):5-7
    18贺日平,颜兴亮.上开式扇形闸门箕斗进入卸载曲轨时动态受力分析[J].煤矿机电,2004(2):15-18
    19朱召泉,卓家寿,陶桂兰.弧形钢闸门的动力稳定性研究进展[J].水利水电科技进展,1999.19(5):27-37
    20王好强.平面刚闸门静动力分析与优化设计[D].南京:河海大学硕士学位论文,2006
    21Townshend P.新型全自动溢洪道闸门[J].水利水电快报,2001,22(18):16-19
    22邱德修.弧形钢闸门的动力特性及动力稳定性分析[D].南京:河海大学,2006
    23李利荣,文恒,王福军,等.水力自动滚筒闸门动水压力分模型试验[J].水利水电科技进展,2009,29(1):26-30
    24李利荣.自动滚筒闸门水力学特性的试验研究与数值模拟[D].呼和浩特:内蒙古农业大学,
    2009年4月
    25孙路.波浪对外壁开孔双圆筒结构的作用[D].大连:大连理工大学博士论文,2005年5月
    26肖忠,王元战,及春宁等.波浪作用下加固软基上大圆筒结构稳定性分析[J].岩土力学,2010(8):2648-2654
    27彭志豪,陈海燕,肖仕宝.沉入式大直径薄壁圆筒护岸结构稳定性分析[J].水运工程,2010(8):39-43
    28宋少沪,马兰,姚文娟.基于变位方法的无底大圆筒结构稳定性研究[J].中国港湾建设,2010(2):25-29
    29王乐芹,余健星,周锡礽,王晖,徐炳伟.横向荷载作用下插入式大直径圆柱壳结构的优化数学模型[J].应用力学学报,2009(3):17-21
    30卢海星,戴红彬,韩保红,张淑琴.圆柱壳在水下爆炸载荷作用下的抗冲击性模拟[J].军械工程学院学报,2008(8):29-32
    31刘理,刘土光,张涛,李天匀.复杂载荷作用下圆柱壳的弹塑性动力屈曲研究[J].爆炸与冲击,2002(4):119-125
    32Warburton G B. Natural frequencies of thin cantilever cylindrical shells[J].Journal of Sound andVibration,1970,11(3):335~338
    33ChungH. Free vibration analysis ofcircular cylindrical shells[J].Journal of Sound and Vibration,1981,74(3):331~350
    34Shaarma C B. Natural frequencies of circular cylindrical shells[J].Journal of Sound and Vibration,1972,21(3):317~327
    35李国臣,李永强.薄壁圆柱壳固有频率的计算[J].机械科学与技术,2010(9):1226-1229
    36岳建军.冲击载荷作用下圆柱壳型结构的动力响应分析与仿真模拟[D].武汉:华中科技大学硕士学位论文,2004年4月
    37张玉红.静水压力作用下环筋间壳体振动特性分析[J].西安建筑科技大学学报,1996(2):170-173
    38李健,郭星辉,郭明涛,颜云辉.复合材料薄壁圆柱壳动态弹性模量的研究[J].东北大学学报(自然科学版),2008(12):1770-1773
    39仲维国,张嘉钟.导弹静水模态的ANSYS有限元分析[J].强度与环境,2004(3):17-21.
    40严根华.水动力荷载与闸门振动[J].水利水运工程学报,2001(6):10-15
    41仇强.撑卧式平板钢闸门静动力特性研究与优化设计[D].泰安:山东农业大学硕士学位论文,2009年6月
    42John D A, J R.. Computational Fluid Dynamics The Basic with Applications[M].清华大学出版社,2006
    43苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    44Hur D S, Miutani N, Kim D S. Direct3-D numerical simulation of wave forces on asymmetricstructures [J]. Coastal Engineerin,2004,51:407-420
    45吴持恭.明渠水气二相流[M].成都科技大学出版社,1989
    46陈永明.带复杂自由表面的泄水建筑物紊流场的数值模拟[D].扬州大学硕士学位论文,2006
    47郭烈锦,两相与多相流动力学[M],西安:西安交通大学出版社,2002
    48Ouyang L,Aziz K,A homogeneous model for gas-liquid flow in horizontal wells [J]. Journal ofPetroleum Science and Engineering,2000,27:l19-128
    49Barnea D,A unified model for predicting flow—pattern transitions for the whole range of pipeinclinations[J]. International Journal of Multiphase Flow,1987,13(1): l-12
    50Petalas N,Aziz K,Development and testing of a new mechanistic model for multiphase flow inpipes[J].2nd ASME International Symposium on Numerical Methods for Multiphase Flow,SanDiego,CA1996,
    51阎昌琪,气液两相流[M].哈尔滨:哈尔滨工程大学出版社,2007
    52Masella J m,Tran Q h.Transient simulation of two-phase flows in pipes [J].International Journal of Multiphase Flow,1998,24:739-755
    53Tiselj I, Petelin S. First and second-order[J]. Fluid Engineering,1998(120):363-368
    54Maronnier V, Picasso M, Rappaz J. Numerical simulation of free surface [J]. Journal ofComputational Physics,1999,155(2):439-455
    55于芬芬.摇臂式喷头外部流动数值模拟与试验研究[D].北京:中国农业大学硕士学位论文,2008
    56陈群.阶梯溢流坝紊流数值模拟及试验研究[D].成都:四川大学博士学位论文.2001
    57张健,方杰,范波芹.VOF方法理论与应用综述[J].水利水电科技进展,2005,25(2):67-70
    58符传君,练继建.溃坝水流在复杂河道中传播的三维数值模拟[J].水利学报,2007,30(10):1151-1157
    59戴会超,王玲玲.淹没水跃的数值模拟[J].水科学进展,2004,15(2):184-188
    60陈永明.带复杂自由表面的泄水建筑物紊流场的数值模拟[D].扬州大学硕士学位论文,2006
    61陈为博,杨敏.用VOF方法数值模拟溢流堰流场[J].水利水运工程学报,2004(4)
    62王洪庆.泄洪洞的紊流数值模拟及试验研究[D].西北农林科技大学硕士学位论文,2006
    63Inigo J L, Javier L L. Raul G. Numerical analysis of wave overtopping of rubble moundbreakwaters[J].Coastal Engineering,2007:47~62
    64李志勤,李洪,李嘉,等.溢流丁坝附近自由水面的试验研究与数值模拟[J].水利学报,2003(8):53-57
    65李福田,刘沛清,马宝峰.高拱坝宽尾墩三维流场数值模拟[J].水科学进展,2005,16(2):185-188
    66Christakis N, Allsop N W H, Cooper A J, et al. A volume of fluid numerical model for waveimpacts at coastal structures [J].Proceedings of the Institution of Civil Engineers:Water andMaritime Engineering.2002,154(3):159-168
    67洪方文.自由面附近运动物体流场的数值与试验研究[D].中国船舶科学研究中心博士学位论文,2001
    68徐荣桥结构分析的有限元法与Matlab程序设计[M].人民交通出版社,2006.5
    69Brenner S.C.,Scott L.R..The Mathematical Theory of Finite Element Methods, Pringer-Verlag[M],1993
    70Zienkiewicz O.C. The Finite Element Method, Third Edition[M],McGraw-Hill Inc.,1997.
    71Bathe K.J.,Wilson E.L.,Numerical Methods in Finite Element Analysis[M].Pretice-Hall.Inc.,1976
    72龙驭球,龙志飞.新型有限元论[M].北京:清华大学出版社,2004
    73Cook R.D., Malkus D.S., Plesha M. E.,Witt R J. Concepts and Applications of Finite ElementAnalysis[M]. John Wiley&Sons Inc.,2002.
    74Gilewski W.,Radwanska M., A survey of finite element models for the analysis of moderately thickshells[J]. Finite Element in Analysis and Design,1991,9(1):1-21.
    75丁皓江,何福保,谢贻权等.弹性与塑性力学中的有限单元法[M].北京;机械工业出版社。
    76朱伯芳.有限单元法原理与应用[M].2版.北京:中国水利水电出版社。
    77Liu G. R.,Quek S. S.(龙述尧,侯淑娟,钱长照,译).有限元法实用教程[M].长沙:湖南大学出版社,2004..
    78Seed Moaveni (王崧,刘丽娟,董春敏等译).有限元分析—ANSYS理论与应用(第三版)[M].北京:电子工业出版社,2008.1
    79龚曙光.ANSYS基础应用及实例解析[M].北京:机械工业出版社.2003
    80李皓月. ANSYS工程计算应用教程[M].北京:中国铁道出版社.2003
    81王成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社.1997
    82刘相新,孟宪颐.ANSYS基础与应用教程[M].北京:科学出版社.2006.
    83张洪信,赵清海.ANSYS有限元分析完全自学手册[M].北京:机械工业出版社.2008.3.
    84王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社.2007.10
    85邢景棠,周盛,崔尔杰.流固耦合力学概述[J].力学发展,1997(1):19-38.
    86苟兴宇,马兴瑞,黄怀德.流固耦合动力学与航天工程中的流-固-控耦合问题.航天器工程[J].航天器工程,1996,5(4):1-14
    87苏东海.分析流固耦振的新方法及其应用研究.[M].武汉:华中科技大学,2006
    88Paidoussis M P. Flow-induced Instabilities of cylindrical structures[J]. Applied MechanicsReviews,1987,40:163-175
    89Paidoussis M P, Li G X. Pipes conveying fluid: A model dynamical problem[J]. Journal of Fluidsand Structures,1993,8:853-876
    90黄玉盈,邹时智,钱勤等.输液管的非线性振动、分叉与混沌-现状与展望[J].力学进展,1998,25(l):30-42.
    91倪樵.输液管稳定性与动力特性分析及算法研究[M].武汉:华中科技大学,2000
    92Bishop R E D, Price W G. Hydroelasticity of Ships[M].Cambridge: Univ. Press,1979
    93Bishop R E D, Price W G, Wu Y. General linear hydroelasticity theory of floating structure’smoving in a seaway[J]. Phil. Trans. R. Soc. Lond,1985,A316:375-426
    94余建星,余永清,李洪涛,等.海底管跨涡激振动疲劳可靠性研究[J].船舶力学,2005,9(2):25-28
    95Moiseev N N, PetrovA A. The calculation of free oscillations of liquid-containing bodies[J].Advances in Applied Mechanics,1964,8:233-289
    96Moiseev N N, PetrovA A. The calculation of free oscillations of a liquid in a motionlesscontainer[J].Advances in Applied Mechanics,1964,(9):91-154
    97温德超,郑兆昌,孙烯纯.储液罐抗震研究的发展[J].力学进展,1995,25(1):60-76
    98Wiggert.D.C., Otwekk R.S., Hatfield F.J.. The effect of elbow restraint on pressuretransients[J].ASME Jounal of Fluids Engineering,1985(107):402-406.
    99Valentin R. A.,Phillips J.W.,Walker J.S. Reflection and transmission of fluid transients at anelbow[C]. In Transactions of SMiRT5,Berlin, Germany.1979:PpaerBZ/6,
    100Wiggert D.C.,Hatfield F.J.,Stuckenbruck S.. Analysis of liquid and structural transients by themethod of characteristics[J]. ASME Journal of Fluids Engineering,1987(100):161-165.
    101任建亭,姜节胜.输流管道系统动强度设计研究进展[J].力学进展.2003,33(3):313-324.
    102Paidoussis M.P.,Issid N. T. Dynamics stability of pipes conveying fluids[J]. Jounral of Sound andVibration,1974,33(2):267-294.
    103Svingen B.,Stojanovic Z.,Brekka H.,Gajie A. Two numerical methods of hydraulic oscillationsanalysis in piping systems including fluid-structure interaction[C]. Proeeeding of the InternationalConference on Fluid Engineering. JSME Centennial Garnd Congress,Tokyo,Japan.1997:1601-1606.
    104Soliman H.O.,Datta T.K. The seismic response of a piping system to non-stationary randomground motion[J]. Journal of Sound and Vibration,1995,180(3):459-473.
    105王世忠,刘玉兰,黄文虎.输送流体管道的固-液耦合动力学研究[M].应用数学和力学.1998,19(11):987-993.
    106Piet-Lahanier N.,Ohayon R. Finite element analysis of a slender fluid-structure system [J]. Journalof Fluids and Structures,1990(4):631-645.
    107Lee U.,Pak C.H.,Hong S.C. The dynamics of piping system with internal unsteady flow [J].Journal of Sound and Vibration,1995,180(2):297-311.
    108Wylie E.B.,Streeter V.L. Fluid Transients in Systems [M]. Englewood Cliffs.New Jersey: PrenticeHall.1993.
    109Heinsbroek AGTJ. Fluid-structure interaction in non-rigid pipline systems [J].Nuclear EngineeringDesigns,1997(172):123-135.
    110王学芳,叶宏开,汤荣铭.工业管道中的水锤[M].北京,科学出版社.1995.
    111Brevart B.J.,Fuller C.R Effect Pf an internal flow on the distribution of vibrational energy in aninfinite fluid-filled thin cylindrical elastic shell [J]. Journal of Sound and Vibration,1993,167(l):149-163.
    112Heinsbroek AGTJ,Tijsseling A.S. The influence of support rigidity on waterhammer pressures andpipe stresses[C]. Proc of2nd Int Con/on water Pipline Systems.BHR Group,Edinburgh. UK.1994:17-30.
    113Ambili M., Pellicano F.,Paidoussis M..P. Nonlinear stability of circular cylindrical shells in annularand unbounded axial flow [J]. ASME Journal of APPlied Mechanics,2001(68):827-834.
    114So R. M. C.,Liu. Y,Chan S.T.,Lam K. Numerical studies of a freely vibrating cylinder in across-flow [J]. Journal of Fluids and Struetures,2001(15):854-866.
    115Misra A.K.,Wong S.S.T.,Paidoussis M.P. Dynamics and stability of pinned-clamped and clamped-pinned cylindrical shells conveying fluid [J]. Journal of Fluids and Structures,2001(15):1153-1166.
    116Shiels D.,Leonard A.,Roshko A.. Flow-induced vibration of a circular cylinder at limitingstructural parameters [J]. Journal of Fluids and Struetures,2001(15):3-21.
    117倪樵,黄玉盈.增量谐波平衡法用于输液管的非线性振动分析[J].华中理工大学学报,2000,28(10):43-45.
    118倪樵,黄玉盈.正交异性输液管的振动与稳定性分析[J].华中科技大学,2001,29(3):95-97.
    119倪樵,黄玉盈.陈贻平.微分求积法分析具有弹性支承输液管的临界流速[J].计算力学学报,2001,15(2):146-149.
    120倪樵,黄玉盈.非线性约束粘弹性输液管的动力特性分析[J].华中科技大学学报,2001,29(2):87-89.
    121Paidoussis M.P.,Li G.X. Pipes conveying fluid: a model dynamical problem[J]. Journal of Fluidsand Structures,1993(7):137-204.
    122Holmes. P.J. Bifurcation to divergence and flutter in flow-induced oscillations: a finite dimensionalanalysis[J]. Journal of Sound and Vibration,1977,53(3):471-503.
    123Holmes. P.J. Pipes supported at both ends cannot flutter[J]. Journal of AppliedMechanics,1978(45):619-622.
    124Ch’ng E.,Dowell E.H. A theoretical analysis of nonlinear effects on the flutter and divergence ofa tube conveying fluid [J]. ASME in Flow-induced Vibration,1979:65-81.
    125Rousslete J.,Herrmann G. Flutter of articulated pipes at finite amplitude[J]. Journal of AppliedMathematics,1977(44):154-158.
    126Bajaj A.K., Setbna. P.R. Effects for symmetry-breaking perturbation on flow-induced oscillations inturbs [J]. Journal of Fluids and Structures,1991(5):651-679.
    127Bajaj A. K.,Sethna. P.R. HoPf bifurcation phenomena in tubes carrying a fluid [J].SIMA Journal ofApplied Mathematies,1980(39):213-230.
    128Bajaj A.K., Setbna. P.R. Flow induced bifurcation to three-dimensional oscillatory motion incontinuous tubes[J]. SIMA Journal of Applied Mathematics,1984(44):270-286.
    129Semler C.,Li G. X.,Paidoussis M.P. The nonlinear equations of motion of pipe conveying fluid[J]. Journal of Sound and Vibration,1994,169(5):577-599.
    130Lee.V,Pak C.H.,Hong S.C. The dynamic of a piping system with internal unsteady flow [J].Journal of Sound and Vibration,1995(182):297-311
    131Lee U.,Kin J. Dynamics of branched pipeline system conveying internal unsteady flow [J].Journal of Vibration and Acoustic,1999(121):114-122.
    132张立翔,黄文虎,Tijssehng A.S.输流管道非线性流固耦合振动的数学建模[J].水动力学研究与进展A,2001,15(3:)367-378.
    133Gorman D.G.,Reese J.M.,Zhang Y. L.Vibration of a flexible pipe conveying viscous Pulsating fluidflow [J]. Journal of Sound and Vibration,2000,230(2):379-392.
    134Heil M.,The stability of cylindrical shells conveying viscous flow[J]. Journal of Fluids andStructures,1996(10):173-196.
    135Heil M., Pedley T.J.. Large axisymmetric deformation of a cylindrical shell conveying a viscousflow[J]. Journal of Fluids and Structures,1995(9):237-256.
    136Heil M.,Pedley.TJ.. Large Post-buckling deformations of cylindrical shells conveying viscousflow[J]. Journal of Fluids and Structures,1996(10):565-599.
    137Shinhara.Y.,Shimogo T.. Vibration of square and hexagonal cylinders in a liguid [J]. ASMEJournal of Pressure Vessel Technology,1981(103):233-239.
    138Xue Z.Y.,Hutchinson J. W.. A preliminary assessment of sandwich plates subject to blast loads[J].International Journal of APPlied Mechanical Science,2003(45):687-705.
    139Xue Z.Y., Hutchinson J. W.. A comparative study of impulse-resistant metal sandwich plates[J].International Journal of Impact Engineering,2004(30):1283-1305.
    140Qiu X., Deshpande V.S., and Fleck N.A.. Dynamic response of a clamped circular sandwich platesubject to shock loading [J]. ASME Journal of Applied Mechanics,2004(71):637-645.
    141Cui S. J.,Cheong H.K.,Hao H.. Experimental study of dynamic buckling of plates under fluid-solid slamming [J]. International Journal of Impacting Engineering,1999(22):675-691.
    142Piotr C.. Three-dimension natural vibration analysis and energy considerations of piezoelectricrectangular plate [J]. Journal of Sound and Vibration,2005(283):1093-1113.
    143Leclaire P.,Horoshenkov K.V.,Swift M. J., Hothersall D.C.. The vibrational response of aclamped rectangular porous plate [J]. Journal of Sound and Vibration,2001,247(l):19-31.
    144Guo C.Q., Peng R.H., Sun D.L.. A dynamic model of flow-induced vibration of parrel plate fuelassemblies [C].. Transaction of the12th International Conference on Stucture Mechanics in ReactorTechnology. Suttgart.1993:1-4.
    145廖翠林.大型混流式水轮机水力稳定性研究[D].北京:中国农业大学博士学位论文,2008
    146蒲广益.ANSYS Workbench12基础教程与实例详解[M].北京:中国水利水电出版社.2010.10
    147宋学官,蔡林,张华.ANSYS流固耦合分析与工程实例[M].北京:中国水利水电出版社.2012.1
    148石德新,王晓天.潜艇强度[M].哈尔滨:哈尔滨工程大学出版社,2007.
    149W弗留盖.壳体中的应力[M].薛振东等,译.北京:中国工业出版社,1965.
    150徐芝纶.弹性力学[M].北京:高等教育出版社,2006.12
    151铁木辛柯,沃诺斯基.板壳理论[M].《板壳理论》翻译组译.北京:科学出版社,1977.
    152傅德薰.流体力学数值模拟[M].北京:国防工业出版社,1993
    153Bungartz F H J. Fluid-Structure Interaction-modeling, simulation, optimization [M].Springer,Berlin,Heidelberg,2006.
    154ANSYS,Inc., Documentation for Release12.1[DB],ANSYS,Inc.,2009
    155ANSYS, Inc., ANSYS FLUENT User’s Guide for Release12.1[DB],ANSYS,Inc.,2009
    156ANSYS, Inc., ANSYS CFX Reference Guide for Release12.1[DB],ANSYS,Inc.,2009
    157苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学出版社,1997
    158John D A, JR. Computational Fluid Dynamics The Basic with Applications[M].清华大学出版社,2006,75-77
    159李福田,倪浩情.工程湍流模式的研究开发及其应用[J].水利学报,2005(5):23-31
    160王文娥.迷宫滴头内部流动的动力学特性研究[D].北京:中国农业大学博士学位论文,2007
    161Trias F X,Soria M,Pérez-Segarra C D.DNS of3D turbulent natural convection flows using lowcost parallel computers.AIAA Paper,42nd AIAA Aerospace Sciences Meeting and Exhibit,2004,5823~5833
    162Versteeg H K, Malalasekera W. An Introduction to computational fluid dynamics: The Finite VolumeMethod[M]. Wiley, New York,1995
    163黎耀军.水翼动力学特性与轴流泵水力性能优化研究[D].北京:中国农业大学博士学位论文,2006
    164王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004:116-126
    165Smagorinsky J. General circulation experiments with the primitive equations-I-The basicexperiment[J].Monthly Weather Review,1963,91(3):99-164
    166Deardorff J W. A numerical study of three-dimensional turbulent channel flow at large Reynoldsnumbers[J]. Journal of fluid Mechanics,1970(41):453-480
    167Abbott M B, Basco D R. Computational Fluid Dynamics-An Introduction for Engineers[M].England: Harlow,1989
    168Liu X B,Zeng Y Z. Numerical prediction of vortex flow in hydraulic turbine draft tube for LES[J]. Journal of Hydrodynamics,2005,17(4):448-454
    169Qian Z D,Yang J D.Comparison of numerical simulation of pressure pulsation in Francishydraulic turbine by different turbulence models [J].Shuili Fadian Xuebao/Journal of HydroelectricEngineering,2007,26(6):111-115
    170Wang W Q, Zhang L X, Yan Y, et al. Large-eddy simulation of turbulent flow considering inflowwakes in a Francis turbine blade passage [J].Journal of Hydrodynamics,2007,19(2):201-209
    171付娜.既有涵洞下游修建水库对涵洞的影响[D].成都:西南交通大学硕士学位论文,2008
    172周正富.无锡市九里河水利枢纽泵站近处水流道优化研究[D].扬州:扬州大学硕士学位论文,2006
    173王海松.轴流泵CAD-CFD综合特性研究[D].北京:中国农业大学博士学位论文,2005
    174Carajilescov P,Todreas N E. Experimental and analytical study of axial turbulent flows in aninterior subchannel of a bare rod bundle.ASME Journal of Heat Transfer,1976,(98):262~268
    175Chou P Y. On the velocity correlations and the equations of turbulent vorticity fluctuation[J].Quarterly of Applied Mathematics,1945(1):33~54
    176陶文铨.数值传热学(第二版)[M].西安:西安交通大学出版社,2001
    177黄志新.卧螺离心机螺旋输送器结构/强度及其转鼓内的流场研究[D].北京:北京化工大学博士学位论文,2007
    178白桦.塔桅结构风荷载的数值模拟研究[D].西安:长安大学硕士学位论文,2006
    179Farouk B, Guceri S I. Laminar and turbulent natural convection in the annulus between horizontalconcentric cylinders.ASME Journal of Heat Transfer,1982(104):631~636
    180阮涛.三次风中超细煤粉浓缩方法研究[D].杭州:浙江大学硕士学位论文,2006
    181Yakhot V, Orszag S A. Renormalization group analysis of turbulence: basic theory [J].Journal ofScientific Computing,1986,1(1):1~11
    182Yakhot V, Orszag S A, Thangam S, et al. Development of turbulence models for shear flows by adouble expansion technique. Physics of Fluids A.1992,4(7):1510-1520
    183李玲,李玉梁.应用基于RNG方法的湍流模型数值模拟顿体绕流的湍流流动[J].水科学进展,2005,11(4):357-361
    184侯树强.离心式通风机内部流场的数值模拟[D].杭州:浙江大学硕士学位论文,2006
    185Fischer P F. Analysis and application of a parallel spectral element method for the solution of theNavier-Stokes equations[J]. Computer Methods in Applied Mechanics andEngineering,1990,80:91-115
    186Mulder W A. Spurious modes in finite–element discretizations of the wave equation may not be allthat bad [J].Applied Numerical Mathematics,1999,30:425-445
    187水利水电工程钢闸门设计规范[M].北京:中华人民国水利部,1995
    188曲锋.水力自动翻板闸门的理论分析与试验研究[D].南京:河海大学,2005.
    189Krot A M, Minervina E B. Fast Fourier Transform algorithms for real and hermitian-symmetricalsequences [J]. Soviet Journal of Communications Technology&Electronics(English translation ofRadiotekhnika I Elektronika),1989,34(12):122
    190焦修明.弧形闸门动力特性及流激振动[D].武汉:武汉大学硕士学位论文,2006
    191严根华,赵建平,刘永胜等.大型泄洪冲沙闸弧形工作闸门流激振动试验研究[J].水工机械技术2008年论文集.2008.12:304-316
    192严根华,赵建平,刘永胜等.大型泄洪冲沙闸弧形工作闸门流激振动试验研究[J].水工机械技术2008年论文集.2008.12:304-316
    193廖翠林.大型混流式水轮机水力稳定性研究[D].北京:中国农业大学博士学位论文,2008
    194孙小鹏,宁勇.钢闸门流激振动的模拟试验技术[J].河海大学学报,1998,26(2)8--12

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700