用户名: 密码: 验证码:
基于耦合自供电无线传感的数控机床主轴热监测方法及关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文针对数控机床主轴热监测技术存在的问题.开展基于耦合自供电无线传感的数控机床主轴热监测新方法和关键技术研究,旨在为主轴热监测提供新的思路和方法,推动我国数控机床精密主轴监测技术的进步和发展。
     论文中首先综述了数控机床主轴热监测的研究现状,分析了传统有线传感器监测的局限性,即有线传感器在旋转机构上的配置及其存在的问题。为此,提出了基于耦合自供电无线传感监测的新思路和方法,重点研究数控机床实际工况条件下的无线传感器最优配置和热监测过程中传感器能量自捕获的关键技术。
     针对数控机床主轴实际工况条件下的无线传感器配置问题,提出了工况约束条件下的无线传感器测温点优化配置策略研究,引入信息论中的互信息量来描述并计算测点温度与主轴热变形的相关性;同时通过图的连通性分析寻找无线传感器间的通信路径,在此基础上采用人工鱼群算法求解可选测点组合的优化解。
     针对主轴热监测过程中的温度传感器能量获取问题,开展了3方面的研究:首先,为了能够获得在主轴工作情况下热电耦合能量采集的特点,采用热网络理论对主轴热-电转换能量输出特性进行研究,对热发电构件与主轴联合建模并给出仿真分析结果,并且设计了相应的实验平台对仿真结构进行实验验证。其次,为了进一步提高能量采集的效率,对无线传感器的热发电构件进行优化研究。采用有限元分析,对散热效果和散热片结构进行研究;针对导热片,采用无网格的方法,对其热结构进行分析研究。在此基础上,提出了散热片和导热片结构设计准则,并且采用实验的方式验证了准则的有效性。最后,对耦合自供电无线传感系统进行研究,得到系统的最优电路拓扑结构以及最优的控制方法。
     开展了实验研究,验证理论分析与技术方法的正确性和可行性。在实验中,设计了热发电自供能无线传感器的数控机床主轴热监测系统实验平台,进行主轴热监测以及热变形预测实验,通过测温点建立主轴热变形,验证了基于耦合自供电无线传感的数控机床主轴热监测方法和技术的有效性和优越性。
This paper, which focuses on the problems of the existing spindle thermal characteristics monitoring technology, presents the methods and key techniques of monitoring thermal characteristics of a NC machine tool spindle based on coupling self-powered wireless sensoring. This research aims at finding solutions of the spindle intelligent thermal monitoring application.
     Firstly, paper discusses the research status of thermal characteristics of machine tool spindle. The limitation of the normal methods of the spindle thermal characteristics monitoring in the researches is analyzed. According to the above, the new method of monitoring thermal characteristics of a NC machine tool spindle based on coupling self-powered wireless sensing is proposed, and the important parts of this research are wireless sensors of the optimal installation under the actual working conditions of NC machine tool and the key techniques of wireless temperature sensors'energy harvesting in the progress of monitoring thermal characteristics.
     When dealing with the problem of the communication reliability between wireless sensors, this paper proposes the research on the constraint-based wireless sensor placement on spindles for thermal performance monitoring. In the research. the mutual information in information theory are introduced to describe and calculate the temperature measuring point and the correlation of the spindle thermal deformation; At the same time, the connectivity diagram is used to analyze the wireless communication path between sensors, and the artificial fish algorithm is used to choose the optimal points.
     When dealing with the problem of the energy havesting of wireless temperature sensors, there three parts of researches are carried out in this paper:the first, in order to know thermoelectric coupling energy collection characteristics in the working time of the spindle, the thermal network theory is adopted to analyze the output power characteristics of the heat-electricity conversion. The model of the thermal power generation components and spindle is given, and the special designing of the corresponding experiment platform is used to verify the simulation result. The second, in order to further improve the efficiency of energy harvesting, the optimal structure of the thermal power generation components are studied. Finite element method is used to analyze the heat effect and structure of the heat sink. The meshless method is used to analyze the thermal structure of the heat-conducting plate. The design criterions of the heat sink and the heat-conducting plate is proposed, and the experiments verify the validity of this criterions. The third, the system based on coupling self-powered wireless sensing is studied, and the optimal circuit topology and the optimal control method is given.
     Finally, experiments are used to verify the correctness of the theoretical analysis and feasibility. A NC machine tool spindle thermal monitoring experiment system platform, which is based on coupling self-powered wireless sensoring is designed, and the spindle temperature is monitored and the thermal deformation is predicted in the experiment. The spindle thermal deformation model is established through the thermal deformation and the temperature of the spindle and it is proved the effectiveness and superiority of the methods and key techniques of monitoring thermal characteristics of a NC nachine tool spindle based on coupling self-powered wireless sensoring.
引文
[1]Mayr J, Jedrzejewski J, Uhlmann E, et al. Thermal issues in machine tools[J]. CIRP Annals-Manufacturing Technology,2012,61(2):771-791.
    [2]Abele E, Altintas Y, Brecher C. Machine tool spindle units[J]. CIRP Annals-Manufacturing Technology, 2010,59(2):781-802.
    [3]熊万里,黄红武,张峻辉等.高速精密电主轴动态热态特性的研究进展[J].振动工程学报,2004,17(8):61-64.
    [4]Lo C-H, Yuan J, Ni J. Optimal temperature variable selection by grouping approach for thermal error modeling and compensation[J]. International Journal of Machine Tools and Manufacture,1999,39(9): 1383-1396.
    [5]Lee J-H, Lee J-H, Yang S-H. Development of thermal error model with minimum number of variables using fuzzy logic strategy[J]. KSME international journal,2001,15(11):1482-1489.
    [6]Mayr J. Beurteilung und Kompensation des Temperaturganges von Werkzeugmaschinen[D]. Diss., Eidgenossische Technische Hochschule ETH Zurich, Nr.18677,2009,2009.
    [7]Li S, Zhang Y, Zhang G. A study of pre-compensation for thermal errors of NC machine tools[J]. International Journal of Machine Tools and Manufacture,1997,37(12):1715-1719.
    [8]李书和,张奕群,张国雄.数控机床热误差的补偿[J].航空精密制造技术,1996,32(4):6-9.
    [9]李书和,张奕群.加工中心热误差补偿的研究[J].制造技术与机床,1997,(6):16-19.
    [10]张奕群,李书和,张国雄.机床热变形误差的动态模型[J].航空精密制造技术,1997,2:001.
    [11]杨建国,邓卫国,任永强等.机床热补偿中温度变量分组优化建模[J].中国机械工程,2004,(06):10-13.
    [12]Yan J Y, Yang J G. Application of synthetic grey correlation theory on thermal point optimization for machine tool thermal error compensation[J]. The International Journal of Advanced Manufacturing Technology,2009,43(11-12):1124-1132.
    [13]闫嘉钰,张宏韬,刘国良等.基于灰色综合关联度的数控机床热误差测点优化新方法及应用[J].四川大学学报(工程科学版),2008,40(02):160-164.
    [14]Li Y, Yang J, Gelvis T, et al. Optimization of measuring points for machine tool thermal error based on grey system theory[J]. The International Journal of Advanced Manufacturing Technology,2008,35(7-8): 745-750.
    [15]林伟青,傅建中,许亚洲等.基于LS-SVM与遗传算法的数控机床热误差辨识温度传感器优化策略[J].光学精密工程,2008,16(09):1682-1687.
    [16]Spur G F A. Diagnosis of Grease Lubricated Main Spindle Bearings[J]. Production Engineering,1994, 1(2):79-80.
    [17]Schossig H-P. Antreiben/Steuern/Bewegen-Neue Motorspindeln fur die Komplettbearbeitung[J]. Werkstatt und Betrieb,2002,135(9):70-74.
    [18]D L. Tutorial on Fundamentals of Thermal Effects:Precision Design Principles, Measurement and Control of Temperatures[C]. ASPE Annual Meeting,2007.
    [19]Bossmanns B, Tu J F. A thermal model for high speed motorized spindles[J]. International Journal of Machine Tools and Manufacture,1999,39(9):1345-1366.
    [20]Weck M, Platen S. Intelligente Spindelfunktionen[J]. Springer-VDI-Verlag,2003,7-8.
    [21]W D. Logger in der Spindel-Condition Monitoring gegen Spindelscha den[J]. Werkstatt und Betrieb, 2006,139(9):109.
    [22]Mayr J. Weikert S, Wegener K. Comparing the Thermo-mechanical Behaviour of machine Tool Frame Designs Using a FDMEM Simulation Approach[C]. Proceedings ASPE Annual Meeting,2007:17-20.
    [23]Koscsak G. Ermittlung des instation ren thermischen Verhaltens von Vorschubachsen mit Kugelgewindetrieb mit Hilfe der Verarbeitung thermografischer Messdaten[J]. Diss. Universitt Stuttgart, 2007.
    [24]Zhang G, Wang C, Hu X. Error Compensation of Coordinate Measuring Machine[J]. Annals of CIRP, 1985,34(1):445-448.
    [25]Janeczko J. Machine tool thermal distortion compensation[C].4th Biennial International Machine Tool Technology Conference,1988:169-180.
    [26]Moriwaki T. Thermal deformation and its on-line compensation of hydrostatically supported precision spindle[J]. CIRP Annals-Manufacturing Technology,1988,37(1):393-396.
    [27]倪军.数控机床误差补偿研究的回顾及展望[J].中国机械工程,1997,8(1):29-33.
    [28]Ni J. CNC machine accuracy enhancement through real-time error compensation[J]. Transactions-American Society of Mechanical Engineers Journal of Manufactureing Science and Engineering,1997,119: 717-725.
    [29]Pahk H, Lee S. Thermal error measurement and real time compensation system for the CNC machine tools incorporating the spindle thermal error and the feed axis thermal error[J]. The International Journal of Advanced Manufacturing Technology,2002,20(7):487-494.
    [30]Creighton E, Honegger A, Tulsian A, et al. Analysis of thermal errors in a high-speed micro-milling spindle[J]. International Journal of Machine Tools and Manufacture,2010,50(4):386-393.
    [31]Sarhan a A, Matsubara A. Compensation method of the machine tool spindle thermal displacement for accurate monitoring of cutting forces[J]. Materials and Manufacturing Processes,2011,26(12):1511-1521.
    [32]http://www.mikron.com/mikron/internet.nsf/id/systems_en.
    [33]http://www.syms.com.cn/news/newscenter/664.html.
    [34]西村真桢.应用模糊理论抑制主轴的热变形[J].机械的工具[日],1993,37(2).
    [35]Haitao Z, Jianguo Y, Jinhua S. Simulation of thermal behavior of a CNC machine tool spindle[J]. International Journal of Machine Tools and Manufacture,2007,47(6):1003-1010.
    [36]赵海涛.数控机床热误差模态分析,测点布置及建模研究[D].上海:上海交通大学,2006.
    [37]傅建中,陈子辰.精密机械热动态误差模糊神经网络建模研究[J].浙江大学学报:工学版,2004,38(6):742-746.
    [38]Yao X-H, Fu J-Z, Chen Z-C. Bayesian networks modeling for thermal error of numerical control machine tools[J]. Journal of Zhejiang University SCIENCE A,2008,9(11):1524-1530.
    [39]林伟青,傅建中,陈子辰等.数控机床热误差的动态自适应加权最小二乘支持矢量机建模方法[J].机械工程学报,2009,45(3):178-182.
    [40]戴庆贺.应用西门子CNC@功能补偿车床主轴热误差[J].制造技术与机床,1998,(3):36-37.
    [41]Davoodi B, Hosseinzadeh H. A new method for heat measurement during high speed machining[J]. Measurement,2012,45(8):2135-2140.
    [42]Lauro C H, Brando L C, Ribeiro Filho S L M. Monitoring the temperature of the milling process using infrared camera[J]. Scientific Research and Essays,2013,8(23):1112-1120.
    [43]Eren H. Wireless sensors and instruments:Networks, design, and applications[M]. CRC Press,2010.
    [44]Romer K, Mattern F. The design space of wireless sensor networks[J]. Wireless Communications, IEEE, 2004,11(6):54-61.
    [45]Baronti P, Pillai P, Chook V W, et al. Wireless sensor networks:A survey on the state of the art and the 802.15.4 and ZigBee standards[J]. Computer communications,2007,30(7):1655-1695.
    [46]Wang K-C, Jacob J, Tang L, et al. Error pattern analysis for data transmission of wireless sensors on rotating industrial structures[C]. The 15th International Symposium on:Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring,2008:693243-693243-10.
    [47]Tang L, Wang K-C, Huang Y, et al. Channel characterization and link quality assessment of ieee 802.15. 4-compliant radio for factory environments[J]. IEEE Transactions on Industrial Informatics,2007,3(2): 99-110.
    [48]Wang K-C, Jacob J, Tang L, et al. Transmission Error Avoidance for IEEE 802.15.4 Wireless Sensors on Rotating Structures[C].17th International Conference on Computer Communications and Networks,2008: 1-6.
    [49]Wang K-C, Tang L, Huang Y. Wireless sensors on rotating structures:performance evaluation and radio link characterization[C]. Proceedings of the second ACM international workshop on Wireless network testbeds, experimental evaluation and characterization,2007:3-10.
    [50]Wang K-C, Jacob J, Tang L, et al. Transmission error analysis and avoidance for IEEE 802.15.4 wireless sensors on rotating structures[J]. International Journal of Sensor Networks,2009,6(3):224-233.
    [51]Tang L, Wang K-C, Huang Y. Study of Speed-Dependent Packet Error Rate for Wireless Sensor on Rotating Mechanical Structures[J], IEEE Transactions on Industrial Informatics,2013,9(1):72-80.
    [52]Sundararajan V, Redfern A, Schneider M, et al. Wireless sensor networks for machinery monitoring[C], American Society of Mechanical Engineers,2005.
    [53]Sarkimaki V, Tiainen R, Lindh T, et al. Applicability of ZigBee technology to electric motor rotor measurements[C]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion, 2006:137-141.
    [54]Huo W J, Yao X H, Fu J. A wireless temperature measuring system for rotating spindle based on ZigBee[J]. Advanced Materials Research,2011,305:325-329.
    [55]Yao X H, He Z Y, Fu J, et al. Wireless Sensor Failure Identification Technology for Thermal Monitoring System of NC Machine Tools Based on Bayesian Networks[J]. Key Engineering Materials,2011,467: 1832-1837.
    [56]http://www.xbow.com/.
    [57]Hill J L, Culler D E. Mica:A wireless platform for deeply embedded networks[J]. Micro, IEEE,2002, 22(6):12-24.
    [58]Paradiso J A, Starner T. Energy scavenging for mobile and wireless electronics[J]. Pervasive Computing, IEEE,2005,4(1):18-27.
    [59]Roundy S, Wright P K, Rabaey J M. Energy scavenging for wireless sensor networks:with special focus on vibrations[M]. Springer,2004.
    [60]Hudak N S, Amatucci G G. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion[J]. Journal of Applied Physics,2008,103(10):101301-101301-24.
    [61]朱文,杨君友,崔昆等.热电材料在发电和制冷方面的应用前景及研究进展[J].材料科学与工程,2002,20(4):585-588.
    [62]Venkatasubramanian R, Siivola E, Colpitts T, et al. Thin-film thermoelectric devices with high room-temperature figures of merit[J]. Nature,2001,413(6856):597-602.
    [63]Dresselhaus M, Chen G, Tang M, et al. Materials and Technologies for Direct Thermal-to-Electric Energy Conversion[C]. MRS Symposia Proceedings,2005:170056.
    [64]Zide J, Vashaee D, Bian Z, et al. Demonstration of electron filtering to increase the Seebeck coefficient in In0.53Ga0.47As/In0.53Ga0.28Al0.19 As superlattices[J]. Physical Review B,2006,74(20):205335.
    [65]Watkins C, Shen B, Venkatasubramanian R. Low-grade-heat energy harvesting using superlattice thermoelectrics for applications in implantable medical devices and sensors[C].24th International Conference on Thermoelectrics,2005:265-267.
    [66]张伟玲,王为,周立恒.纳米技术在高效温差电材料中的应用[J].化学通报,2002,8:534-538.
    [67]朱铁军,赵新兵P-FeSi2热电材料的性能优化及测试方法[J].材料科学与工程,1999,17(4):55-59.
    [68]朱铁军,赵新兵,胡淑红等.新型热电材料β -Zn4Sb3的电学性能[J].稀有金属材料与工程,2001,30(3):187-189.
    [69]Kiely J, Morgan D, Rowe D, et al. Low cost miniature thermoelectric generator[J]. Electronics Letters, 1991,27(25):2332-2334.
    [70]Rowe D, Morgan D, Kiely J. Miniature low-power/high-voltage thermoelectric generator[J]. Electronics Letters,1989,25(2):166-168.
    [71]Stordeur M, Stark I. Low power thermoelectric generator-self-sufficient energy supply for micro systems[C].16th International Conference on Thermoelectrics,1997:575-577.
    [72]Stark I, Stordeur M. New micro thermoelectric devices based on bismuth telluride-type thin solid films[C].18th International Conference on Thermoelectrics,1999:465-472.
    [73]Glosch H, Ashauer M, Pfeiffer U, et al. A thermoelectric converter for energy supply [J]. Sensors and Actuators A:Physical,1999,74(1):246-250.
    [74]Qu W, Ploetner M, Fischer W-J. Microfabrication of thermoelectric generators on flexible foil substrates as a power source for autonomous microsystems[J]. Journal of Micromechanics and Microengineering,2001, 11(2):146.
    [75]Vican J, Gajdeczko B, Dryer F, et al. Development of a microreactor as a thermal source for microelectromechanical systems power generation[J]. Proceedings of the Combustion Institute,2002,29(1): 909-916.
    [76]Xie J, Lee C, Feng H. Design, fabrication, and characterization of CMOS MEMS-based thermoelectric power generators[J]. Journal of Microelectromechanical Systems,2010,19(2):317-324.
    [77]http://www.poweredbythermolife.com.
    [78]Kishi M, Nemoto H, Hamao T, et al. Micro thermoelectric modules and their application to wristwatches as an energy source[C].18th International Conference on Thermoelectrics,1999:301-307.
    [79]Glatz W, Muntwyler S, Hierold C. Optimization and fabrication of thick flexible polymer based micro thermoelectric generator!J]. Sensors and Actuators A:Physical,2006,132(1):337-345.
    [80]Strasser M, Aigner R, Lauterbach C, et al. Micromachined CMOS thermoelectric generators as on-chip power supply[J]. Sensors and Actuators A:Physical,2004,114(2):362-370.
    [81]Strasser M, Aigner R, Franosch M, et al. Miniaturized thermoelectric generators based on poly-Si and poly-SiGe surface micromachining[J]. Sensors and Actuators A:Physical,2002,97:535-542.
    [82]Damaschke J M. Design of a low-input-voltage converter for thermoelectric generator[J]. IEEE Transactions on Industry Applications,1997,33(5):1203-1207.
    [83]Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006)[J]. Smart Materials and Structures,2007,16(3):R1.
    [84]Kim S, Cho S, Kim N, et al. A Digital Coreless Maximum Power Point Tracking Circuit for Thermoelectric Generators[J]. Journal of Electronic Materials,2011,40(5):867-872.
    [85]Tang L, Wang K-C, Huang Y. Performance evaluation and reliable implementation of data transmission for wireless sensors on rotating mechanical structures[J]. Structural Health Monitoring,2009,8(2):113-124.
    [86]Bryan J. International status of thermal error research (1990)[J]. CIRP Annals-Manufacturing Technology, 1990,39(2):645-656.
    [87]Vyroubal J. Compensation of machine tool thermal deformation in spindle axis direction based on decomposition method[J]. Precision Engineering,2012,36(1):121-127.
    [88]Akyildiz I F, Su W, Sankarasubramaniam Y, et al. Wireless sensor networks:a survey[J]. Computer Networks,2002,38(4):393-422.
    [89]Miettinen J, Salmenper P, Jrvinen V, et al. Wireless operation monitoring system for polymer covered cylinders in rolling contact[C], American Society of Mechanical Engineers,2002.
    [90]Dzapo H, Stare Z, Bobanac N. Portable wireless measuring system for monitoring motor shaft parameters[C]. Instrumentation and Measurement Technology Conference,2004. IMTC 04. Proceedings of the 21st IEEE,2004:901-906.
    [91]Varghese B, Gao R, Malkin S, et al. In-process monitoring of truing using a sensor integrated diamond grinding wheel[J]. Technical Papers-Society of Manufacturing Engineers,2002.
    [92]Werb J, Newman M, Berry V, et al. Improved quality of service in IEEE 802.15.4 mesh networks[C]. Proc. of the International Workshop on Wireless and Industrial Automation, San Francisco, California, USA (March 2005),2005.
    [93]Ota N, Wright P. Trends in wireless sensor networks for manufacturing[J]. International Journal of Manufacturing Research,2006,1(1):3-17.
    [94]李郝,林暋,应杏娟.数控机床主轴系统热误差温度测量点的最优化设计方法[J],2010.
    [95]孙凤芝,李映红,程霜梅等Warshall算法在判别传递性与求传递闭包中的应用[J].长春大学学报,2007,17(06M):13-16.
    [96]Huang G-Q, Liu J-F, Yao Y-X. Global Convergence Proof of Artificial Fish Swarm Algorithm[J]. Computer Engineering,2012,2:066.
    [97]Jian-Ping W, Meng-Jie H. A solution for TSP based on Artificial Fish Algorithm[C]. International Conference on Computational Intelligence and Natural Computing,2009:26-29.
    [98]Dallago E, Danioni A, Marchesi M, et al. An Autonomous Power Supply System Supporting Low-Power Wireless Sensors[J]. IEEE Transactions on Power Electronics,2012,27(10):4272-4280.
    [99]Tan Y K, Panda S K. Optimized wind energy harvesting system using resistance emulator and active rectifier for wireless sensor nodes[J]. IEEE Transactions on Power Electronics,2011,26(1):38-50.
    [100]Belytschko T, Moes N, Usui S, et al. Arbitrary discontinuities in finite elements[J]. International Journal for Numerical Methods in Engineering,2001,50(4):993-1013.
    [101]Bennett J, Botkin M. Structural shape optimization with geometric description and adaptive mesh refinement[J]. AIAA journal,1985,23(3):458-464.
    [102]Yao T M, Choi K K.3D shape optimal design and automatic finite element regridding[J]. International Journal for Numerical Methods in Engineering,1989,28(2):369-384.
    [103]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering,1994,37(2):229-256.
    [104]Wu Y, Liu G A meshfree formulation of local radial point interpolation method (LRPIM) for incompressible flow simulation[J]. Computational Mechanics,2003,30(5-6):355-365.
    [105]Chati M K, Mukherjee S. The boundary node method for three-dimensional problems in potential theory[J]. International Journal for Numerical Methods in Engineering,2000,47(9):1523-1547.
    [106]Meehan A, Gao H, Lewandowski Z. Energy harvesting with microbial fuel cell and power management system[J]. IEEE Transactions on Power Electronics,2011,26(1):176-181.
    [107]Shantaram A, Beyenal H, Veluchamy R R A, et al. Wireless sensors powered by microbial fuel cells[J]. Environmental Science & Technology,2005,39(13):5037-5042.
    [108]Donovan C, Dewan A, Heo D, et al. Batteryless, wireless sensor powered by a sediment microbial fuel cell[J]. Environmental Science & Technology,2008,42(22):8591-8596.
    [109]Zhang F, Tian L, He Z. Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes[J]. Journal of Power Sources,2011,196(22):9568-9573.
    [110]Yang F, Zhang D, Shimotori T, et al. Study of transformer-based power management system and its performance optimization for microbial fuel cells[J]. Journal of Power Sources,2012,205:86-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700