用户名: 密码: 验证码:
半滑舌鳎MHC Ⅱ B两型基因的克隆、多态和表达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半滑舌鳎(Cynoglossus semilaevis)是一种重要的经济鱼类,具有生长快等优点。近年来,对其研究主要集中在养殖、发育、群体遗传等方面,对其重要的功能基因如免疫相关基因还知之甚少。主要组织相容性复合体(MHC)是脊椎动物中普遍存在的编码免疫球蛋白样受体的高度多态的基因群,因其在免疫系统中的重要作用而备受关注。目前已在多种鱼类中扩增得到MHC基因。本文利用RACE技术得到半滑舌鳎MHC II类B基因的cDNA全长,同时扩增研究了其多态性、发现了该基因的两型、获得了两型的基因全长和表达情况等。
     首先,从实验室构建的半滑舌鳎cDNA文库中得到了MHC II类B基因的完整开放阅读框(Open Reading Frame,ORF),利用RACE(Rapid amplification of cDNA ends,RACE)技术得到了该基因的cDNA全长,共1215bp,其中ORF 750bp,5’末端非翻译区(Untranslated region,UTR)28bp,3’UTR 437bp。在编码的249个氨基酸中,前21个氨基酸组成信号肽,第215到237位氨基酸为跨膜区域,在β1和β2区有4个保守的半胱氨酸残基。生物软件分析表明,该基因编码的氨基酸有1个N连接的糖基化位点、4个蛋白激酶C磷酸化位点、6个酪蛋白激酶II磷酸化位点、2个酪氨酸激酶磷酸化位点、4个豆蔻酰化位点等保守结构;二级结构显示该基因编码的蛋白为混合型蛋白;三维结构和人的DRB的三维结构非常相似。序列比对发现半滑舌鳎MHC II B蛋白和牙鲆、大菱鲆、三刺棘鱼等的MHC II B一致性较高;进化树中首先跟三刺棘鱼聚在一起,然后和牙鲆、大菱鲆、大黄鱼等相聚。
     设计位于ORF两侧的引物,用高保真酶从9条鱼中扩增该基因的ORF,挑取阳性克隆进行双向测序,结果得到24个非重复序列;这些序列在核苷酸水平上存在明显差异,进化树中聚为两支,分别命名为MhcCyse-DAB1和MhcCyse-DAB2 ,其中MhcCyse-DAB1包含14种等位基因(Cyse-DAB1*0101-Cyse-DAB1*1401),MhcCyse-DAB2包含8种等位基因(Cyse-DAB2*0101- Cyse-DAB2*0801);两型均在β1区的变异最大,且核苷酸变异多为非同义替换,因此,24种不同的核苷酸序列产生了22种等位基因;还有两个序列在氨基酸水平上分别和Cyse-DAB1*0101、Cyse-DAB2*0201一样,但核苷酸序列存在差异,将其分别命名为Cyse-DAB1*0102、Cyse-DAB2*0202。其中Cyse-DAB1各等位基因的距离为0.4-6.7,Cyse-DAB2各等位基因的距离为0.4-8.5;Cyse-DAB1各等位基因与Cyse-DAB2各等位基因的距离为8.5-16.6。另外,还发现两个缺失突变的等位基因,分别缺失2bp和7bp,推测为假基因,在核酸水平上分别属于Cyse-DAB1和Cyse-DAB2,因此分别命名为Cyse-DAB1-pse1、Cyse-DAB2-pse1。在检测的9条鱼的mRNA水平上除1条检测不到Cyse-DAB2的表达外,其余均能检测到两型的表达。
     同时,克隆研究了其中一个个体的3’UTR,发现有2种3’UTR序列,Cyse-DAB1和Cyse-DAB2各有1种,表明两型各至少存在一个位点;但两型之间的3’UTR区差异不大,仅存在2个核苷酸变异和1bp长度差异。
     随后扩增研究了5个个体的内含子1,得到两型的内含子1各5种,每型的内含子1分别聚成一支,差异明显;表明两型各至少有5个位点,个体分析表明每个个体每型各至少有1-2个位点。
     利用5’和3’UTR的引物和Extaq扩增得到两型的基因全长。两型均由6个外显子、5个内含子组成,均约2.4kb;在外显子的长度和分布上完全一致,但两型之间和型内内含子的长度和核苷酸存在较明显差异。两型的内含子除内含子1可以作为划分两型的依据外,其它内含子因差异不明显或存在两型的交叉,都不适合作为划分依据。在内含子1、2、4中发现了微卫星序列。内含子的多态也再次说明了该基因的高度多态现象。在mRNA水平检测不到Cyse-DAB2表达的S1个体,也扩增得到了Cyse-DAB2基因全长;没有发现剪切突变或缺失\插入突变,推测Cyse-DAB2的表达可能和生理状态有关。
     用RT-PCR分别检测两型在不同组织和不同发育时期的表达,结果发现两型在不同组织的表达情况类似,在大多数组织中(肝、脾、肾、鳃、脑、心、肠、卵巢、精巢)都表达,而且在脾、肾和心中表达量都较高,在肌肉和鳍中检测不到;但是Cyse-DAB2在鳃、肠、卵巢和精巢的表达不及Cyse-DAB1高。在发育时期中,Cyse-DAB1在受精卵、原肠胚、眼芽和孵化后5-22天有表达,且在孵化后5天表达开始呈现略微下降的趋势;但相同条件下检测不到Cyse-DAB2型在发育时期的表达,说明两型在功能上存在一些差异。
Half-smooth tongue sole (Cynoglossus semilaevis) is an important economic fish, and has many strongpoints such as grow fast in aquaculture. Recently, there are many studies focus on its aquaculture, development and population genetics; but little is known about its important genes such as immune-related genes. Major histocompatibility complex(MHC)encodes immunoglobulin-like receptors in nearly all vertebrate and is highly polymorphic gene family. It is given great attention for its important roles in immune systems. At present, many MHC genes are studied in several kinds of fishes. This paper discussed the cDNA of MHC class II B got from half-smooth tongue sole, studied its polymorphism, discovered the two subtypes, and studied the two subtypes’specific genomic organization and expression pattern.
     First of all, the Open Reading Frame (ORF) of MHC class II B was got from the cDNA library of half-smooth tongue sole constructed by the lab, and then the full cDNA sequence was got by using RACE (Rapid amplification of cDNA ends, RACE). The cDNA comprises a 28bp 5’UTR (Untranslated region, UTR), a 750bp ORF and a 437bp 3’UTR. The first 21 putative amino acids form the signal peptide, and the 215th-237th amino acids constitute the transmembrane region. There are four conserved cysteines in theβ1 andβ2 domain; and also one N-glycosylation site, four protein kinase C phosphorylation site, six casein kinase II phosphorylation site, two tyrosine kinase phosphorylation site and four N-myristoylation site in the putative amino acid. The secondary structure shows that class II B protein is a mixed protein, and its tertiary structure is very similar to HLA-DRB’. Its putative amino acid identity is quite high with the same gene from three-spined stickleback, Japanese flounder and turbot; and it clusters first with that from three-spined stickleback, then with Japanese flounder, turbot and large yellow croaker in phylogenetic tree, which demonstrate half-smooth tongue sole’s closer relationship with those fishes.
     Then ORF polymorphism was studied by using primers in 5’UTR and 3’UTR and high fidelity polymerase from 9 individuals. Positive clones were sequenced from both directions, which resulted in 24 nonredundant sequences. There are apparent divergence among those sequences, which cluster into two subgroups, and named as MhcCyse-DAB1 and MhcCyse-DAB2, respectively. MhcCyse-DAB1 includes 14 alleles, while MhcCyse-DAB2 includes 8 alleles; and the most variable region isβ1 domain. Most of the substitutions among alleles are nonsynonymous, which lead to 22 alleles from the 24 sequences. There are also two sequences, which differ from all the other sequences in nucleotides, but have the same putative amino acids as Cyse-DAB1*0101 and Cyse-DAB2*0201, respectively, so they are named as Cyse-DAB1*0102 and Cyse-DAB2*0202, respectively. The intragroup alleles’divergence in Cyse-DAB1 and Cyse-DAB2 is 0.4-6.7 and 0.4-8.5, respectively; and the intergroup alleles between Cyse-DAB1 and Cyse-DAB2 is 8.5-16.6. Still, there are another two sequences which has a deletion mutation of 2bp and 7bp, respectively; and are presumed as pseudogenes. For they have similar nucleotide sequence as from Cyse-DAB1 and Cyse-DAB2, so they are named as Cyse-DAB1-pse1 and Cyse-DAB2-pse1, respectively. And most of the individuals expresse both of the two subtypes, except the S1 individual which cannot be detected the Cyse-DAB2’s expression..
     At the same time, 3’UTR was studied and two kinds of 3’UTR sequences were discovered. It turns out that each subgroup own one 3’UTR sequence, which indicates that each subgroup has at least one locus. However, the divergence between the two 3’UTR sequence is small, which includes only two basepair variations and 1bp difference in length.
     The study of intron 1 from 5 individuals indicates similar results: intron 1 from the same subgroup cluster first and distinct difference was discovered between the two subgroups. Five kinds of Cyse-DAB1 intron1 and five kinds of Cyse-DAB2 intron1 sequences were got, which indicate that each subgroup has at least five loci and individual study shows that each individual has at least one to two loci of each subgroup.
     The genomic whole length was got by primers in 5’UTR and 3’UTR and Extaq. It turns out that both the two subtypes consist of six exons and five introns, both of which span about 2.4kb. The two subtypes have the same exon length and distribution, but have great divergence in the intron length and sequence. It shows that only intron 1 can be the parameter to distinguish the subgroups, all others cannot for the similarity and crossover in the nucleotide sequences. There are also microsatellites in intron 1, 2 and 4. The genomic sequence of Cyse-DAB2 from S1 individual was also got, and no mutation in RNA splicing and no deletion\insertion mutation in ORF was discovered, which show that the expression of Cyse-DAB2 may be relevant to the body’s physiological environment.
     The expression profile of different tissues and developmental stages were studied by using RT-PCR. The two subtypes have similar expression pattern in different tissues, and express in most tissues (liver, spleen, kidney, gill, brain, heart, intestine, ovary and testis), and have high expression in spleen, kidney and heart; while the expression in muscle and fin cannot be detected and Cyse-DAB2 has a lower expression in gill, intestine, ovary and testis than Cyse-DAB1. In developmental stages, Cyse-DAB1 can be detected in fertilized egg, gastrula stage, eye bud stage and 5-22 day after hatching, and has a drop from 5 day after hatching; while Cyse-DAB2 cannot be detected under the same condition, which indicate that the two subtypes may have different functions.
引文
[1] Aguilar, A., Garza, C.. Patterns of historical balancing selection on the salmonid major histocompatibility complex class II b gene. Journal of Molecular Evolution, 2007, 65:34-43
    [2] Antao, A.B., Chinchar, V.G., McConnell, T.J., et al. MHC class I genes of the channel catfish: sequence analysis and expression. Immunogenetics, 1999 ,49:303-311
    [3] Aoyagi, K., Dijkstra, J.M., Xia, C., et al. Classical MHC class I genes composed of highly divergent sequence lineages share a single locus in rainbow trout (Oncorhynchus mykiss). The Journal of Immunology, 2002, 168:260-273
    [4] Apanius, V., Penn, D., Slev, P.R., Ruff, L.R., Potts, W.K. The nature of selection on the major histocompatibility complex. Critical Reviews in Immunology, 1997, 17:179-224
    [5] Azuma, T., Dijkstra, J.M., Kiryu, I., et al. Growth and behavioral traits in Donaldson rainbow trout (Oncorhynchus mykiss) cosegregate with classical major histocompatibility complex (MHC) class I genotype. Behavior Genetics, 2005, 35:463-478
    [6] Bartl, S., Weissman, I.L.Isolation and characterization of major histocompatibility complex class II B genes from the nurse shark. Proceedings of the National Academy of Sciences of the United States of America (Proc.Natl.Acad.Sci. USA), 1994, 91:262-266
    [7] Bernatchez,L., Landry,C. MHC studies in nonmodel vertebrates: what have we learned about natural selection in 15 years? Journal of Evolutionary Biology, 2003, 16: 363-377
    [8] Bingulac-Popovic, J., Figueroa, F., Sato, A., et al. Mapping of MHC class I and class II regions to different linkage groups in the zebrafish, Danio rerio[J]. Immunogenetics, 1997, 46: 129-134
    [9] Bird S., Zou J., Kono T., et al. Characterisation and expression analysis of interleukin 2 (IL-2) and IL-21 homologues in the Japanese pufferfish, Fugu rubripes, following their discovery by synteny. Immunogenetics, 2005, 56: 909-923
    [10] Bird S., Zou J., Savan R., et al. Characterisation and expression analysis of an interleukin 6 homologue in the Japanese pufferfish, Fugu rubripes.Developmental and Comparative Immunology, 2005, 29: 775-789
    [11] Blais, J., Rico, C., van Oosterhout, C., et al. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE, 2007, 2(8):e734
    [12] Buonocore, F., Randelli, E., Casani, D., et al. Molecular cloning, differential expression and 3D structural analysis of the MHC class-II beta chain from sea bass (Dicentrarchus labrax L.). Fish & Shellfish Immunology, 2007, 23:853-866
    [13] Cardwell, T.N., Sheffer, R.J., Hedrick, P.W. MHC variation and tissue transplantation in fish. Journal of Heredity, 2001, 92:305-308
    [14] Chen L., He C., Baoprasertkul P., et al. Analysis of a catfish gene resembling interleukin-8: cDNA cloning, gene structure, and expression after infection with Edwardsiella ictaluri. Developmental and Comparative Immunology, 2005, 29: 135-142
    [15] Chen, S.L., Zhang, Y.X., Xu, et al. Molecular polymorphism and expression analysis of MHC class II B gene from red sea bream (Chrysophrys major). Developmental and Comparative Immunology, 2006, 30:407-418
    [16] Chou, P. Y., Fasman, G. D. Prediction of the secondary structure of proteins from their amino acid sequence[J].Advances in Enzymology & Related Areas of Molecular Biology, 1978, 47:45-148
    [17] Consuegra, S., Megens, H.-J., Leon, K., et al. Patterns of variability at the major histocompatibility class II alpha locus in Atlantic salmon contrast with those at the class I locus. Immunogenetics, 2005, 57:16-24
    [18] Consuegra, S., Megens, H.-J., Schaschl, H., et al. Rapid evolution of the MH class I locus results in different allelic compositions in recently diverged populations of Atlantic salmon. Molecular Biology and Evolution, 2005, 22:1095-1106
    [19] Cuesta, A., Esteban, M.A., Meseguer, J. Cloning, distribution and up-regulation of the teleost fish MHC class II alpha suggests a role for granulocytes as antigen-presenting cells. Molecular Immunology, 2006, 43:1275-1285
    [20] de Eyto, E., McGinnity, P., Consuegra, S., et al. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild. Proceedings of the Royal Society B, 2007, 274:861-869
    [21] Dijkstra, J.M., Katagiri, T., Hosomichi, K., et al. A third broad lineage of major histocompatibility complex (MHC) class I in teleost fish; MHC class II linkage and processed genes. Immunogenetics, 2007, 59:305-321
    [22] Dijkstra, J,M., Kiryu, I., Yoshiura, Y., et al. Polymorphism of two very similar MHC class Ib loci in rainbow trout (Oncorhynchus mykiss). Immunogenetics, 2006, 58:152-167
    [23] Dijkstra, J,M., Kollner, B., Aoyagi, K., et al. The rainbow trout classical MHC class I molecule Onmy-UBA*501 is expressed in similar cell types as mammalian classical MHC class I molecules. Fish & Shellfish Immunology, 2003, 14:1-23
    [24] Dijkstra, J,M., Yoshiura, Y., Kiryu, I., et al. The promoter of the classical MHC class I locus in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 2003,14:177-185
    [25] Dixon, B., van Erp, S.H.M., Rodrigues, P.N.S., et al. Fish major histocompatibility complex genes: an expansion. Developmental and Comparative Immunology,1995, 19: 109-133
    [26] Edwards S., Hedrick P. W. Evolution and ecology of MHC molecules: from genomics to sexual selection. Trends in Ecology and Evolution, 1998, 13: 305-311
    [27] Fischer, U., Dijkstra, J.M., Kollner, B., et al. The ontogeny of MHC class I expression in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 2005, 18:49-60
    [28] Fujiki, K., Booman, M., C-Dixon. E., Dixon, B. Cloning and characterization of cDNA clones encoding membrane-bound and potentially secreted major histocompatibility class I receptors from walleye (Stizostedion vitreum). Immunogenetics, 2001, 53:760-769
    [29] Fujiwara, A., Kiryu, I., Dijkstra, J.M., et al. Chromosome mapping of MHC class I in rainbow trout (Oncorhynchus mykiss). Fish & Shellfish Immunology, 2004, 14:171-175
    [30] G-Castillo J., Pelegrín P., Mulero V., Meseguer J. Molecular cloning and expression analysis of tumor necrosis factorαfrom a marine fish reveal its constitutive expression and ubiquitous nature. Immunogenetics, 2002, 54: 200-207
    [31] Godwin, U.B., Antao, A., Wilson, M.R., et al. MHC class II B genes in the channel catfish (Ictalurus punctatus). Developmental and Comparative Immunology, 1997, 21:13-23
    [32] Govoroun M., Gac F. L., Guiguen Y. Generation of a large scale repertoire of Expressed Sequence Tags (ESTs) from normalised rainbow trout cDNA libraries.BMC Genomics,2006, 7(1):196
    [33] Grimholt, U., Drabl?s, F., J?rgensen, S.M., H?yheim, B., Stet, R.J.M. The major histocompatibility class I locus in Atlantic salmon (Salmo salar L.): polymorphism, linkageanalysis and protein modeling. Immunogenetics, 2002, 54:570-581
    [34] Grimholt, U., Larsen, S., Nordmo, R., et al. MHC polymorphism and disease resistance in Atlantic salmon (Salmo salar); facing pathogens with single expressed major histocompatibility class I and class II loci. Immunogenetics, 2003, 55:210-219
    [35]. Hashimoto, K., Nakanishi, T., Kurosawa, Y. Isolation of carp genes encoding major histocompatibility complex antigens. Proc.Natl.Acad.Sci.USA, 1990, 87:6863-6867
    [36] Hashimoto, K., Nakanishi, T., Kurosaw, Y. Identification of a shark sequence resembling the major histocompatibility complex class Iα3 domain[I]. Proc Natl Acad Sci USA, 1992, 89: 2209-2212
    [37] Hansen, J.D., Strassburger, P.,Thorgaard, G.H., et al. Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. The Journal of Immunology, 1999, 163:774-786
    [38] Hirono I., Nam B-H., Kurobe T., Aoki T. Molecular cloning, characterization, and expression of TNF cDNA and gene from Japanese Flounder Paralychthys olivaceus. The Journal of Immunology, 2000, 165: 4423-4427
    [39] Hong S., Zou J., Collet B., et al. Analysis and characterisation of IL-1βprocessing in rainbow trout, Oncorhynchus mykiss. Fish & Shellfish Immunology, 2004, 16: 453-459
    [40].Hughes A. L., Nei M. Nucleotide substitution at major histocompatibility complex class II loci: evidence for overdominant selection. Proc Natl Acad Sci USA, 1989, 86 (3): 958-962
    [41] Hordvik, I., Grimholt, U., Fosse, V. M., Lie,O., Endresen, C. Cloning and sequence analysis of cDNAs encoding the MHC class II beta chain in Atlantic salmon (Salmo salar). Immunogenetics, 1993, 37:437-441
    [42] Huising M. O., Kruiswijk C. P., van Schijndel J. E., et al. Multiple and highly divergent IL-11 genes in teleost fish. Immunogenetics, 2005, 57: 432-443
    [43] Huising M. O., Stet R. J.M., Savelkoul H.F.J. The molecular evolution of the interleukin-1 family of cytokines; IL-18 in teleost fish. Developmental and Comparative Immunology, 2004: 395-413
    [44] Ingerslev H. C., Cunningham C., Wergeland H.I. Cloning and expression of TNF-a, IL-1b and COX-2 in an anadromous and landlocked strain of Atlantic salmon (Salmo salar L.) during the smolting period. Fish & Shellfish Immunology, 2006, 20: 450-461
    [45] Igawa D., Sakai M., Savan R. An unexpected discovery of two interferon gamma-like genes along with interleukin (IL)-22 and -26 from teleost: IL-22 and -26 genes have been described for the first time outside mammals. Molecular Immunology, 2006, 43 (7): 999-1009
    [46] Jimenez N., Coll J., Salguero F. J., Tafalla C. Co-injection of interleukin 8 with the glycoprotein gene from viral haemorrhagic septicemia virus (VHSV) modulates the cytokine response in rainbow trout (Oncorhynchus mykiss). Vaccine, 2006, 24: 5615-5626
    [47] Johnson, N.A., Vallejo, R.L., Silverstein, J.T., et al. Suggestive association of major histocompatibility IB genetic markers with resistance to bacterial cold water disease in rainbow trout (Oncorhynchus mykiss). Marine Biotechnology (NY) 2008, 1436-2228
    [48] Kasahara, M., Vazquez, M., Sato, K., et al. Evolution of the major histocompatibility complex: isolation of class II A cDNA clones from the cartilaginous fish. Proc.Natl.Acad.Sci.USA, 1992, 89:6688-6692
    [49] Khattiya R., Ohira T., Hirono I., Aoki T. Identification of a novel Japanese flounder (Paralichthys olivaceus) CC chemokine gene and an analysis of its function. Immunogenetics,2004, 55: 763-769
    [50] Kj?glum, S.,Larsen, S., Bakke, H.G., Grimholt, U. How specific MHC class I and class II combinations affect disease resistance against infectious salmon anaemia in Atlantic salmon (Salmo salar). Fish & shellfish Immunology, 2006, 21:431-441
    [51] Klein, D., Ono, H., O’hUigin, C., et al. Extensive MHC variability in cichilid fishes of Lake Malawi. Nature, 1993, 364:330-334
    [52] Klein, J., Figueroa, F. Evolution of the major histocompatibility complex. Crit Rev Immunol, 1986, 6:295-386
    [53] Klein, J., O’Huigin, C. MHC polymorphism and parasites. Philosophical Transactions of the Royal Society Biological Sciences, 1994, 346 (1317): 351-358
    [54] Kono T., Sakai M. The analysis of expressed genes in the kidney of Japanese flounder, Paralichthys olivaceus, injected with the immunostimulant peptidoglycan. Fish & Shellfish Immunology, 2001, 11: 357-366
    [55] Kruiswijk, C P., Hermsen, T., Fujiki, K., et al. Analysis of genomic and expressed major histocompatibility class Ia and class II genes in a hexaploid Lake Tana African‘large’barb individual (Barbus intermedius). Immunogenetics, 2004, 55:770-781
    [56] Kono T., Kusuda R., Kawahara E., Sakai M. The analysis of immune responses of a novel CC-chemokine gene from Japanese flounder Paralichthys olivaceus. Vaccine, 2003,21: 446–457
    [57] Koppang E. O., Haugarvoll E., Hordvik I., et al. Vaccine-associated granulomatous inflammation and melanin accumulation in Atlantic salmon, Salmo salar L., white muscle. Journal of Fish Diseases, 2005, 28(1):13-22
    [58] Krogh,A., Larsson,B., von,H.G., Sonnhammer,E.L. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 2001, 305: 567-580
    [59] Kruiswijk, C.P., Hermsen, T., van Heerwaarden, J., et al. Major histocompatibility genes in the Lake Tana African large barb species flock:evidence for complete partitioning of class II B, but not class I, genes among different species. Immunogenetics, 2005, 56:894-908
    [60] Kumar,S., Tamura,K., Jakobsen,I.B., Nei,M. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics, 2001, 17:1244-1245
    [61] Kurtz, J., Wegner, K.M., Kalbe, M., et al. MHC genes and oxidative stress in sticklebacks: an immuno-ecological approach. Pro. R. Soc. B, 2006, 273:1407-1414
    [62] Laing K. J., Secombes C. J. Trout CC chemokines: comparison of their sequences and expression patterns. Molecular Immunology, 2004, 41: 793–808
    [63] Laing K. J., Zou J.J., Wang T., et al. Identification and analysis of an interleukin 8-like molecule in rainbow trout Oncorhynchus mykiss.Developmental and Comparative Immunology, 2002, 26:433-444
    [64] Landis, E.D., Purcell, M.K., Thorgaard, G.H., et al. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus. Molecular Immunology, 2008, 45:1646-1657
    [65] Lee E. Y., Park H. H., Kim Y. T., Choi T. J. Cloning and sequence analysis of the interleukin-8 gene from flounder (Paralichthys olivaceous). Gene, 2001, 274: 237-243
    [66] Liu Y., Chen S-L., Meng L., Zhang Y-X. Cloning, characterization and expression analysis of a novel CXC chemokine from turbot (Scophthalmus maximus). Fish & Shellfish Immunology, 2007, 23: 711-720
    [67] Liu, Y., Kasahara, M., Rumfelt, L.L., Flajnik, M.F. Xenopus class II A genes: studies of genetics, polymorphism, and expression. Developmental and Comparative Immunology, 2002, 26:735-750
    [68] Lohm, J., Grahn, M., Langefors, A., et al. Experimental evidence for major histocompatibility complex-allele-specific resistance to a bacterial infection. Proc Biol Sci, 2002, 269:2029-2033
    [69] Lukacs, M.F., Harstad, H., Grimholt, U., et al. Genomic organization of duplicated major histocompatibility complex class I regions in Atlantic salmon (Salmo salar). BMC Genomics, 2007, 8:251
    [70] McConnell, T.J., Godwin, U.B., Norton, S.F., et al. Identification and mapping of two divergent, unlinked major histocompatibility complex class II B genes in Xiphophorus fishes. Genetics, 1998, 149:1921-1934
    [71] Milinski, M., Griffiths, S., Wegner, K.M., et al. Mate choice decisions of stickleback females predictably modified by MHC peptide ligands. Proc Natl Acad Sci USA, 2005, 102:4414-4418
    [72] Miller, K.M., Li, S., Ming, T.J., et al. The salmonid MHC class I: more ancient loci uncovered. Immunogenetics, 2006, 58:571-589
    [73] Morrison, R.N., Koppang, E.O., Hordvik, I. Nowak, B.F. MHC class II+ cells in the gills of Atlantic salmon (Salmo salar L.) affected by amoebic gill disease. Veterinary Immunology and Immunopathology, 2006, 109: 297–303
    [74] Murray, B.W., Shintani, S., Sultmann, H., Klein, J. Major histocompatibility complex class II A genes in cichlid fishes: identification, expression, linkage relationships, and haplotype variation. Immunogenetics, 2000, 1:576-586
    [75] Naruse, K., Fukamachi, S., Mitani, H., et al. A detailed linkage map of medaka, Oryzias latipes. Comparative genomics and genome evolution[J]. Genetics, 2000, 154: 1773-1784.
    [76] Nath, S., Kales, S., Fujiki, K., Dixon, B. Major histocompatibility class II genes in rainbow trout (Oncorhynchus mykiss) exhibit temperature dependent downregulation. Immunogenetics, 2006, 58:443-453
    [77] Nielsen,H., Engelbrecht,J., Brunak,S., von,H.G. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. International Journal of Neural Systems, 1997, 8:581-599
    [78] Nonaka, M., Matsuo, M., Naruse, K., Shima, A. Comparative genomics of medaka: the major histocompatibility complex (MHC).Marine Biotechnology, 2001, 3: S141-S144
    [79] Ohta, Y., Okamura, K., McKinney, E.C., et al. Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. Proc Natl Acad Sci USA, 2000, 97:4712-4717
    [80] Ono, H., Figueroa, F., O'hUigin, C., Klein, J. Cloning of the beta 2-microglobulin gene in the zebrafish. Immunogenetics, 1993, 38:1-10
    [81] Ono, H., Klein, D., Vincek, V., et al. Major histocompatibility complex class II genes of zebrafish. Proc Natl Acad Sci USA, 1992, 89:11886-11890
    [82] Ono, H., O'hUigin, C., Tichy, H., Klein, J. Major-Histocompatibility-Complex variation in two species of cichlid fishes from Lake Malawi. Molecular Biology and Evolution, 1993, 10: 1060-1072
    [83] Ono, H., O'hUigin, C., Vincek, V., Klein, J. Exon-intron organization of fish major histocompatibility complex class II B genes. Immunogenetics, 1993, 38:223-234
    [84].Ottova, E., Simkova, A., Martin, J-F., et al. Evolution and trans-species polymorphism ofMHC class IIβgenes in cyprinid fish. Fish & Shellfish Immunology, 2005, 18: 199-222
    [85] Parham,P., Ohta,T. Population biology of antigen presentation by MHC class I molecules. Science, 1996, 272:67-74
    [86] Park K. C., Osborne J. A., Tsoi C.M., et al. Expressed sequence tags analysis of Atlantic halibut (Hippoglossus hippoglossus) liver, kidney and spleen tissues following vaccination against Vibrio anguillarum and Aeromonas salmonicida. Fish & Shellfish Immunology, 2005, 18: 393-415
    [87] Pelegrin P., C-Pozo E., Mulero V., Meseguer J. Production and mechanism of secretion of interleukin-1βfrom the marine fish gilthead seabream. Developmental and Comparative Immunology, 2004, 28: 229-237
    [88] Quiniou, S.M.., Wilson, M., Bengten, E., et al. MHC RFLP analysis in channel catfish full-sibling families: identification of the role of MHC molecules in spontaneous allogeneic cytotoxic responses. Developmental and Comparative Immunology, 2005, 29:457-467
    [89] Reusch, T.B., Schaschl, H., Wegner, K.M. Recent duplication and inter-locus gene conversion in major histocompatibility class II genes in a teleost, the three-spined stickleback. Immunogenetics, 2004, 56:427-437
    [90] Ristow, S.S., Grabowski, L.D., Thompson, S.M., et al. Coding sequences of the MHC IIβchain of homozygous rainbow trout (Oncorhynchus mykiss). Developmental and Comparative Immunology, 1999, 23:51-60
    [91] Robertsen, Borre. The interferon system of teleost fish. Fish & Shellfish Immunology, 2006, 20: 172-191
    [92] Roney, K.E., Cuthbertson, B.J., Godwin, U.B., et al. Alternative splicing of major histocompatibility complex class II DXB transcripts in Xiphophorus fishes. Immunogenetics, 2004, 56:462-466
    [93] Rodrigues, P.N.S., Hermsen, T.T., Rombout, J.H.W.M., et al. Detection of MHC class II transcripts in lymphoid tissues of the common carp (Cyprinus carpio L.). Developmental and Comparative Immunology, 1995, 19:483-496
    [94] Rost,B. PHD: predicting one-dimensional protein structure by profile-based neural networks. Methods Enzymol, 1996, 266:525-539
    [95] Rothbard, J.B., Gefter, M.L. Interactions between immunogenic peptides and MHC proteins. Annual Review of Immunology, 1991, 9:527-565
    [96] Sambrook, J.G., Figueroa,F., Beck,S. A genome-wide survey of Major Histocompatibility Complex (MHC) genes and their paralogues in zebrafish. BMC Genomics, 2005, 6:152
    [97] Sato, A., Dongak, R., Hao, L., et al. Mhc class I genes of the cichlid fish Oreochromis niloticus. Immunogenetics, 2006, 58:917-928
    [98] Sato, A., Figueroa, F., O'hUigin, C., et al. Identification of major histocompatibility complex genes in the guppy, Poecilia reticulata. Immunogenetics, 1996, 43:38-49
    [99] Sato, A., Figueroa, F., Murray, B.W., et al. Nonlinkage of major histocompatibility complex class I and class II loci in bony fishes. Immunogenetics, 2000, 51:108-116
    [100] Savan R., Kono T., Aman A., Sakai M. Isolation and characterization of a novel CXC chemokine in common carp (Cyprinus carpio L.). Molecular Immunology, 2003, 39: 829–834
    [101] Savan R., Igawa D., Sakai M. Cloning, characterization and expression analysis of interleukin-10 from the common carp, Cyprinus carpio L. European Journal of Biochemistry, 2003, 270: 4647-4654
    [102] Savan R., Kono T., Igawa D., Sakai M. A novel tumor necrosis factor (TNF) gene present in tandem with the TNF-αgene on the same chromosome in teleosts. Immunogenetics, 2005, 57: 140-150
    [103] Scapigliati A., Costantini S., Colonna G., et al. Modelling of fish interleukin-1 and its receptor. Developmental and Comparative Immunology, 2004, 28: 429-441
    [104] Schaschl, H., Wegner, K.M. Contrasting mode of evolution between the MHC class I genomic region and class II region in the three-spined stickleback (Gasterosteus aculeatus L.; Gasterosteidae: Teleostei). Immunogenetics, 2007, 59:295-304
    [105] Schwede, T., Kopp, J., Guex, N., Peitsch, M. C. SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Research, 2003, 31 (13): 3381-3385
    [106] Shiina, T., Dijkstra, J.M., Shimizu, S., et al. Interchromosomal duplication of major histocompatibility complex class I regions in rainbow trout (Oncorhynchus mykiss), a species with a presumably recent tetraploid ancestry. Immunogenetics, 2005, 56:878-893
    [107] Shum, B.P., Guethlein, L., Flodin, L.R., et al. Modes of salmonid MHC class I and II evolution differ from the primate paradigm. The journal of immunology, 2001, 166: 3297-3308
    [108] Shum, B.P., Mason, P.M., Magor, K.E., et al. Structures of two major histocompatibility complex class I genes of the rainbow trout (Oncorhynchus mykiss). Immunogenetics, 2002, 54:193-199
    [109] Sigh J., Lindenstrom T., Buchmann K. Expression of pro-inflammatory cytokines in rainbow trout (Oncorhynchus mykiss) during an infection with Ichthyophthirius multifiliis. Fish & Shellfish Immunology, 2004, 17: 75-86
    [110] Stet, R.J.M., Dixon, B., van Erp, S.H.M., et al. Inference of structure and function of fish Major Histocompatibility Complex (MHC) molecules from expressed genes. Fish & Shellfish Immunology, 1996, 6:305-318
    [111] Stet, R.J., de Vries, B., Mudde, K., et al. Unique haplotypes of co-segregating major histocompatibility class II A and class II B alleles in Atlantic salmon (Salmo salar) give rise to diverse class II genotypes. Immunogenetics, 2002, 54: 320-331
    [112] Stet, R. J. M., Kruiswijk C. P., Dixon B. Major histocompatibility lineages and immune gene function in fish: the road not taken. Critical Reviews in Immunology, 2003, 23: 441-471
    [113] Stet, R. J. M., Johnston, R., Parham, P. The unMHC of teleostean fish: segregation analysis in common carp and Atlantic salmon[J]. Hereditas, 1997, 127: 169-170
    [114] Sultmann, H., Mayer, W.E., Figueroa, F., et al. Zebrafish Mhc class IIαchain-encoding genes: polymorphism, expression, and function. Immunogenetics, 1993, 38: 408-420
    [115] Thompson,J.D., Higgins,D.G., Gibson,T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 1994, 22:4673-4680
    [116] van Erp, S.H.M., Dixon, B., Figueroa, F., et al. Identification and characterization of a new major histocompatibility complex class I gene in carp (Cyprinus carpio L.). Immunogenetics, 1996, 44:49-61
    [117] van Erp, S.H.M., Egberts, E., Stet, R.J.M. Characterization of class II A and B genes in a gynogenetic carp clone. Immunogenetics. 1996, 44:192-202
    [118] van Lierop, M.J.C., Knight, J., Secombes, C.J., et al. Production and characterisation of an antiserum raised against recombinant rainbow trout (Oncorhynchus mykiss) MHC class II beta-chain (MhcOnmy-DAB). Fish & Shellfish Immunology, 1998, 8:231-243
    [119] van Oosterhout, C., Joyce, D.A., Cummings, S.M. Evolution of MHC class IIB in the genome of wild and ornamental guppies, Poecilia reticulate. Heredity , 2006, 97:111-118
    [120] Wang T., Johnson N., Zou J., et al. Sequencing and expression of the second allele of the interleukin-1β1 gene in rainbow trout (Oncorhynchus mykiss):identification of a novel SINE in the third intron. Fish & Shellfish Immunology, 2004: 335-358
    [121] Wiens G.D., Glenney G. W., LaPatra S. E., Welch T. J. Identification of novel rainbow trout (Onchorynchus mykiss) chemokines, CXCd1 and CXCd2: mRNA expression after Yersinia ruckeri vaccination and challenge. Immunogenetics, 2006, 58: 308-323
    [122] Yang, T-Y., Hao, H-F., Jia, Z-H., et al. Characterisation of grass carp (Ctenopharyngodon idellus) MHC class I domain lineages. Fish & Shellfish Immunology, 2006, 21:583-591
    [123] Zhang, Y.X., Chen, S.L. Molecular identification, polymorphism, and expression analysis of major histocompatibility complex class II A and B genes of turbot (Scophthalmus maximus). Marine Biotechnology (NY) , 2006, 8:611-623
    [124] Zhang, Y.X., Chen, S.L., Liu, Y.G., et al. Major histocompatibility complex class II B allele polymorphism and its association with resistance /susceptibility to Vibrio anguillarum in Japanese flouner (Paralichthys olivaceus). Marine Biotechnology (NY), 2006, 8:600-610
    [125] Zhao, Z., Hermsen, T., Stet, R.J.M., et al. Peptide-binding motif prediction by using phage display library for SasaUBA*0301, a resistance haplotype of MHC class I molecule from Atlantic Salmon (Salmo salar). Molecular Immunology, 2008, 45: 1658-1664
    [126] Zheng W., Liu G., Ao J., Chen X. Expression analysis of immune-relevant genes in the spleen of large yellow croaker (Pseudosciaena crocea) stimulated with poly I:C. Fish & Shellfish Immunology, 2006, 21: 414-430
    [127] Zou J., Bird S., Truckle J., et al. Identification and expression analysis of an IL-18 homologue and its alternatively spliced form in rainbow trout (Oncorhynchus mykiss). European Journal of Biochemistry, 2004, 271: 1913-1923
    [128] Zou J., Carrington A., Collet B., et al. Identification and bioactivities of IFN-γin rainbow trout Oncorhynchus mykiss: the first Th1-type cytokine characterized functionally in fish. The Journal of Immunology, 2005, 175: 2484-2494
    [129] Zou J., Secombes C.J., Long S., et al. Molecular identification and expression analysis of tumor necrosis factor in channel catfish (Ictalurus punctatus). Developmental and Comparative Immunology, 2003, 27: 845-858
    [130]蔡完其,轩兴荣,王成辉,邹曙明.红鲤4群体间主要组织相容性复合体的差异.水产学报,2003,27(2):113-118
    [131]蔡中华,宋林生,高春萍等.真鲷肿瘤坏死因子α(TNFα) cDNA的克隆与表达.生物化学与生物物理学报,2003,35(12):1111-1116
    [132]蔡中华,宋林生,ZOU Jun等.虹鳟肿瘤坏死因子(TNFα)基因体外表达与纯化的研究.水生生物学报,2003,27(6):596-601
    [133]丁广治.主要组织相容性抗原的研究进展.国外医学分子生物学分册,1997,19(3):119-123
    [134]杜昌升.牙鲆抗病毒及免疫相关基因的克隆鉴定及表达分析:[博士毕业论文].武汉:中国科学院水生生物研究所,2005
    [135]范玉顶.鳗弧菌感染前后牙鲆差异表达基因的克隆与分析:[博士毕业论文].青岛:中国海洋大学海洋生命学院,2007
    [136]高春萍,蔡中华,宋林生等.黑鲷(Acanthopagrus schlegeli)肿瘤坏死因子αcDNA的克隆及特征分析.海洋与湖沼,2005,36(4):326-334
    [137]金红建.鱼类几种免疫相关基因的克隆与鉴定:[硕士毕业论文].杭州:武汉大学,2002
    [138]邱丽华,宋林生,蔡中华,吴龙涛,江世贵.花鲈肿瘤坏死因子基因cDNA的克隆、分析与表达.中国水产科学,2003,10(5):370-375
    [139]史燕,吴孝兵,晏鹏,张方.主要组织相容性复合体(MHC)基因的研究概况.生命科学研究,2005,7(2):104-109孙中之,李建,李娟.半滑舌鳎的生物学特性与养殖技术.齐鲁渔业,2006, 23 (12): 22-23.
    [140]夏春.白鲢MHC Iα2基因克隆及序列分析.动物学报,1999,45(3):345-349
    [141]夏春,青柳宙,中西照幸.一种MHC I类等位基因存在于低等脊椎动物虹鳟鱼.科学通报,2001,46(2):121-126
    [142]夏春,徐广贤,林常有等.草鱼MHC class I等位基因克隆及其多态性分析.自然科学进展,2004,14(1):51-58
    [143]许文静,张振奎.半滑舌鳎的半人工养殖技术.天津水产,2006,4:38-39
    [144]张玉喜.重要海水养殖鱼类MHC II基因克隆、表达及多态性分析:[博士学位论文].青岛:中国海洋大学海洋生命学院,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700