用户名: 密码: 验证码:
鸡Mx基因和MHC基因座的遗传多样性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
禽类传染性疾病严重地影响着禽业生产,采用遗传改良方法提高宿主对病原的遗传抗性,开展抗病育种,是禽病防治的有效途径之一,并有益于家畜生产和人类健康。
     Mx蛋白和主要组织相容性复合体(MHC)因具有抗病毒作用而备受抗病育种研究者的关注。已有报道,Mx基因编码序列1892位的G/A SNP对Mx蛋白抗禽流感的功能起关键作用;应用分子标记对MHC的基因型进行测定是研究其功能的基础。
     本研究通过对分布于西亚、南亚和东亚的12个鸡群体378个样本的Mx基因之1892位的单核苷酸多态性的检测和对位于MHC区域内的三个微卫星标记LEI0258、MCW0371和MCW0312的遗传多态性的分析,得出以下结论:
     1)地方群体中Mx抗病基因型(AA)和抗病基因(A)的频率明显高于商品培育品种。地方群体中,西、南亚群体中Mx抗病基因(A)的频率明显高于中国西北和韩国(东亚)群体,其中以孟加拉(BAN)群体的抗病基因(A)频率最高(77.5﹪),中国西北会宁群体的抗病基因(A)频率最低(11.8﹪)。
     2) LEI0258和MCW0312基因型测定结果显示,地方群体的遗传多样性大于商业培育品种。地方群体中,西、南亚群体的遗传变异程度高于中国西北和韩国群体(东亚);其中以孟加拉(BAN)的平均多态信息含量和杂合度最高,民勤(MQ)最低。
     3) MCW0371序列的重复区呈Fr1(An)和Fr2((AAC)mAn)两种模式。Fr1为完全型单核苷酸重复微卫星,Fr2为有两个毗邻的重复单元的复合型微卫星。序列结构复杂,核苷酸长度相同的等位基因存在核苷酸结构不同的可能,因而难以通过片段分析对该基因座进行正确的基因型测定。另外,在其两侧翼序列中还存在多个SNPs和InDels。Fr1模式中检测到6个SNPs和4个InDel;Fr2模式中检测到16个SNPs和4个InDel。Fr2模式的多态性大于Fr1模式。
Chickens and poultry industry suffer serious losses from a number of infectious diseases, some of which are fatal and all of which affect the growth, production and welfare of the birds. Selective breeding for disease-resistant chickens is considered to be the best long-term strategy in preventing the diseases, thus beneficial for both livestock industry and human health.
     Being identified with strong association to avian disease resistance/susceptibility, chicken Mx gene and MHC have been receiving lots of attentions from many researchers. It has been previously demonstrated that a G/A SNP at nucleotide position 1892 of coding sequence of the chicken Mx gene confers susceptibility/resistance to avian viral diseases and molecular identification of genotypes of the MHC provides a baseline for selective breeding for disease-resistant chickens.
     In this study, the G/A SNP at nucleotide position 1892 of coding sequence of chicken Mx gene was examined using mismatched primer PCR-RFLP and the genetic polymorphisms at three microsatellite loci namly LEI0258, MCW0312 and MCW0371 located within the MHC region were assessed in 378 chickens from 12 populations collected in West, South and South-East Asia. Some results are as follows:
     1) Frequencies of resistant genotype AA and allele A in indigenous chickens were higher than those in commercial ones. Allele A in indigenous birds from West Asian and South Asian were more than those from northwestern China and Korea.
     2) The genetic polymorphisms at the LEI0258 and MCW0312 loci in indigenous populations were more diverse than those in commercial breeds in terms of NA, PIC and H. Genetic variations of West and South Asian indigenous chickens were higher than those of northwestern of China and Korea.
     3) There were two different structures in sequences of the MCW0371 locus that was previously reported to have exclusively a single nucleotide repeat. One structure consisted of two un-interrupted repeat elements, a 3 bp repeat of“AAC”ranging between 1 and 6 followed by a single nucleotide repeat of“A”between 9 and 17 (Fr2); the other only had the single nucleotide repeat of“A”between 14 and 20 (Fr1). Therefore it is impossible to accurately genotype this locus due to its complex structure. Furthermore, 16 SNPs and 4 InDels were detected in the Fr2, and 6 SNP and 4 InDels in the Fr1 within the franking sequences of this locus.
引文
[1]林学颜,张玲.现代细胞与分子免疫学[M].北京:科学出版社. 1999.
    [2] Vilcek, J., G.C. Sen. Interferons and other cytokines. In: Fields B.N., Knipe D.M., Howley P.M. eds. Fundamental Virology[M], 3rd edn. Philadelphia: Lippincott-Raven Press, 1996, 341-365.
    [3] Doblies, D.M., M. Ackermann, A. Metzler. In vitro and in vivo detection of Mx gene products in bovine cells following stimulation with alpha/beta interferon and viruses[J]. Clinical and Diagnostic Laboratory Immunology, 2002, 9: 1192-1199.
    [4]施启顺.畜禽某些疾病的遗传控制与抗病育种[J].中国畜牧志, 2004, 40(2): 36-39.
    [5]李宏. QTL定位的研究方法[J].生物学通报, 2002, 37(6): 53-54.
    [6]徐日福.中国部分地方鸡种MHC B-LBII、B-G基因变异及其群体遗传结构研究[D].华南农业大学博士学位论文. 2005.
    [7] Schierman, L.W., A.W. Nordskog. Relationship of blood type to histocompatibility in chickens[J]. Science, 1961, 134: 1008-1009.
    [8] Apanius, V., D. Penn, P.R. Slev, L.R. Ruff, W.K. Potts. The nature of selection on the major histocompatibility complex[J]. Critical Review in Immunology, 1997, 17: 179-224.
    [9] Edwars, S.V., P.W. Hedrick. Evolution and ecology of MHC molecules: From genomics to sexual selection[J]. Trends in Ecology and Evolution, 1998, 13: 305-311.
    [10] Pink, J.R.L., W. Droege, K. Hala, V.C. Miggiano, A. Ziegler. A three-locus model for the chicken major histocompatibility complex[J]. Immunogenetics, 1977, 5: 203-216.
    [11] Abbas, A.K., A.H. Lichtman, J.S. Pober. Cellular and Molecular Immunology[M], 4th edn. W.B. Saunders Company: Pennsylvania, 2000.
    [12] Yonash, N., M.G. Kaiser, E.D. Heller, A. Cahaner, S.J. Lamont. Major histocompatibility complex (MHC) related cDNA probes associated with antibody response in meat-type chickens[J]. Animal Genetics, 1999, 30: 92-101.
    [13] Miller, M.M., R. Goto, A. Bernot, R. Zoorob, C. Auffray, N. Bumstead, W.E. Briles. Two MHC Class I and MHC class II genes map to the chicken Rfp-Y system outside the B-complex[J]. Proceedings of National Academy of Sciences, USA, 1994, 91: 4397-4401.
    [14] Miller, M.M., R.M. Goto, R.L. Taylor, Jr., R. Zoorob, C. Auffray, R.W. Briles, W.E.Briles, S.E. Bloom. Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region[J]. Proceedings of National Academy of Sciences, USA, 1996, 93: 3958-3962.
    [15] Briles, W.E., R.M. Goto, C. Auffray, M.M. Miller. A polymorphic system related to but genetically independent of the chicken major histocompatibility complex[J]. Immunogenetics, 1993, 37: 408-414.
    [16] Kaufman, J., S. Milne, T.W. Gobel, B.A. Walker, J.P. Jacob, C. Auffray, R. Zoorob, S. Beck. The chicken B locus is a minimal essential major histocompatibility complex[J]. Nature, 1999, 401: 923-925.
    [17] Shiina, T., W.E. Briles, R.M. Goto, K. Hosomichi, K. Yanagiya, S. Shimizu, H. Inoko, M.M. Miller. Extended gene map reveals tripartite motif, C-type lectin, and Ig superfamily type genes within a subregion of the chicken MHC-B affecting infectious disease[J]. The Journal of Immunology, 2007, 178: 7162-7172.
    [18] Bacon, L.D. Influence of the major histocompatibility complex on disease resistance and productivity[J]. Poultry Science, 1987, 66: 802-811.
    [19] Ewert, D.L., D.G. Gimour, W.E. Briles, M.D. Cooper. Genetics of Ia-like alloantigens in chickens and linkage with B major histocompatibility complex[J]. Imcnunogenetics, 1980, 10: 169-174.
    [20] Hansen, H.P., N. van Zandt, G.R.J Law. Differences in susceptibility to Marek’s disease in chicken carrying two different B locus blood group alleles[J]. Poultry Science, 1967, 46:1268.
    [21] Schat, K.A., R.L. Taylor, W.E. Briles. Resistance to Marek's disease in chickens with recombinant haplotypes of the major histocompatibility (B) complex[J]. Poultry Science, 1994, 73: 502-508.
    [22] Haeri, M., L.R. Read, B.N. Wilkie, S. Sharif. Identification of peptides associated with chicken major histocompatibility complex class II molecules of B21 and B19 haplotypes[J]. Immunogenetics, 2005, 56: 854-859.
    [23] Niikura, M., H.C. Liu, J.B. Dodgson, H.H. Cheng. A comprehensive screen for chicken proteins that interact with proteins unique to virulent strains of Marek's disease virus[J]. Poultry Science, 2004, 83: 1117-1123.
    [24] Collins, W.M., W.E. Briles, R.M. Zsigray, W.R. Dunlop, A.C. Corbett, K.K. Clark, J.L. Marks, T.P. McGrail. The B locus (MHC) in the chicken: Association with the fate of RSV-induced tumors[J]. Immunogenetics, 1977, 5: 333-343.
    [25] Schierman, L.W., D. Watanabe, D. Han, R.A. McBride. Genetic control of Rous sarcoma regression in chickens: Linkage with major histocompatibility complex[J]. Immunogenetics, 1977, 5: 325-332.
    [26] Aeed, P.A., W.E. Briles, R.M. Zsigray, W.M. Collins. Influence of diferent B-complex recombinants on the outcome of Rous sarcomas in chickens[J]. Animal Genetics, 1993, 24: 177-181.
    [27] White, E.C., W.E. Briles, R.W. Briles, R.L.Jr. Taylor. Response of six major histocompatibility (B) complex recombinant haplotypes to Rous sarcomas[J]. Poultry Science, 1994, 73: 836-842.
    [28] Boonyanuwat, K., S. Thummabutra, N. Sookmanee, V. Vatchavalkhu, V. Siripholvat. Influences of major histocompatibility complex class I haplotypes on avian influenza virus disease traits in Thai indigenous chickens[J]. Animal Science Journal, 2006, 77: 285-289.
    [29]李国勤,卢立志,王得前,沈军达,陶争荣,赵爱珍,原爱平.鸡MHC与传染性疾病遗传抗性的相关性研究进展[J].遗传, 2006, 28: 893-898.
    [30] Miller, M.M., L.D. Bacon, K. Hala, H.D. Hunt, S.J. Ewald, J. Kaufman, R. Zoorob, W.E. Briles. 2004 nomenclature for the chicken major histocompatibility (B and Y) complex[J]. Immunogenetics, 2004, 56: 261-279.
    [31] Horisberger, M.A., G.K. McMaster, H. Zeller, M.G. Wathelet, J. Dellis, J. Content. Cloning and sequence analyses of cDNAs for interferon- and virus-induced human Mx proteins reveal that they contain putative guanine nucleotide-binding sites: functional study of the corresponding gene promoter[J]. Journal of Virology, 1990, 64: 1171-1181.
    [32] Haller, O., G. Kochs. Interferon-induced Mx proteins: dynamin-like GTPases with antiviral activity[J]. Traffic, 2002, 3: 710-717.
    [33] Kochs, G., M. Trost, C. Janzen, O. Haller. MxA GTPase: oligomerization and GTP-dependent interaction with viral RNP target structures[J]. Methods, 1998, 15: 255-263.
    [34] Sever, S., A.B. Muhlberg,S.L. Schmid. Impairment of dynamin’s GAP domain stimulates receptor-mediated endocytosis[J]. Nature, 1999, 398: 481-486.
    [35] Bernasconi, D., U. Schultz, P. Staeheli. The interferon-induced Mx protein of chickens lacks antiviral activity[J]. Interferon Cytokine Research, 1995, 15: 47-53.
    [36] Bazzhiger, L., A. Schwarz, P. Staeheli. No enhanced influenza virus resistance of murine and avian cells expressing cloned duck Mx protein[J]. Virology, 1992, 195: 100-112.
    [37] Schumacher, B., D. Bernasconi, U. Schultz, P. Staeheli. The chicken Mx promoter contains an ISRE motif and confers interferon inducibility to a reporter gene in chick and monkey cells[J]. Virology, 1994, 203: 144-148.
    [38] Harada, H., E.I. Takahashi, S. Itoh, K. Harada, T.A. Hori, T. Taniguchi. Structure and regulation of the human interferon regulatory factor 1(IRF-1) and IRF-2 genes: implications for a gene network in the interferon system[J]. Molecular and Cellular Biology, 1994, 14: 1500-1509.
    [39] Chesters, P.M., M. Steele, A. Purewal, N. Edington. Nucleotide sequence of equine MxA cDNA[J]. DNA Sequence, 1997, 7: 239-242.
    [40] P. von, Wussow, D. Jakschies, H.K. Hochkeppel, C. Fibich, L. Penner, H. Deicher. The human intracellular Mx homologous protein is specifically induced by type I interferons[J]. Europearn Journal of Immunology, 1990, 20: 2015-2019.
    [41] Nagata, K., M. Mibayashi. The Mx protein that confers the resistance to influenza virus[J]. Nippon Rinsho, 1997, 55: 2654-2659.
    [42] Haller, O., M. Frese, D. Rost, P.A. Nuttall, G. Kochs. Tick-borne thogoto virus infection in mice is inhibited by the orthomyxovirus resistance gene product Mx1[J]. Journal of Virology, 1995, 69: 2596-2601.
    [43] Lee, S.H., S.M. Vidal. Functional diversity of Mx proteins: variations on a theme of host resistance to infection[J]. Genome Research, 2002, 12: 527-530.
    [44] Pavlovic, J., T. Zurcher, O. Haller, P. Staeheli. Resistance to influenza virus and vesicular stomatitis virus conferred by expression of human MxA protein[J]. Journal of Virology, 1990, 64: 3370-3375.
    [45] Schnorr, J.J., S. Schneider-Schaulies, A. Simon-Jodicke, J. Pavlovic, M.A. Horisberger, V. Meulen. MxA-dependent inhibition of measles virus glycoprotein synthesis in a stably transfected human monocytic cell line[J]. Journal of Virology, 1993, 67: 4760-4768.
    [46] Weber, F., O. Hailer,G. Kochs. MxA GTPase blocks reporter gene expression of reconstituted thogoto virus fibonucleoprotein complexes[J]. Journal of Virology, 2000, 74: 560-563.
    [47] Ko, J.H., H.K. Jin, A. Asano, A. Takada, A. Ninomiya, H. Kida, H. Hokiyama, M. Ohara, M. Tsuzuki, M. Nishibori, M. Mizutani, T. Watanabe. Polymorphisms and the differential antiviral activity of the chicken Mx gene[J]. Genome Research, 2002, 12: 595-601.
    [48] Ko, J.H., A. Takada, T. Mitsuhashi, T. Agui, T. Watanabe. Native antiviral specificity of chicken Mx protein depends on amino acid variation at position 631[J]. Animal Genetics, 2004, 35: l19-122.
    [49]闫若潜,吴文学,夏春,李新生.Mx蛋白研究进展[J].动物医学进展, 2004, 25(6): 52-55.
    [50] Seyama, T., J.H. Ko, M. Ohe, N. Sasaoka, A. Okada, H. Gomi, A. Yoneda, J. Ueda, M. Nishibori, S. Okamoto, Y. Maeda, T. Watanabe. Population research of genetic polymorphism at amino acid position 631 in chicken Mx protein with differential antiviral activity[J]. Biochemical Genetics, 2006, 44: 432-443.
    [51] Li, X.Y., L.J. Qu, J.F. Yao, N. Yang. Skewed allele frequencies of an Mx gene mutation with potential resistance to avian influenza virus in different chicken populations[J]. Poultry Science, 2006, 85: 1327-1329.
    [52]张细权,李加琪,杨关福,动物遗传标记[M].北京:中国农业大学出版社,1997.
    [53] Botstein, D., R.L. White, M. Skolnick, R.W. Davis. Construction of a genetic linkage map in man using restruction fragment length polymorphism[J]. American Journal of Human. Genetics, 1980, 32: 314-331.
    [54] Williams, J.G., A.R. Kubelik, K.J. Livak, J.A. Rafalski, S.V. Tingey. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Research, 1990, 18: 6531-6535.
    [55] Vos, P., R. Hogers, M. Bleeker, M. Reijans, T. van de Lee, M. Hornes, A. Frijters, J. Pot, J. Peleman, M. Kuiper, AFLP: a new technique for DNA fingerprinting[J]. Nuceic Acids Research, 1995, 23: 4407-4414.
    [56] Higuchi, R., B. Bowman, M. Freiberger, O.A. Ryder, A.C. Wilson. DNA sequence from the quagga, an extinct member of horse family[J]. Nature, 1984, 312: 281-284.
    [57]孙飞舟.采用微卫星DNA标记评估中国地方猪种遗传多样性[D].中国农业大学博士论. 2002: 69-70.
    [58]杨隽.家畜育种中的分子遗传标记[J].黑龙江八一农垦大学学报, 2000, 12(3): 80-83.
    [59]成述儒.应用线粒体D-loop序列分析中国和蒙古家养绵羊的起源于遗传多样性[D].甘肃农业大学硕士学位论文, 2005.
    [60] Smith, L.M., L.A. Burgoyne. Collecting, archiving and processing DNA from wildlife samples using FTA? databasing paper[J]. BMC Ecology, 2004, 4: 4.
    [61]李显耀.鸡Mx基因的变异分析及其与禽流感抗病力的研究[D].中国农业大学博士学位论文. 2006.
    [62]王利红,张伟.禽流感研究概况[J].中国家禽, 2002, 24(8): 39-41.
    [63]于康震,陈化兰,唐秀英. 97香港流感[J].中国畜禽传染病, 1998, 3: 30-31.
    [64]吴红专,刘福安.禽流感与人类健康[J].养禽与禽病防治, 1998, 5: 526.
    [65] Lamont, S.J., B.M. Gerndt, C.M. Warner, L.D. Bacon. Analysis of restriction fragment length polymorphism of the major histocompatibility complex of 15I5-B-congenic chicken lines[J]. Poultrty Science, 1990, 69: 1195-1203.
    [66] Dietert, R.R., R.L. Taylor, Jr., M.F. Dietert. Biological function of the chicken major histocompatibility complex[J]. Critical Review in Poultry Biology, 1991, 3: 111-129.
    [67] Fulton, J.E., H.R. Juul-Madsen, C.M. Ashwell., A.M. McCarron, R.L. Taylor, Jr. Molecular genotype identification of the chicken major histocompatibility complex[C]. Proceedings of the 29th International Society of Animal Genetics held in Tokyo, Japan, 11-16 September 2004. pp. 48 (B019).
    [68] Fulton, J.E., H.R. Juul-Madsen, C.M. Ashwell, A.M. McCarron, J.A. Arthur, N.P. O’sullivan, R.L. Taylor Jr. Molecular genotype identification of the Gallus gallus major histocompatibility complex[J]. Immunogenetics, 2006, 58: 407-421.
    [69] McConnell, S.K.J., D.A. Dawson, A. Wardle, T. Burke. The isolation and mapping of 19 tetranucleotide microsatellite markers in the chicken[J]. Animal Genetics, 1999, 30: 183-189.
    [70] Crooijmans, R.P.M.A., R.J.M. Dijkhof, J.J. van der Poel, M.A.M. Groenen. New microsatellite markers in chicken optimized for automated fluorescent genotyping[J]. Animal Genetics, 1997, 28: 427-437.
    [71] Buitenhuis, A.J., T.B. Rodenburg, Y.M. van Hierden, M. Siwek, S.J.B. Cornelissen, M.G.B. Nieuwland, R.P.M.A. Crooijmans, M.A.M. Groenen, P. Koene, S.M. Korte, H. Bovenhuis, J.J. van der Poel. Mapping quantitative trait loci affecting feather pecking behavior and stress response in laying hens[J]. Poultry Science, 2003, 82: 1215-1222.
    [72] Weber, J.L. Informativeness of human (dC-dA)n-(dG-dT)n polymorphisms[J]. Genomics,1990, 7: 524-530.
    [73] Messier, W., S.H. Li, C.B. Stewart. The birth of microsatellites[J]. Nature, 1996, 381: 483.
    [74] Nauta, M.J., F.J. Weissing. Constraints on allele size at microsatellite loci: implications for genetic differentiation[J]. Genetics, l996, l43: l021-1032.
    [75] Schlotterer, C., D. Tautz. Slippage synthesis of simple sequence DNA[J]. Nucleic Acids Research, 1992, 20: 211-215.
    [76] Levinson, G, G.A. Gutman. Slipped-strand mispairing: a major mechanism for DNA sequence evolution[J]. Molecular and Biological Evolution, 1987, 4: 203-221.
    [77] Eichler, E.E., C.B. Kunst, K.A. Lugenbeel, O.A. Ryder, D. Davison, S.T. Warren, D.L. Nelson. Evolution of the cryptic FMR1 CGG repeat[J]. Nature Genetics, 1995, 11: 301-308.
    [78] Gordenin, D.A., T.A. Kunkel, M.A. Resnick. Repeat expansion--all in a flap?[J] Nature Genetics, 1997, 16: 116-118.
    [79] Lopez-Giraldez, F., J. Marmi, X. Domingo-Roura. High incidence of nonslippage mechanisms generating variability and complexity in Eurasian badger microsatellites[J]. Journal of Heredity, 2007, 98: 620-628.
    [80] Ma, R.Z., I. Russ, C. Park, D.W. Heyen, J.E. Beever, C.A. Green, H.A. Lewin. Isolation and characterization of 45 polymorphic microsatellites from the bovine genome[J]. Animal Genetics, 1996, 27: 43-47.
    [81]曲鲁江,李显耀,杜志强,张龙超,杨宁.微卫星PCR产物变性与非变性PAGE-银染检测方法的比较[J].遗传,2004, 26: 522-524.
    [82]庄启南,张静,熊晓燕,赵彦,黄微,徐世杰.应用毛细管电泳技术进行高效、准确的微卫星位点自动基因组扫描[J].中华医学遗传学杂志, 2002, 19: 253-256.
    [83]郝晨阳,王兰芬,贾继增,董玉琛,张学勇.SSR荧光标记和银染技术的比较分析[J].作物学报,2005, 31(2): 144-149.
    [84]易红梅,王凤格,赵久然,王璐,郭景伦,原亚萍.玉米品种SSR标记毛细管电泳荧光检测法与变性PAGE银染检测法的比较研究[J].华北农学报, 2006, 21(5): 64-67.
    [85] Guillemot, F., A. Billault, O. Pourquie, G. Behar, A.M. Chausse, R. Zoorob, G. Kreibich, C. Auffray. A molecular map of the chicken major histocompatibility complex: the class II beta genes are closely linked to the class I genes and the nucleolar organizer[J]. EMBO Journal, 1988, 7: 2775-2785.
    [86] Shinde, D., Y. Lai, F. Sun, N. Arnheim. Taq DNA polymerase slippage mutation rates measured by PCR and quasi-likelihood analysis: (CA/GT)n and (A/T)n microsatellites[J]. Nucleic Acids Research, 2003, 31: 974-980.
    [87] Walsh, P.S., N.J. Fildes, R. Reynolds. Sequence analysis and characterization of stutter products at the tetranucleotide repeat locus Vwa[J]. Nucleic Acids Research, 1996, 24: 2807-2812.
    [88] Lima-Rosa, C.A.V., C.W. Canal, P.R.V Fallavena., L.B. Freitas, F.M. Salzano. LEI0258 microsatellite variability and its relationship to B-F haplotypes in Brazilian (blue-egg Caipira) chickens[J]. Genetics and Molecular Biology, 2005, 28: 386-389.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700