用户名: 密码: 验证码:
碳氢燃料超临界催化裂解反应动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当现代飞行器的飞行速度达到或超过高超音速(6马赫)时,气动热导致的飞行器的热负荷变得非常严重,因此,可采用进入燃烧室前的“吸热燃料”作冷却剂对飞行器各子系统进行主动冷却。液体碳氢燃料的催化裂解反应是强吸热过程,其作为“吸热燃料”具有很大的发展潜力。在飞行器的燃料系统较高的工作温度和压力下,碳氢燃料处于超临界状态。本文以正十二烷和含多支链的异十二烷(HBID)为模型燃料,对碳氢燃料中烷烃组分的超临界催化裂解特性进行研究,建立超临界催化裂解反应动力学模型(S-C模型),并采用S-C模型进行动力学研究。
     以正十二烷作为直链烷烃的模型燃料,HZSM-5和USY分子筛为催化剂,研究不同压力条件下催化裂解反应的初始转化率和催化剂的失活。研究表明,与常压条件相比,超临界催化裂解反应具有以下特点:(1)反应以双分子裂解为主,产物中烷烃、芳烃和积炭增加,烯烃减少,裂解反应的表观反应速率常数降低;(2)反应流体密度增大,反应物停留时间延长,流体对积炭前驱体的呈现萃取特性。在孔径较大的USY分子筛上的超临界催化裂解反应具有明显的特征(2),而在HZSM-5分子筛上则具有明显的特征(1)。
     根据烷烃催化裂解的单分子和双分子反应机理,并考虑反应物与产物在催化剂活性位上的竞争吸附,建立了吸附——反应动力学模型。通过对超临界反应流体萃取积炭前驱体过程的分析,以及积炭前驱体与催化剂活性的关系,建立了超临界萃取与催化剂失活的关系;并以TOS(time on stream)失活函数来反映因生成积炭而导致的催化剂失活,其与积炭前驱体的超临界萃取项相结合构成了超临界催化剂失活函数。动力学模型与失活函数共同组成了烷烃超临界催化裂解反应的S-C模型。将S-C模型应用于正十二烷在HZSM-5分子筛上的超临界催化裂解反应,通过非线性拟合得到了模型参数,并通过一系列的统计检验证明了模型参数的显著性。然后根据400℃、420℃和450℃时得到的模型参数,计算了正十二烷在HZSM-5分子筛上超临界催化裂解反应的表观活化能为125.4kJ/mol,正十二烷在HZSM-5分子筛上的超临界吸附热为109.5kJ/mol。定义并根据S-C模型模拟计算了超临界萃取对催化剂活性保持的贡献率(CRSE)。
     以HBID为模型燃料,研究了多支链取代烷烃超临界催化裂解反应的特点。研究过程中首先对催化剂进行筛选。HZSM-5、USY和Al-MCM-41三种类型分子筛中,USY因其合适的孔径和酸性,被用作该反应体系的催化剂。不同压力条件下反应结果表明,超临界催化裂解反应能在一定程度上提高初始转化率,并显著提高催化剂活性的稳定性。在450℃、4.0MPa的超临界条件下,进行HBID的催化裂解的动力学实验,并采用S-C模型对实验数据进行拟合。结果表明S-C模型适用于HBID在USY分子筛上的催化裂解的反应体系,并且模型中表示竞争吸附的参数可简化掉。
     在400℃、4.0MPa的条件下,以HZSM-5分子筛为催化剂,对正十二烷/HBID、正十二烷/MBID(含单支链的异十二烷)双元混合燃料,以及MBID/HBID/正十二烷三元混合燃料,进行了超临界催化裂解的初步研究。结果表明:HBID和MBID均对混合物中的正十二烷组分的裂解有促进作用,且前者的促进作用更显著。这是由于HBID自身不能进入分子筛孔隙内部进行裂解反应,而MBID能发生裂解,但转化率远低于正十二烷组分,因此异十二烷与正十二烷的复配存在一个最优配比,对两种异十二烷而言最优值均在25%左右。在三元混合燃料中HBID对MBID的裂解也有一定的促进作用。
As the flight speed of aircraft reaches or exceeds the hypersonic speed (e.g. 6 Mach), aerodynamic heating results in severe heat load of the aircraft, thus it is necessary to use the fuel as the primary coolant. The fuel is used as a“heat sink”to remove waste heat from various subsystems and components of the aircraft, and then the fuel can be called as“endothermic fuel”. The catalytic cracking of liquid hydrocarbon fuels is a potential endothermic process. Because that the real operating temperature and pressure on board are higher than the critical temperature and critical pressure of general liquid hydrocarbon fuels, the catalytic cracking reaction is carried out under supercritical conditions. In this work, n-dodecane and HBID (highly brached iso-dodecane) were selected as the model fuels to investigate the characteristics of paraffin catalytic cracking over zeolite catalyst under supercritical conditions. Then, a supercritical catalytic kinetic model (S-C model) was developed and applied to the catalytic cracking of paraffins.
     The different behaviors of initial conversion and catalyst decay of n-dodecane (a model fuel of linear alkanes) catalytic cracking over HZSM-5 and USY zeolites were investigated by changing operating pressures from 0.1MPa to 4.0MPa at supercritical temperature. The results showed that, compared to atmospheric catalytic cracking, the supercritical catalytic cracking of n-dodecane had the following characteristics. (1) Bimolecular cracking mechanism is the dominant reaction mechanism, which results in higher content of alkanes, aromatics and coke in the products, and lower content of alkenes, as well as lower apparent reaction rate constant. (2) The density of reaction fluid increases, which results in the prolongation of residence time and the extraction of coke precursors by supercritical reaction fluid. The characteristic of (2) is significant for the supercritical catalytic cracking over USY zeolite with relatively large pore size, while (1) is significant for that over HZSM-5 zeolite. Based on both monomolecular and bimolecular cracking mechanisms, an
     Adsorption-Reaction kinetic model was built by considering the competing adsorption between reactant and product on active sites of the catalyst. The relationship between supercritical extraction of coke precursors and the maintenance of catalyst activity was obtained by the analysis of the supercritical extraction process and the effect of coke precursor on catalyst activity. Then the catalyst decay function associating with supercritical catalytic reaction was developed by adding the supercritical extraction term to traditional TOS catalyst decay function, which was involved to account for the catalyst decay due to coke production. The combination of Adsorption-Reaction kinetic model and supercritical catalyst decay function makes up a complete kinetic model accounting for the supercritical catalytic cracking of paraffin reactant over acid zeolite catalyst (S-C model). The S-C model was applied to the supercritical catalytic cracking of n-dodecane over HZSM-5 zeolite, and the model parameters were obtained by nonlinear fitting. Then a series of statistical analysis were conducted, which verify the significance of parameters estimation. According to the model parameters obtained from 400, 420 and 450℃, the apparent activation energy of n-dodecane supercritical catalytic cracking over HZSM-5 zeolite and supercritical adsorption heat of n-dodecane on HZSM-5 zeolite were calculated, which were 125.4 and 109.5 kJ/mol, respectively. Finally, the contribution ratio of supercritical extraction to maintenance of catalyst activity (CRSE) was defined and calculated using S-C model.
     The characteristics of highly branched alkane catalytic cracking over acid zeolite catalyst under supercritical condition were investigated by choosing HBID as a model fuel. First, the catalytic activities of HZSM-5、Al-MCM-41 and USY zeolite were compared, and the results showed that USY zeolite was a proper catalyst with appropriate pore size and acid distribution. Therefore, USY was chosen as the catalyst in the following investigation of HBID. Results of experiments under different operating pressures showed that supercritical condition could promote the initial conversion in some extent and significantly enhance the stability of catalyst. A series of kinetic experiments were carried out for the supercritical catalytic cracking of HBID over USY zeolite at 450℃under 4.0MPa. The fitting results of S-C model were acceptable, which indicated that S-C model could also be applied to the catalytic cracking reaction system of branched alkanes over USY zeolite. Additionally, the parameter accounting for the competing adsorption could be removed for simplification.
     The supercritical catalytic cracking reactions over HZSM-5 zeolite at 400℃under 4.0MPa were preliminarily investigated using binary mixtures of n-dodecane/HBID, n-dodecane/MBID (mono-branched iso-dodecane) and tertiary mixture of MBID/HBID/n-dodecane. The results show that HBID and MBID both can enhance the catalytic cracking of n-dodecane component, and the effect of former one is more significant. HBID itself can not cracking over HZSM-5 zeolite, and the coversion of MBID is also lower than that of n-dodecane. Therefore, there is an optimal value of the content of the two iso-dodecanes in binary mixtures with n-dodecane, which are approximate 25%. During the tertiary mixture, the component of HBID could also enhance the conversion of both n-dodecane and MBID components.
引文
[1]姜宗林.关于吸气式高超声速推进技术研究的思考.力学进展. 2009(04):398-405.
    [2]张坤,蔡远文.采用吸气式推进的高超声速武器系统发展动态.火力与指挥控制. 2008(11):1-4.
    [3]王振国,梁剑寒,丁猛,范晓樯,吴继平,林志勇.高超声速飞行器动力系统研究进展.力学进展. 2009(06):716-739.
    [4]沈剑,王伟.国外高超声速飞行器研制计划.飞航导弹. 2006(8).
    [5]陈英硕,叶蕾,苏鑫鑫.国外吸气式高超声速飞行器发展现状.飞航导弹. 2008(12):25-32.
    [6]叶蕾.美国高超声速计划发展规律探索.飞航导弹. 2008(12):20-24.
    [7]刘桐林.美国高超声速技术的发展与展望.航天控制. 2004(04):36-41.
    [8]丛敏,秦春玲.美国高超声速研究动态.飞航导弹. 2007(10):9-12.
    [9]张冬青,陈英硕.吸气式高超声速飞行器在军事领域的应用.飞航导弹. 2007(09):14-16+22.
    [10] Huang H, Sobel D, Spadaccini L. Endothermic heat-sink of hydrocarbon fuels for scramjet cooling. 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2002 08-10 July; Indianapolis, Indiana; 2002.
    [11] Huang H, Spadaccini LJ, Sobel DR. Fuel-Cooled Thermal Management for Advanced Aeroengines. J Eng Gas Turbines Power. 2004, 126(2): 284-293.
    [12] Lander H. Endothermic fuels for hypersonic vehicles. J Aircr. 1971, 8(4): 200-207.
    [13] Edwards T. USAF supercritical hydrocarbon fuels interests. 31 st Aerospace Sciences Meeting & Exhibit; 1993 January 11 -1 4; Reno, NV; 1993.
    [14] Fabuss BM, Kafesjian R, Smith JO, Satterfield CN. Thermal Decomposition Rates of Saturated Cyclic Hydrocarbons. Industrial & Engineering Chemistry Process Design and Development. 1964, 3(3): 248-254.
    [15] Fabuss BM, Smith JO, Lait RI, Borsanyi AS, Satterfield CN. Rapid Thermal Cracking of n-Hexadecane at Elevated Pressures. Industrial & Engineering Chemistry Process Design and Development. 1962, 1(4): 293-299.
    [16] Edwards T, Anderson S. Results of high temperature JP-7 cracking assessment. 31 st Aerospace sciences Meeting & Exhibit; 1993 January 11 -1 4; Reno, NV; 1993.
    [17] Linne D, Meyer M, Edwards T, Eitman D. Evaluation of heat transfer and thermal stability of supercritical JP-7 fuel. AIAA/ASME/SAE/ASEE Joint PropulsionConference & Exhibit, 33 rd; 1997; Seattle, WA; 1997.
    [18] Yu J, Eser S. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 1. n-butylbenzene and n-butylcyclohexane. Ind Eng Chem Res. 1998, 37(12): 4591-4600.
    [19] Yu J, Eser S. Thermal decomposition of jet fuel model compounds under near-critical and supercritical conditions. 2. decalin and tetralin. Ind Eng Chem Res. 1998, 37(12): 4601-4608.
    [20] Yu J, Eser S. Thermal decomposition of C10?C14 normal alkanes in near-critical and supercritical regions: product distributions and reaction mechanisms. Ind Eng Chem Res. 1997, 36(3): 574-584.
    [21] Yu J, Eser S. Kinetics of supercritical-phase thermal decomposition of C10?C14 normal alkanes and their mixtures. Industrial & Engineering Chemistry Research. 1997, 36(3): 585-591.
    [22] Maurice L, Edwards T, Striebich R. Formation of cyclic compounds in the fuel systems of hydrocarbon fueled high speed vehicles. 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 1998 13-15 July Cleveland, OH, U, S.; 1998.
    [23] Sheu J, Zhou N, Krishnan A, Jones E, Katta V. Thermal cracking of Norpar-13 under near-critical and supercritical conditions. AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 34th; 1998 July 13-15; Cleveland, OH; 1998.
    [24] Siebenhaar A, Chen F, Karpuk M, Hitch B, Edwards T. Engineering scale titanium endothermic fuel reactor demonstration for hypersonic scramjet engine. 9th AIAA International Space Planes and Hypersonic Systems and Technologies Conference 1999; Norfolk, VA; 1999.
    [25] Ward T, Ervin J, Striebich R, Zabamick S. Simulations of flowing mildly-cracked normal alkanes incorporating proportional product distributions. J Propul Power. 2004, 20(3): 394-402.
    [26] Edwards T, DeWitt M, Shafer L, Brooks D, Huang H, Bagley S, et al. Fuel Composition Influence on Deposition in Endothermic Fuels. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference; 2006 6 - 9 Nov Canberra, Australia; 2006.
    [27] Nagley E, King P, Schauer F, Dewitt M, Hoke J. Fuel Composition Analysis of Endothermically Heated JP-8 Fuel for Use in a Pulsed Detonation Engine. 46th AIAA Aerospace Sciences Meeting and Exhibit; 2008 7 - 10 January; Reno, Nevada: American Institute of Aeronautics and Astronautics, 1801 Alexander Bell Drive, Suite 500, Reston, VA, 20191-4344, USA; 2008.
    [28] Sicard M, Raepsaet B, Ser F, Masson C. Determination of the decomposition products of a n-alkane endothermic fuel under supercritical conditions. AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies; Capua,Italy; 2005. p. 1-9.
    [29] Daniau E, Bouchez M, Herbinet O, Marquaire P, Gascoin N, Gillard P. Fuel reforming for scramjet thermal management and combustion optimization. AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies; 2005 16-20 May; Capua, Italy; 2005. p. 1-9.
    [30] Daniau E, Sicard M. Experimental and numerical investigations of an endothermic fuel cooling capacity for scram jet application. AIAA/CIRA 13 th International Space Planes and Hypersonics Systems and Technologies; 2005 16-20 May; Capua, Italy; 2005. p. 1-9.
    [31] Gascoin N, Gillard P, Bernard S, Bouchez M, Daniau E, Dufour E, et al. Numerical and Experimental Validation of Transient Modelling for Scramjet Active Cooling with Supercritical Endothermic Fuel. 4th International Energy Conversion Engineering Conference and Exhibit (IECEC); 2006 26-29 June; San Diego, California; 2006.
    [32] Daniau E, FALEMPIN F, HERBINET O, MARQUAIRE P, Senior C. Numerical simulations and experimental results of endothermic fuel reforming for scramjet cooling application. 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference; 2006 6 - 9 Nov; Canberra, Australia; 2006.
    [33] Sicard M, Raepsaet B, Ser F, Masson C. Thermal Decomposition of a Model Endothermic Fuel. Preliminary Study Before Testing in the MPP-LAERTE Supersonic Combustion Test Bench 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference; 2006 Nov. 6-9; Canberra, Australia; 2006.
    [34] Ianovski L, Sapgir G, Baikov A. Heat and mass transfer to hydrocarbon on fuels at thermal decomposition in channels of engines. ASME, SAE, and ASEE, Joint Propulsion Conference and Exhibit, 32nd; 1996 July 1-3; Lake Buena Vista, FL; 1996.
    [35] Nixon AC, Ackerman GH. Vaporization and Endothermic Fuels for Advanced Engine Applications; 1964. Report No.: AFAPL TDR 64-100, PartsⅠ,Ⅱ,Ⅲ.
    [36] Nixon AC, Ackerman GH, Faith LE, Henderson HT, Ritchie AW. Vaporizing and Endothermic Fuels for Advanced Engine Application: SHELL DEVELOPMENT CO EMERYVILLE CA 1967. Report No.: AFAPL TDR 67-100, PartsⅠ,Ⅱ,Ⅲ.
    [37] Jackson KR, Corporan E, Buckley P, Leingang J, Karpuk M, Dippo J, et al. Test results of an endothermic fuel reactor. International Aerospace Planes and Hypersonics Technologies Conference, 6th; 1995 Apr 3-7; Chattanooga, TN; 1995.
    [38] Zhou N, Krishnan A. A numerical model for endothermic fuel flows with heterogeneous catalysis. AIAA 34th Aerospace Sciences Meeting and Exhibit 1996 Jan 15-18; Reno, NV; 1996.
    [39]董飞.十氢萘超临界裂解脱氢的研究.天津:天津大学; 2003.
    [40]周震寰.甲基环己烷和十氢萘的超临界可控吸热过程研究.天津:天津大学; 2003.
    [41] Spadaccini L, Marteney P, Colket III M, Stiles A, inventors; Method of cooling with an endothermic fuel. U. S. patent U.S. Patent 5,176,814 1993.
    [42] Spadaccini LJ, Sobel DR, Colket MB, Marteney PJ, Glickstein MR. Endothermic Fuel/Catalyst Development and Evaluation-Phases II, III and IV. AFWL-TR-91-2126. 1993.
    [43] Spadaccini LJ, Colket MB, Marteney PJ, Roback R, Glickstein MR, Stiles AB. Endothermic Fuel/Catalyst Development and Evaluation Phase I. 1993, WRDC-TR-89-2141.
    [44] Sobel D, Spadaccini L. Hydrocarbon fuel cooling technologies for advanced propulsion. J Eng Gas Turbines Power. 1997, 119:344.
    [45] Castaldi M, Leylegian J, Chinitz W, Modroukas D. Development of an effective endothermic fuel platform for regeneratively-cooled hypersonic vehicles. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2006; Sacramento, California; 2006.
    [46] Fan X, Zhong F, Yu G, Li J, Sung C. Catalytic Cracking of China No. 3 Aviation Kerosene under Supercritical Conditions. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2008 21 - 23 July; Hartford, CT; 2008.
    [47] Fan X, Zhong F, Yu G, Li J, Sung C. Catalytic Cracking and Heat Sink Capacity of Aviation Kerosene Under Supercritical Conditions. J Propul Power. 2009, 25(6).
    [48] Fan XJ, Yu G, Li JG, Lu XN. Catalytic cracking of supercritical aviation kerosene. 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit; 2006 9 - 12 July; Sacramento, California; 2006.
    [49]王占卫.超临界条件下正构烷烃的催化裂解和积炭研究:天津大学; 2005.
    [50]郝伟华.超临界状态下异辛烷和RP-3的催化裂解和积炭研究.天津:天津大学; 2006.
    [51]羡小超.双元模型碳氢混合物的超临界催化裂解和积炭研究.天津:天津大学; 2007.
    [52]陈桂梅.超临界条件对甲苯和正十二烷催化裂解结焦的影响.天津:天津大学; 2007.
    [53]郭伟.超临界条件下涂层催化正十二烷及RP-3裂解研究.天津:天津大学; 2006.
    [54]赵杰.二次生长ZSM-5膜及其超临界催化裂解正十二烷初步研究.天津:天津大学; 2008.
    [55] Beirnaert HC, Alleman JR, Marin GB. A Fundamental Kinetic Model for the Catalytic Cracking of Alkanes on a USY Zeolite in the Presence of Coke Formation. Ind Eng Chem Res. 2001, 40(5): 1337-1347.
    [56] Pinto RR, Borges P, Lemos MANDA, Lemos F, Ribeiro FR. Kinetic modelling of the catalytic cracking of n-hexane and n-heptane over a zeolite catalyst. Appl Catal, A. 2004, 272(1-2): 23-28.
    [57] Bhan A, Hsu S-H, Blau G, Caruthers JM, Venkatasubramanian V, Delgass WN. Microkinetic modeling of propane aromatization over HZSM-5. J Catal. 2005, 235(1): 35-51.
    [58] Haag WO, Dessau RM, Lago RM. Kinetics and mechanism of paraffin cracking with zeolite catalysts. In: Tomoyuki lnui SN, Takashi T, eds. Studies in Surface Science and Catalysis: Elsevier 1991:255-265.
    [59] Abbot J, Wojciechowski BW. The mechanism of catalytic cracking of n-alkenes on ZSM-5 zeolite. The Canadian Journal of Chemical Engineering. 1985, 63(3): 462-469.
    [60] Abbot J, Dunstan PR. Catalytic Cracking of Linear Paraffins: Effects of Chain Length. Ind Eng Chem Res. 1997, 36(1): 76-82.
    [61] Corma A, Ortega FJ. Influence of adsorption parameters on catalytic cracking and catalyst decay. J Catal. 2005, 233(2): 257-265.
    [62] Narbeshuber TF, Vinek H, Lercher JA. Monomolecular conversion of light alkanes over H-ZSM-5. Journal of Catalysis. 1995, 157(2): 388-395.
    [63] Babitz SM, Williams BA, Miller JT, Snurr RQ, Haag WO, Kung HH. Monomolecular cracking of n-hexane on Y, MOR, and ZSM-5 zeolites. Appl Catal, A. 1999, 179(1-2): 71-86.
    [64] Ramachandran CE, Williams BA, van Bokhoven JA, Miller JT. Observation of a compensation relation for n-hexane adsorption in zeolites with different structures: implications for catalytic activity. Journal of Catalysis. 2005, 233(1): 100-108.
    [65] Jolly S, Saussey J, Bettahar MM, Lavalley JC, Benazzi E. Reaction mechanisms and kinetics in the n-hexane cracking over zeolites. Appl Catal, A. 1997, 156(1): 71-96.
    [66] Wojciechowski BW. The kinetic foundations and the practical application of the time on stream theroy of catalyst decay. Catalysis Reviews: Science and Engineering. 1974, 9(1): 79 - 113.
    [67] van Bokhoven JA, Williams BA, Ji W, Koningsberger DC, Kung HH, Miller JT. Observation of a compensation relation for monomolecular alkane cracking by zeolites: the dominant role of reactant sorption. J Catal. 2004, 224(1): 50-59.
    [68] Kotrel S, Rosynek MP, Lunsford JH. Origin of first-order kinetics during the bimolecular cracking of n-hexane over H-ZSM-5 and H-? Zeolites. Journal of Catalysis. 2000, 191(1): 55-61.
    [69] Abbot J, Wojciechowski BW. Kinetics of catalytic cracking of n-paraffins on HY zeolite. Journal of Catalysis. 1987, 104(1): 80-85.
    [70] Zhao YX, Bamwenda GR, Groten WA, Wojciechowski BW. The chain mechanism in catalytic cracking : the kinetics of 2-methylpentane cracking. Journal of Catalysis. 1993, 140(1): 243-261.
    [71] Groten WA, Wojciechowski BW. The kinetics of hydrocarbon cracking : the cracking of n-nonane. Journal of Catalysis. 1993, 140(1): 262-280.
    [72] Wei J. Structure of Complex Chemical Reaction Systems. Industrial & Engineering Chemistry Fundamentals. 1965, 4(2): 161-167.
    [73] Weekman VW. Optimum Operation-Regeneration Cycles for Fixed-Bed Catalytic Cracking. Industrial & Engineering Chemistry Process Design and Development. 1968, 7(2): 252-256.
    [74] Weekman VW. Model of Catalytic Cracking Conversion in Fixed, Moving, and Fluid-Bed Reactors. Industrial & Engineering Chemistry Process Design and Development. 1968, 7(1): 90-95.
    [75] Weekman VW. Kinetics and Dynamics of Catalytic Cracking Selectivity in Fixed-Bed Reactors. Industrial & Engineering Chemistry Process Design and Development. 1969, 8(3): 385-391.
    [76] Nace DM, Voltz SE, Weekman VW. Application of a Kinetic Model for Catalytic Cracking. Effects of Charge Stocks. Industrial & Engineering Chemistry Process Design and Development. 1971, 10(4): 530-538.
    [77] Weekman VW. Lumps, models, and kinetics in practice 1979.
    [78]翁惠新,王顺生,邹滢,毛信军.催化裂化反应集总动力学模型的研究.化学反应工程与工艺. 1987(04):9-17.
    [79]翁惠新,欧阳福生,马军.重油催化裂化反应集总动力学模型(Ⅰ)——模型的建立.化工学报. 1995(06):662-668.
    [80]孟祥海,高金森,徐春明,李丽.大庆常压渣油催化裂解反应动力学模型研究.化学反应工程与工艺. 2003(04):365-371.
    [81] Meng X, Xu C, Gao J, Li L. Catalytic pyrolysis of heavy oils: 8-lump kinetic model. Appl Catal, A. 2006, 301(1): 32-38.
    [82]杜峰,刘熠斌,杨朝合,山红红.大庆常压渣油催化裂解反应集总动力学模型.中国石油大学学报(自然科学版). 2008(05):137-141.
    [83] Chen C, Yang B, Yuan J, Wang Z, Wang L. Establishment and solution of eight-lump kinetic model for FCC gasoline secondary reaction using particle swarm optimization. Fuel. 2007, 86(15): 2325-2332.
    [84] Neurock M, Libanati C, Nigam A, Klein MT. Monte carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils. Chem Eng Sci. 1990, 45(8): 2083-2088.
    [85]龚剑洪,陆善祥,崔建.重油催化裂化反应动力学分子模型的研究.石油炼制与化工. 2000(08):53-57.
    [86]马法书,袁志涛,翁惠新.分子尺度的复杂反应体系动力学模拟(Ⅰ)原料分子的Monte Carlo模拟.化工学报. 2003(11): 1539-1545.
    [87] Liguras D, Allen D. Structural models for catalytic cracking. 1. Model compound reactions. Ind Eng Chem Res. 1989, 28(6): 665-673.
    [88] Liguras D, Allen D. Structural models for catalytic cracking. 2. Reactions of simulated oil mixtures. Ind Eng Chem Res. 1989, 28(6): 674-683.
    [89] Quann RJ, Jaffe SB. Building useful models of complex reaction systems in petroleum refining. Chem Eng Sci. 1996, 51(10): 1615-1631.
    [90] Quann RJ, Jaffe SB. Structure-oriented lumping: describing the chemistry of complex hydrocarbon mixtures. Ind Eng Chem Res. 1992, 31(11): 2483-2497.
    [91] Froment G. Single event kinetic modeling of complex catalytic processes. Catalysis Reviews-Science and Engineering. 2005, 47(1): 83-124.
    [92] Baltanas MA, Froment GF. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985, 9(1): 71-81.
    [93] Dewachtere NV, Santaella F, Froment GF. Application of a single-event kinetic model in the simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil. Chem Eng Sci. 1999, 54(15-16): 3653-3660.
    [94] Baltanas M. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalysts. Comput Chem Eng. 1985, 19(1): 71-81.
    [95] Guillaume D. Network Generation of Oligomerization Reactions:? Principles. Ind Eng Chem Res. 2006, 45(13): 4554-4557.
    [96] Feng W, Vynckier E, Froment GF. Single event kinetics of catalytic cracking. Ind Eng Chem Res. 1993, 32(12): 2997-3005.
    [97] Quintana-Solorzano R, Thybaut J, Marin G. A single-event microkinetic analysis of the catalytic cracking of (cyclo) alkanes on an equilibrium catalyst in the absence of coke formation. Chem Eng Sci. 2007, 62(18-20): 5033-5038.
    [98] Dewachtere N, Froment G, Vasalos I, Markatos N, Skandalis N. Advanced modeling of riser-type catalytic cracking reactors. Applied thermal engineering. 1997, 17(8-10): 837-844.
    [99] Guillaume D, Surla K, Galtier P. From single events theory to molecular kinetics?aapplication to industrial process modelling. Chem Eng Sci. 2003, 58(21): 4861-4869.
    [100] Maurice LQ, Lander H, Edwards T, Harrison WE. Advanced aviation fuels: a look ahead via a historical perspective. Fuel. 2001, 80(5): 747-756.
    [101] Maurice L, Edwards T, Griffiths J. Liquid hydrocarbon fuels for hypersonicpropulsion 2000.
    [102] Russell AJ, Beckman EJ. Should the high diffusivity of a supercritical fluid increase the rate of an enzyme-catalyzed reaction? Enzyme Microb Technol. 1991, 13(12): 1007-1007.
    [103] McHugh M, Paulaitis ME. Solid solubilities of naphthalene and biphenyl in supercritical carbon dioxide. J Chem Eng Data. 1980, 25(4): 326-329.
    [104] Tester Jefferson W, Holgate HR, Armellini Fred J, Webley Paul A, Killilea William R, Hong Glenn T, et al. Supercritical Water Oxidation Technology. Emerging Technologies in Hazardous Waste Management III. Washington, DC: American Chemical Society 1993:35-76.
    [105]李俊汾,秦张峰,王国富,董梅,王建国.超临界多相催化反应的应用研究进展.石油化工. 2007(11):1083-1092.
    [106] Subramaniam B. Enhancing the stability of porous catalysts with supercritical reaction media. Appl Catal, A. 2001, 212(1-2): 199-213.
    [107] Tiltscher H, Wolf H, Schelchshorn J. A Mild and Effective Method for the Reactivation or Maintenance of the Activity of Heterogeneous Catalysts. Angewandte Chemie International Edition in English. 1981, 20(10): 892-894.
    [108] Ginosar DM, Subramaniam B. Olefinic oligomer and cosolvent effects on the coking and activity of a reforming catalyst in supercritical reaction mixtures. J Catal. 1995, 152(1): 31-41.
    [109] Clark MC, Subramaniam B. 1-hexene isomerization on a Pt/?-Al2O3 catalyst: The dramatic effects of feed peroxides on catalyst activity. Chem Eng Sci. 1996, 51(10): 2369-2377.
    [110] Clark MC, Subramaniam B. Kinetics on a supported catalyst at supercritical, nondeactivating conditions. AIChE J. 1999, 45(7): 1559-1565.
    [111] Wang J, Chigada PI, Rigby SP, Al-Duri B, Wood J. Prolonging catalyst lifetime in supercritical isomerization of 1-hexene over a platinum/alumina catalyst. Chem Eng Sci. 2009, 64(15): 3427-3436.
    [112] Baptist-Nguyen S, Subramaniam B. Coking and activity of porous catalysts in supercritical reaction media. AIChE J. 1992, 38(7): 1027-1037.
    [113] Hou Z, Han B, Zhang J, Liu Z, He J, Zhang X, et al. n-Pentane isomerization in different phase regions near the critical temperature. J Supercrit Fluids. 2003, 25(1): 81-90.
    [114] Bogdan VI, Klimenko TA, Kustov LM, Kazansky VB. Supercritical n-butane isomerization on solid acid catalysts. Appl Catal, A. 2004, 267(1-2): 175-179.
    [115] Yokota K, Hanakata Y, Fujimoto K. Supercritical Phase Fischer-Tropsch Synthesis Reaction. In: A. Holmen KJJ, Kolboe S, eds. Stud Surf Sci Catal: Elsevier 1991: 289-295.
    [116] Yokota K, Fujimoto K. Supercritical-phase Fischer-Tropsch synthesis reaction. 2. The effective diffusion of reactant and products in the supercritical-phase reaction. Ind Eng Chem Res. 1991, 30(1): 95-100.
    [117] Yokota K, Hanakata Y, Fujimoto K. Supercritical phase Fischer--Tropsch synthesis reaction: 3. Extraction capability of supercritical fluids. Fuel. 1991, 70(8): 989-994.
    [118] Lang X, Akgerman A, Bukur DB. Steady State Fischer-Tropsch Synthesis in Supercritical Propane. Ind Eng Chem Res. 1995, 34(1): 72-77.
    [119] Bochniak DJ, Subramaniam B. Fischer-tropsch synthesis in near-critical n-hexane: Pressure-tuning effects. AIChE J. 1998, 44(8): 1889-1896.
    [120] Huang X, Roberts CB. Selective Fischer-Tropsch synthesis over an Al2O3 supported cobalt catalyst in supercritical hexane. Fuel Process Technol. 2003, 83(1-3): 81-99.
    [121] Huang X, Elbashir NO, Roberts CB. Supercritical Solvent Effects on Hydrocarbon Product Distributions from Fischer?Tropsch Synthesis over an Alumina-Supported Cobalt Catalyst. Ind Eng Chem Res. 2004, 43(20): 6369-6381.
    [122] Irankhah A, Haghtalab A. Fischer-Tropsch Synthesis Over Co-Ru/?-Al2O3 Catalyst in Supercritical Media. Chem Eng Technol. 2008, 31(4): 525-536.
    [123] Malek Abbaslou RM, Soltan Mohammadzadeh JS, Dalai AK. Review on Fischer-Tropsch synthesis in supercritical media. Fuel Process Technol. 2009, 90(7-8): 849-856.
    [124] Ginosar DM, Thompson DN, Burch KC. Recovery of alkylation activity in deactivated USY catalyst using supercritical fluids: a comparison of light hydrocarbons. Appl Catal, A. 2004, 262(2): 223-231.
    [125] Thompson DN, Ginosar DM, Burch KC. Regeneration of a deactivated USY alkylation catalyst using supercritical isobutane. Appl Catal, A. 2005, 279(1-2): 109-116.
    [126] Thompson DN, Ginosar DM, Burch KC, Zalewski DJ. Extended Catalyst Longevity via Supercritical Isobutane Regeneration of a Partially Deactivated USY Alkylation Catalyst. Ind Eng Chem Res. 2005, 44(13): 4534-4542.
    [127] Ginosar DM, Thompson DN, Burch KC. Sustainable Solid Catalyst Alkylation of Commercial Olefins by Regeneration with Supercritical Isobutane. Ind Eng Chem Res. 2005, 45(2): 567-577.
    [128] Dardas Z, Süer MG, Ma YH, Moser WR. High-Temperature, High-Pressurein SituReactionMonitoring of Heterogeneous Catalytic Processes underSupercritical Conditions by CIR-FTIR. J Catal. 1996, 159(1): 204-211.
    [129] Süer MG, Dardas Z, Ma YH, Moser WR. An in situ CIR-FTIR study of n-heptane cracking over a commercial Y-type zeolite under subcritical andsupercritical conditions. J Catal. 1996, 162(2): 320-326.
    [130] Dardas Z, Süer MG, Ma YH, Moser WR. A kinetic study of n-heptane catalytic cracking over a commercial Y-type zeolite under supercritical and subcritical conditions. J Catal. 1996, 162(2): 327-338.
    [131] Süer MG, Dardas Z, Lu Y, Moser WR, Ma YH. In-situ CIR-FTIR study of the diffusion of supercritical hydrocarbons in zeolite L. AIChE J. 1997, 43(7): 1717-1726.
    [132] Ginosar DM, Coates K, Thompson DN. The Effects of Supercritical Propane on the Alkylation of Toluene with Ethylene over USY and Sulfated Zirconia Catalysts. Ind Eng Chem Res. 2002, 41(25): 6537-6545.
    [133] Ginosar DM, Thompson DN, Coates K, Zalewski DJ. The Effect of Supercritical Fluids on Solid Acid Catalyst Alkylation. Ind Eng Chem Res. 2002, 41(12): 2864-2873.
    [134] Manos G, Hofmann H. Coke removal from a zeolite catalyst by supercritical fluids. Chem Eng Technol. 1991, 14(1): 73-78.
    [135] Rodríguez A, Uguina MA, Capilla D, Pérez-Velazquez A. Effect of supercritical conditions on the transalkylation of diethylbenzene with benzene. J Supercrit Fluids. 2008, 46(1): 57-62.
    [136] Savage PE, Gopalan S, Mizan TI, Martino CJ, Brock EE. Reactions at supercritical conditions: applications and fundamentals. AIChE J. 1995, 41(7): 1723-1778.
    [137] Guisnet M, Magnoux P. Coking and deactivation of zeolites: Influence of the Pore Structure. Applied Catalysis. 1989, 54(1): 1-27.
    [138] Bauer F, Karge HG. Characterization of coke on zeolites. 2006:249-364.
    [139] Holmes SM, Garforth A, Maunders B, Dwyer J. A solvent extraction method to study the location and concentration of coke formed on zeolite catalysts. Appl Catal, A. 1997, 151(2): 355-372.
    [140] Williams BA, Ji W, Miller JT, Snurr RQ, Kung HH. Evidence of different reaction mechanisms during the cracking of n-hexane on H-USY zeolite. Appl Catal, A. 2000, 203(2): 179-190.
    [141] Wei J. Nonlinear Phenomena in Zeolite Diffusion and Reaction. Ind Eng Chem Res. 1994, 33(10): 2467-2472.
    [142] Bhatia S, Beltramini J, Do DD. Deactivation of Zeolite Catalysts. Catal Rev Sci Eng. 1989, 31(4): 431 - 480.
    [143] Datka J, Gil B. In situ IR and catalytic studies of the regeneration of acid sites in coked zeolite Y. Microporous Mesoporous Mater. 2007, 103(1-3): 225-229.
    [144] Wojciechowski BW. The kinetic foundations and the practical application of the time on stream theory of catalyst decay. Catal Rev Sci Eng. 1974, 9(1): 79 - 113.
    [145] Corma A, Orchillés AV. Current views on the mechanism of catalyticcracking. Microporous Mesoporous Mater. 2000, 35-36: 21-30.
    [146] Kissin YV. Chemical mechanisms of catalytic cracking over solid acidic catalysts: Alkanes and alkenes. Catal Rev Sci Eng. 2001, 43(1): 85 - 146.
    [147] Williams BA, Babitz SM, Miller JT, Snurr RQ, Kung HH. The roles of acid strength and pore diffusion in the enhanced cracking activity of steamed Y zeolites. Appl Catal, A. 1999, 177(2): 161-175.
    [148] Corma A, Marie O, Ortega FJ. Interaction of water with the surface of a zeolite catalyst during catalytic cracking: a spectroscopy and kinetic study. J Catal. 2004, 222(2): 338-347.
    [149] Kotrel S, Rosynek MP, Lunsford JH. Origin of first-order kinetics during the bimolecular cracking of n-hexane over H-ZSM-5 and H-beta Zeolites. J Catal. 2000, 191(1): 55-61.
    [150] Froment GF, Bischoff KB. Non-steady state behaviour of fixed bed catalytic reactors due to catalyst fouling. Chem Eng Sci. 1961, 16(3-4): 189-201.
    [151] Quintana-Solórzano R, Rodríguez-Hernández A, García-de-León R. Study of the Performance of Catalysts for Catalytic Cracking by Applying a Lump-Based Kinetic Model. Ind Eng Chem Res. 2008, 48(3): 1163-1171.
    [152] Viner MR, Wojciechowski BW. The chemistry of catalyst poisoning and the time on stream theory. The Canadian Journal of Chemical Engineering. 1982, 60(1): 127-135.
    [153] Subramaniam B, McCoy BJ. Catalyst activity maintenance or decay: a model for formation and desorption of coke. Ind Eng Chem Res. 1994, 33(3): 504-508.
    [154] Subramaniam B, McHugh MA. Reactions in supercritical fluids - a review. Industrial & Engineering Chemistry Process Design and Development. 1986;25(1):1-12.
    [155]朱恩俊.超临界流体萃取固态物料的缩芯萃取模型.江苏理工大学学报. 1997(05): 16-21.
    [156]吴卫泽,武练增.超临界流体萃取动力学模型(Ⅰ).煤炭转化. 1999(04):36-40.
    [157]廖传华,黄振仁,顾国亮.固态物料超临界CO2萃取的传质模型.精细化工. 2004(07): 502-506.
    [158] Bates D, Watts D. Nonlinear regression analysis and its applications. New York: John Wiley & Sons 1988.
    [159] Fogler H. Elements of chemical reaction engineering. fourth ed. New York: Prentice-Hall 2005.
    [160] Nash JC, Walker-Smith M. Nonlinear parameter estimation: an integrated system in basic: Marcel Dekker, Inc. 1987.
    [161] Kazansky VB, Frash MV, van Santen RA. Quantumchemical study of theisobutane cracking on zeolites. Appl Catal, A. 1996, 146(1): 225-247.
    [162] Kazansky VB, Frash MV, van Santen RA. A quantum-chemical study of hydride transfer in catalytic transformations of paraffins on zeolites. Pathways through adsorbed nonclassical carbonium ions. Catal Lett. 1997, 48(1): 61-67.
    [163] Wei J. Adsorption and cracking of n-alkanes over ZSM-5: negative activation energy of reaction. Chemical Engineering Science. 1996, 51(11): 2995-2999.
    [164] van Bokhoven JA, Tromp M, Koningsberger DC, Miller JT, Pieterse JAZ, Lercher JA, et al. An explanation for the enhanced activity for light alkane conversion in mildly steam dealuminated mordenite: the dominant role of adsorption. Journal of Catalysis. 2001, 202(1): 129-140.
    [165] Eder F, Lercher JA. Alkane sorption in molecular sieves: the contribution of ordering, intermolecular interactions, and sorption on Br?nsted acid sites. Zeolites. 1997, 18(1): 75-81.
    [166]马沛生,王加宁,李平.基团法估算临界参数的改进.高校化学工程学报. 1996, 10(4): 351-354.
    [167]崔苗. MCM-41型结构复合分子筛的合成、表征和催化性能研究[硕士]:北京化工大学; 2009.
    [168] Santilli DS, Zones SI. Secondary shape selectivity in zeolite catalysis. Catal Lett. 1990, 7(5): 383-387.
    [169] Miller SJ. New molecular sieve process for lube dewaxing by wax isomerization. Microporous Materials. 1994, 2(5): 439-449.
    [170] Traa Y, Sealy S, Weitkamp J. Characterization of the pore size of molecular sieves using molecular probes. 2007: 103-154.
    [171] Frillette VJ, Haag WO, Lago RM. Catalysis by crystalline aluminosilicates: Characterization of intermediate pore-size zeolites by the "Constraint Index". J Catal. 1981, 67(1): 218-222.
    [172] Lu Y, He M-Y, Shu X-T, Zong B-N. Interactions of n-Alkanes within a Restrictive Pore System under Fluid Catalytic Cracking (FCC) Conditions. Energy Fuels. 2003, 17(4): 1040-1042.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700