用户名: 密码: 验证码:
抗β_1肾上腺素受体自身抗体与心律失常的关系及其意义分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     G蛋白耦联受体(G protein-coupled receptor, GPCR)是人体内最大的膜受体蛋白家族,广泛分布于全身组织器官,其中位于心肌细胞膜上的β1肾上腺素受体(β1-adrenoceptor,β1-AR)在调节心脏功能活动中发挥着重要作用。生理情况下,β1-AR通过识别并选择性地与儿茶酚胺类物质结合,引起胞内信号转导通路激活,进而发挥心脏的正性变时、正性变力和正性变传导作用,在介导机体对心脏功能活动的神经-体液调节中发挥重要作用。近二十年来,诸多学者相继在扩张型心肌病、风湿性心脏病、Chagas病和原发性心电紊乱等心脏病中均检测到抗β1-AR细胞外第二环的自身抗体(antibodies against the second extracellular loop ofβ1-adrenoceptor,β1-AAB),提示这种自身抗体可能与多种心脏疾患的病理生理机制有关。
     有研究表明:在扩心病伴发室性心律失常及传导阻滞患者的血清中检测到高水平的β1-AAB ,提示β1-AAB可能与心律失常的发生有关。但β1-AAB在其他类型心律失常患者血清中的分布情况如何尚不得而知。1990年Magnusson等的研究发现,抗β1-AR自身抗体(β1-AAB)能够专一性识别β1-AR细胞外第二环的功能表位肽段,并具有类激动剂样的正性变时效应。但是与激动剂不同的是,该自身抗体表现为对β1-AR持续的刺激效应,即具有不脱敏性。1996年Mijares等研究发现,β1-AAB能够通过cAMP依赖性的蛋白激酶途径激活心肌细胞膜上的L型Ca2+通道,进而增强钙离子内流,并且可缩短QT间期。鉴于L型Ca2+通道电流是自律细胞动作电位0期去极化、非自律细胞动作电位平台期的主要内向离子电流,那么,具有类激动剂样作用的β1-AAB是否有可能通过影响钙电流而导致心电活动异常,进而导致心律失常的发生呢?但是,证实这一推测的前提是需要阐明在心律失常患者血清中是否存在这种抗体,如果存在,那么这种自身抗体在心律失常患者中的分布特征如何,这些问题的解决将为证实β1-AAB是否参与了心律失常发生发展的病理生理过程提供第一手资料。
     大量的研究已经表明,在健康机体中存在有产生自身抗体的B淋巴细胞株,但它们通常被抑制或处于低水平状态,不足以造成组织损伤或引起疾病。自身免疫在正常人体内亦屡有发生,一般起维持机体生理自稳的作用,正常人血清中含有多种针对自身抗原的自身抗体,但其效价极低,能够协助机体清除自身衰老变性的成分,故被称为生理性抗体。在某些病理状态下,自身抗体较原有的生理性抗体在效价上有大幅度增长的趋势,这些在质和量上表现异常的自身抗体,或通过攻击自身靶抗原细胞和组织,或反过来影响机体的免疫系统使其功能紊乱,进而使组织或细胞产生病理改变和功能障碍,形成自身免疫性疾病。机体免疫系统中淋巴细胞增殖是机体对抗原刺激产生免疫应答过程中的重要事件,淋巴细胞增殖结果表现为产生效应淋巴细胞,最终清除抗原,维护机体内环境稳定,而T淋巴细胞在免疫应答起始阶段起着必不可少的辅助作用。已有研究表明,具有激动剂样作用的β1-AAB是机体免疫系统功能失衡的产物,并且,T淋巴细胞膜上存在β1-AR,那么,由免疫应答产生的β1-AAB除了先前所发现的对心脏的作用外,是否还可以与T淋巴细胞膜上的相应受体结合,反过来影响机体的免疫调节功能,从而进一步影响心律失常,这些问题目前均未见报道。我们的前期研究发现,抗血管紧张素Ⅱ(AT1)受体自身抗体对大鼠脾脏T淋巴细胞具有促增殖作用。由于β1-AR与AT1受体同属于G蛋白耦联受体,且根据文献报道,T淋巴细胞上亦分布有β1-AR,因此我们推测,免疫系统可能也是β1-AAB的作用靶点之一。如果这种假设成立,β1-AAB对T淋巴细胞有何作用,对机体免疫系统的功能有无影响等问题,均有待通过实验进行一一分析。
     研究目的
     1.确定心律失常患者血清中是否存在β1-AAB,如果存在,分析该自身抗体在各型心律失常患者中的分布特征及其可能的临床意义。
     2.观察β1-AAB对正常大鼠和心衰大鼠是否具有致心律失常作用,如果有,分析其有何特点。
     3.初步探讨β1-AAB是否能够影响机体免疫系统的功能,如果能,对T淋巴细胞的增殖有何作用?
     研究方法
     1.以合成的人β1-AR细胞外第二环氨基酸肽段(197-222位)为抗原,采用SA-ELISA方法筛查106例心律失常患者、100例冠心病患者和100例正常人血清中的β1-AAB,并分析其在各型心律失常患者中的分布特征。
     2.以合成的人β1-AR细胞外第二环氨基酸肽段(197-222位)为抗原主动免疫大鼠,免疫过程中定期鼠尾静脉采血,采用流式细胞测定技术检测外周血T淋巴细胞亚群CD4+/CD8+比值的变化;免疫结束后,用亲和层析法分别提纯免疫鼠血清中β1-AAB阳性和阴性的IgGs。
     3.采用缩窄腹主动脉法制备心力衰竭大鼠模型,模型成功后,筛选β1-AAB阴性的模型鼠,经鼠尾静脉急性给予β1-AAB IgGs,观察该抗体对心衰大鼠、伪手术和正常大鼠心电图的影响。
     4.培养肠系膜淋巴结细胞,采用CCK-8检测试剂盒,观察β1-AAB对刀豆球蛋白A(concanavalin A, Con A)刺激的T淋巴细胞增殖功能的影响。
     研究结果
     1.β1-AAB在心律失常患者血清中的分布呈高阳性率
     在筛查的106例心律失常患者血清中,有58例呈β1-AAB阳性,其阳性率为52.8%,与正常对照组的5.0%及冠心病组的24.0%相比,有显著性差异(P<0.01)(见表1-1,1-2)。说明心律失常患者血清中这种自身抗体的阳性率高于冠心病人和正常人。
     22 .β1-AAB在在在不不同类型心律失常患者血清中的分布情况
     以OD值表示血清中β1-AAB的含量,对其进行分析发现,室性、房性和传导异常性心律失常患者血清中β1-AAB平均OD值分别为0.35±0.02、0.20±0.01和0.22±0.02,均高于正常对照组的OD值0.13±0.01(P<0.01);且室性心律失常组β1-AAB平均OD值与房性及传导异常性相比均有显著性差异(P<0.01)(见图1-1)。这些结果说明,β1-AAB在室性、传导异常性和房性心律失常患者中的分布均高于正常人,而且可能和室性心律失常的相关性更高。
     3.主动免疫大鼠模型建立成功和β1-AAB的提纯
     用β1-AR细胞外第二环的抗原肽段主动免疫大鼠后,血清β1-AAB含量在免疫4周时已明显升高,10周时达高峰(稀释度1:20时OD值为3.43±0.72,P<0.01, vs.同期对照组)(见图2-1)。提纯大鼠的抗血清,得到以β1-AAB为主的总IgGs。
     4.心力衰竭大鼠模型建立成功
     心衰大鼠建模后12周,心衰组左心室收缩压(LVSP)、室内压上升和下降的最大速率(±dp/dtmax)均低于伪手术组(P<0.05),而左心室舒张末压(LVEDP)则高于伪手术组(P<0.05)(见表2-1);且心衰组心脏重量与体重之比明显高于同期伪手术组(P<0.01)(见表2-2)。以上指标均说明心衰大鼠模型建立成功。
     5.β1-AAB对正常大鼠和心衰大鼠心电图的影响
     经鼠尾静脉急性给予β1-AAB后,在正常大鼠和心衰大鼠均监测到不同程度及不同类型的心律失常,其中以室性心律失常最为多见(见图2-2);心衰大鼠心律失常的发生频率明显高于正常大鼠(见图2-3)。
     6.免疫鼠外周血T淋巴细胞亚群的改变
     β1-AR抗原肽段免疫组和对照组大鼠的外周血T淋巴细胞亚型CD4+/CD8+的比值在处理24小时后即开始增加,β1-AR抗原肽段免疫组在第7天时达较高水平(3.26±0.32),随后在观察时间内呈逐渐增高趋势;而对照组的CD4+/CD8+之比在第3天时达峰值(2.72±0.47),随后逐渐降低(见表3-1)。这一结果表明与对照组相比,β1-AR抗原肽段免疫组出现明显的免疫功能亢进。
     7.β1-AAB对T淋巴细胞增殖功能的影响
     经CCK-8试剂盒检测结果显示,三个浓度的β1-AAB(0.01,0.1,1 mol/L)均可以促进Con A激活的T淋巴细胞增殖,并呈浓度依赖性趋势(OD值分别为0.49±0.05,0.69±0.08,0.82±0.07),该作用类似于β1-AR激动剂异丙肾上腺素的作用(见图3-1)。此外,β1-AAB的作用可被β1-AR特异性阻断剂Metoprolol和β1-AR细胞外第二环的抗原肽段所中和,而单纯Metoprolol或β1-AR抗原肽段对T淋巴细胞的增殖功能无明显影响(见图3-2)。
     结论
     1.在心律失常患者血清中,β1-AAB的阳性率明显高于冠心病病人和正常人,且该自身抗体可能和室性心律失常的相关性更高。
     2.β1-AAB具有直接致正常大鼠和心衰大鼠心律失常的作用,并以室性心律失常最为多见。此外,本实验首次发现心衰大鼠发生心律失常的易感性明显增加,提示心衰患者血清中β1-AAB的存在可能具有更为重要的病理意义。
     3.通过本研究首次证实β1-AAB可以影响机体的免疫调节功能,并促进T淋巴细胞的增殖。
Background
     G protein-coupled receptor (G protein-coupled receptor, GPCR) is the largest membrane receptor protein family in the body and it is widely distributed in body tissues and organs,β1 adrenergic receptor (β1-AR)located on Myocardial cell membrane is one kind of the GPCR, it plays an important role in regulating cardiac function and activities. In physiological circumstances,β1-AR identify and selectively bind to catecholamines, then active signal transduction pathway in the cell, mediated positive chronotropic, inotropic and dromotropic effect in the heart and participate in energy metabolism of cardimyocyte.β1-AR plays a dominant role in the Nerve - humoral regulation in the function and activation of the heart. Over the past two decades, many scholars have detected antibodies against the second extracellular loop ofβ1-adrenoceptor(β1-AAB)in dilated cardiomyopathy, rheumatic heart disease, Chagas disease and primary cardiac electricity disorders disease and so on. This suggests that this autoantibody may be associated with the pathophysiology mechanisms of the cardiac disease.
     In 1990, Magnusson et al. discovered that: anti-β1-AR autoantibody (β1-AAB)is able to recognize the functional epitope peptide of the second extracellular loop of theβ1-AR, and it exhibited the agonist-like effect such as positive chronotropic effect. However, there is still some difference to agonist: the stimulation effect of the autoantibody to theβ1-AR receptor is sustained, which showed no desensitization. In 1996, Mijares et al. found thatβ1-AAB can active L-type calcium channel in the membrane of cardimyocytes through cAMP-dependent protein kinase pathway, then enhanced calcium influx and shortened the QT interval. In view of L-type Ca2+ channel current is the main inward currents of the action potential plateau of non-self-regulatory cells and 0 phase depolarization of the self-regulatory, whetherβ1-AAB which has the agonist-like effect is associated with the abnormal electrical activity of heart, then further associated with the occurrence of arrhythmia remains unknown However, in order to confirm this speculation, whether such antibodies existed in sera of patients with arrhythmias should be clarified. Furthermore, clarify whether such autoantibodies are associated with arrhythmia. First-hand information should be provided for conforming thatβ1-AAB is involved in the pathophysiological process of occurrence and development of arrhythmia.
     Studies have shown that B-lymphocytes, which can produce autoantibodies, existed in healthy organism, and they are usually suppressed or in a low lever status, therefore, they can’t induce tissue damage or induce disease. Autoimmunity also often happens in normal human, and the general function is to maintain the physiological homeostasis. In sera from normal human there are a variety of autoantibodies against self-antigen, but the titer is very low, just can assist the body to clear aging self-composition. Therefore, it is known as physiological antibodies. In some pathological conditions, there is a more significant increasing trend of autoantibodies titer than the original physiological antibodies. The autoantibodies which are abnormal in quality and quantity attack self cells and tissues which have target antigen or in turn affect and destroy the immune system, thus produce the pathological changes and dysfunction, then form the autoimmune disease. In immune system, proliferation of lymphocytes is an important event in the immune response to the stimulation of antigen, and results in producing effector lymphocytes. Finally clear the antigen and maintain the internal environment stabilization. In the start-up phase of immune response, T lymphocytes play an essential supplementary role. In addition, there isβ1-AR on the membrane of T lymphocytes. Except the function to the heart ofβ1-AAB which was previously found. Therefore, whetherβ1-AAB can bind to the corresponding receptor on membrane of T lymphocyte, and further affect the immune regulatory function, thereby affect the arrhythmia needs to be further investigated.
     Our preliminary study has found that antibody against AT1R could promote proliferation of T lymphocytes from rats’spleen. For bothβ1-AR and AT1 receptor are G protein-coupled receptors, andβ1-AR also distributed on T lymphocytes according to previous reports. So we speculate that the immune system may also be one of the targets ofβ1-AAB. If so, what’s the function ofβ1-AAB to T lymphocytes? And whether it can affect the function of immune system? All these questions have to be analyzed one by one through experiments.
     Objective
     1. To investigate whether there isβ1-AAB in the sera of arrhythmia patients, and if so, to determine the distribution characteristics ofβ1-AAB in various types of arrhythmia patients and its possible clinical significances.
     2. To observe whetherβ1-AAB can induce the occurrence of arrhythmia in normal rats or heart failure rats, and if so, what are their characteristics?
     3. To preliminaryly study whetherβ1-AAB can influence the function of immune system, if so, what is the effect ofβ1-AAB on the proliferation of T lymphocytes?
     Methods
     1. The synthesized peptides of the second extracellular loop ofβ1-AR (197-222 amino acids) were used as antigen to detectβ1-AAB in the sera of 106 cases arrhythmia patients, 100 cases coronary heart disease patients and 100 cases healthy people by SA-ELISA technology, and analyze the distribution characteristics ofβ1-AAB in various types of arrhythmia patients.
     2. The synthesized peptides corresponding to the second extracellular loop ofβ1-AR (197-222 amino acids) were used as antigen to immunize rats. During the immunization course we collected the peripheral blood from tail vein to detect the ratios of CD4+ and CD8+ T lymphocytes by flow cytometry technology. By the end of immunization, the positive and negative IgGs of seraβ1-AAB were purified respectively by affinity chromatography.
     3. The heart failure models of rats were established by constricting the abdominal aorta. After the models formation, theβ1-AAB negative rats were selected by SA-ELISA technology, and were injected acutely withβ1-AAB through tail vein. Then we observed the effects ofβ1-AAB on ECG in heart failure rats, sham rats and healthy rats.
     4. In cultured lymphocytes from mesenteric lymph nodes, we observed the effects ofβ1-AAB positive IgGs on T lymphocytes proliferation induced by Con A by CCK-8 Detection Kit.
     Results
     1. The high positive rate ofβ1-AAB in the sera of patients with arrhythmias.
     In 106 cases of patients with arrhythmia, 58 cases were positive forβ1-AAB, so the positive rate was 52.8%, which was significantly higher than that in the normal subjects (5.0%) or in coronary heart disease groups (24.0%), (P<0.01) (see Table 1-1,1-2). This result indicates the positive rate ofβ1-AAB in patients with arrhythmia is higher than that in patients of coronary heart disease patients or normal subjects.
     2. The distribution characteristics ofβ1-AAB in the sera of patients with different types of arrhythmia.
     By analyzing the contents ofβ1-AAB based on the sera OD values, we found in patients with ventricular arrhythmia, atrial arrhythmia and conduction abnormalities arrhythmia, the OD values were 0.35±0.02,0.20±0.01 and 0.22±0.02 respectively which were all higher than that of the normal control group (0.13±0.01, P<0.01). In addition, compared with the atrial arrhythmia and conduction abnormalities arrhythmia, the OD values of ventricular arrhythmia were significantly different (P<0.01) (see Figure 1-1). These results indicate that the distribution ofβ1-AAB is higher in patients of arrhythmia than that in the normal controls, and maybeβ1-AAB is more relevant with ventricular arrhythmias.
     3. Establishment of the active immunization rats models and purification ofβ1-AAB.
     After active immunization with antigen peptides of the second extracellular loop ofβ1-AR in rats, theβ1-AAB contents in sera increased significantly at 4 weeks, and reached the peak at 10 weeks (at 1:20 dilution the OD value was 3.43±0.72, P<0.01, vs. the control group at the same period) (see Figure 2-1). The anti-serum of rats was purified to obtainβ1-AAB IgGs.
     4. Heart failure models of rats were successfully established.
     After the heart failure models were set up for 12 weeks, the left ventricular systolic pressure (LVSP) and the maximum rate of ventricular pressure rise and fall (±dp / dtmax) were lower in the heart failure group than that in the sham group (P<0.05), while the end-diastolic pressure of left ventricular (LVEDP) was higher than that in the sham group (P<0.05) (see Table 2-1). The ratios of heart weight and body weight in the heart failure group was significantly higher than that in the sham group at the same period (P<0.01) (see table 2-2). These results above indicated that the rat models of heart failure were established successfully.
     5. The effects ofβ1-AAB on ECG of normal rats and heart failure rats
     Whenβ1-AAB IgGs were infused from the tail vein of rats acutely, varying degrees and different types of arrhythmia were monitored in the normal rats and heart failure rats. and the ventricular arrhythmia was one of the most common (see Figure 2-2). In addition, the frequency of arrhythmia in the heart failure group was significantly higher than that in the normal rats (see Figure 2-3).
     6. Changes of T lymphocyte subtypes in the peripheral blood of immunized rats
     The ratios of CD4+ and CD8+ T lymphocyte began to increase in theβ1-AR antigen peptide immunization group and control group after treatment for 24 hours. And it reached a higher level in theβ1-AR antigen peptide immunization group at the 7th day (3.26±0.32), then increased gradually during the study period. However, the ratios of CD4+ and CD8+ T lymphocyte achieved peak at the third day (2.72±0.47), then decreased gradually (see Table 3-1). These results indicate that there is the emergence of significant immune hyperfunction in theβ1-AR antigen peptide immunization group compared with the control group.
     7. The effects ofβ1-AAB on T lymphocytes proliferation
     The results detected by CCK-8 kits showed that three concentrations ofβ1-AAB (0.01, 0.1, 1 mol/L) promoted proliferation of T lymphocytes induced by Con A in a dose-dependent manner (OD values were 0.49±0.05, 0.69±0.08, 0.82±0.07), which was similar to the role ofβ1-AR agonist isoprenaline (see Figure 3-1). In addition, the effects ofβ1-AAB could be neutralized by theβ1-AR-specific blockers Metoprolol or the antigen peptides corresponding to the second extracellular loop ofβ1-AR, but simple Metoprolol orβ1-AR antigen peptides had no significant effect on proliferation of T lymphocytes (see Figure 3-2).
     Conclusions
     1. In the sera of patients with arrhythmia, the positive rate ofβ1-AAB was significantly higher than that of patients with coronary heart disease and healthy subjects, and theβ1-AAB might be more relevant with ventricular arrhythmias.
     2.β1-AAB had a direct-induced arrhythmia effects in normal rats and heart failure rats, and the ventricular arrhythmia was most common. In addition, the susceptibility to arrhythmia increased markedly in heart failure rats, indicating that the existence of high level ofβ1-AA in sera of patients with heart failure may have more considerable pathophysiologic significance.
     3.β1-AAB were reported for the first time to promote the proliferation of T lymphocytes by activating ofβ1-AR, and affect the immune regulation function of the organism.
引文
1. Rosenbaum MB, Chiale PA, Schejtman D, Levin M, Elizari MV. Antibodies to beta-adrenergic receptors disclosing agonist-like properties in idiopathic dilated cardiomyopathy and Chagas' heart disease. J Cardiovasc Electrophysiol 1994; 5: 367-75.
    2. Chiale PA, Rosenbaum MB, Hjalmayson A, Magnusson Y, Wallukat G, Hoebeke J. High prevalency of antibodies against beta-1 and beta-2 adrenoceptors in patients with primary electrical cardiac abnormalities. Jam Coll Cardial. 1995; 26: 864-9.
    3. Magnusson Y, Marullo S, Hoyer S, Waagstein F, Andersson B, Vahlne A, Guillet JG, Strosberg AD, Hjalmarson A, Hoebeke J. Mapping of a functional autoimmune epitope on the beta1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Clin Invest 1990; 86:1658–63.
    4. Mijares A, Verdot L, Peineau N, Vray B, Hoebeke J, Argibay J. Antibodies from Trypanosoma cruzi infected mice recognize the second extracellular loop of theβ1-adrenergic and M2-muscarinic receptors and regulated calcium channels in isolated cardiomyocytes. Mol Cell Biochem. 1996; 163: 107-12.
    5. Kallwellis-Opara A, D-rner A, Poller WC, Noutsias M, Kühl U, Schultheiss HP, Pauschinger M. Autoimmunological features in inflammatory cardiomyopathy. Clin Res Cardiol. 2007; 96(7): 469-480.
    6.赵洁,杨选明,都培双,唐宏. T淋巴细胞抑制急性感染的炎症反应.生物化学与生物物理进展. 2008; 35(2): 129-132.
    7.张苏丽,杨丽红,郑荣华,等.抗血管紧张素ⅡAT1受体抗体对大鼠脾脏T淋巴细胞的促增殖作用.中国心血管病研究. 2009, 7(2):135-138.
    8. Liu HR, Zhao RR, Jiao XY, Wang YY, Fu M. Relationship of myocardial remodeling to the genesis of serum autoantibodies to cardiac beta(1)-adrenoceptors and muscarinic type 2 acetylcholine receptors in rats. J Am Coll Cardiol. 2002; 39(11):1866-1873.
    9. Vizi ES, OrsóE, Osipenko ON, HaskóG, Elenkov IJ. Neurochemical, electrophysiological and immunocytochemical evidence for a noradrenergic link between the sympathetic nervous system and thymocytes. Neuroscience. 1995;68(4):1263-1276.
    10.曹蓓蓓,彭聿平,邱一华.小脑顶核损毁对淋巴细胞功能的影响.中国应用生理学杂志. 2006; 22(4): 410-414.
    11. Bekbosynova MS, Nikitina TIa, Golitsyn SP, Novikova DS, Loladze NV, Masenko VP, Tonevitski- AG. C-reactive protein level and rate of detection of autoantibodies to beta(1)-adrenoreceptors in patients with supraventricular tachyarrhythmias. Kardiologiia. 2006; 46(7):55-61.
    12. Novikova DS, Bekbosynova MS, Antidze TIa, Loladze NV, Domogatski- SP, Golitsyn SP, Nasonov EL, Denisova IA, Tonevitski- SP. Autoantibodies Against beta(1)-Adrenoreceptors in Patients With Cardiac Rhythm Disorders. Prevalence and Possible Role in Development of Arrhythmia. Kardiologiia. 2004; 44(7): 17-22.
    13. Iwata M, Yoshikawa T, Baba A, Anzai T, Mitamura H, Ogawa S. Autoantibodies against the second extracellular loop of beta1-adrenergic receptors predict ventricular tachycardia and sudden death in patients with idiophatic dilated cardiomyopathy. J Am Coll Cardiol. 2001, 37: 418–424.
    14. Magnusson Y, Wallukat G, Waagstein F, Hjalmarson A, Hoebeke J. Autoimmunity in idiopathic dilated cardiomyopathy. Characterization of antibodies against theβ1-adrenoceptor with positive chronotropic effect. Circulation, 1994; 89: 2760-2767.
    15. Priori SG, Corr PB. Mechanisms underlying early and delayed afterdepolarizations induced by catecholamines. Am J Physiol 1990; 258:H1796–1805.
    16. Ming Z, Aronson R, Nordin C. Mechanism of current-induced early afterdepolarizations in guinea pig ventricular myocytes. Am J Physiol 1994; 267: H1419–28
    17. Yoshikawa T, Baba A, Nagatomo Y. Autoimmune Mechanisms Underlying Dilated Cardiomyopathy. Circ J. 2009 [Epub ahead of print].
    18. Pablo AC, Ines F, Evelina M, Marina AV, Marcelo VE, Mauricio BR, Mariano JL. Differential profile and biochemical effects of antiautonomic membrane receptor antibodies in ventricular arrhythmias and sinus node dysfunction. Circulation. 2001; 103: 1765-1771.
    1. Akhter, S. A., D'Souza, K. M., Petrashevskaya, N. N., Mialet-Perez, J., Liggett, S. B.Myocardialβ1-adrenergic receptor polymorphisms affect functional recovery after ischemic injury. Am J Physiol Heart CircPhysiol . 2006; 290: H1427-H1432.
    2. Arnett, D. A., Claas, S. A., Glasser, S. P. Pharmacogenetics of antihypertensive treatment. Vascul Pharmacol .2006; 44: 07-118.
    3. Bao,X.,Mills,P.J.,Rana,B.K.,Dimsdale,J.E.,Schork,N.J.,Smith,D.W.,et al. Interactive effects of commonβ2-adrenoceptor haplotypes and age on susceptibility to hypertension and receptor function. Hypertension .2005; 46 :301-307.
    4. Barbato, E., Penicka, M., Delrue, L., Van Durme, F., De Bruyne, B., Goethals,M., et al.. Thr164Ile polymorphism ofβ2-adrenergic receptornegatively modulates cardiac contractility and prognosis in patients with idiopathic dilated cardiomyopathy. Heart. 2007 ; 93:856-861.
    5. Bengtsson, K., Melander, O., Orho-Melander, M., Lindblad, U., Ranstam, J., R-stam, L., et al.Polymorphisms in theβ1-adrenergic receptor gene and hypertension. Circulation 2001a ; 104,: 187-190.
    6. Bengtsson, K., Orho-Melander, M., Melander, O., Lindbald, U., Ranstam, J.,R-stam, L., et al..β2-Adrenergic receptor gene variation and hypertension in subjects with type 2 diabetes. Hypertension .2001b;37:1303-1308.
    7. Berg, G., Andersson, R. G. G., Ryden, G.β-Adrenergic receptors in human myometrium during pregnancy: changes in the number of receptors afterβ-mimetic treatment. Am J Obstet Gynecol. 1985; 151,:392-396.
    8. B-rjesson, M., Magnusson, Y., Hjalmarson, A., Andersson, B. A novel polymorphism in the gene coding for the beta1-adrenergic receptor associated with survival in patients with heart failure. Eur Heart J .2000; 21: 1853-1858.
    9. Bray, M. S., Krushkal, J., Ferrell, R., Kardia, S., Sing, C. F., Turner, S. T., et al. Positional genomic analysis identifies theβ2-adrenergic receptor gene as susceptibility locus for human hypertension. Circulation .2000 ;101: 2877-2882.
    10. Brede,M.,Wiesmann, F., Jahns, R., Hadamek, K., Arnolt, C., Neubauer, S., et al.Feedback inhibition of catecholamine release by two differentα2-adrenoceptor subtypes prevents progression of heart failure. Circulation.2002 ; 106: 2491-2496.
    11. Brede, M., Philipp, M., Knaus, A., Muthig, V., Hein, L.α2-Adrenergic receptor subtypes—novel functions uncovered by gene-targeted mouse models. Biol Cell. 2004 : 96:343-348.
    12. Bristow, M. R.β-Adrenergic receptor blockade in chronic heart failure.Circulation. 2000; 101: 558-569.
    13. Brodde, O.-E.β-Adrenoceptor blocker treatment and the cardiacβ-adrenoceptor-G-protein(s)-adenylyl cyclase system in chronic heart failure. Naunyn Schmiedebergs Arch Pharmacol .2007; 374: 361-372.
    14. Brodde, O.-E., Leineweber, K. Autonomic receptor systems in the failing and aging human heart: similarities and differences. Eur J Pharmacol. 2004; 500: 167-176.
    15. Brodde, O.-E., Leineweber, K.β2-Adrenoceptor gene polymorphisms. Pharmacogenet Genom .2005; 15: 267-275.
    16. Brodde, O.-E., Michel, M. C. Adrenergic and muscarinic receptors in the human heart. Pharmacol Rev 1999 ; 51: 651-689.
    17. Brodde, O.-E., Büscher, R., Tellkamp, R., Radke, J., Dhein, S., Insel, P. A. Blunted cardiac responses to receptor activation in subjects with Thr164Ileβ2-adrenoceptors. Circulation 2001;103; 1048-1050.
    18. Brodde, O.-E., Bruck, H., Leineweber, K. Cardiac adrenoceptors: physiological and pathophysiological relevance. J Pharmacol Sci .2006;100: 323-337.
    19. Bruck, H., Leineweber, K., Beilfu-, A.,Weber,M., Heusch, G., Philipp, T., et al.Genotype-dependent time course of lymphocyteβ2-adrenergic receptor down-regulation. Clin Pharmacol Ther .2003a ;74: 253-263.
    20. Bruck, H., Leineweber, K., Büscher, R., Ulrich, A., Radke, J., Insel, P. A., et al. The Gln27 Gluβ2-adrenoceptor polymorphism slows the onset of desensitization of cardiac functional responses in vivo. Pharmacogenetics. 2003b; 13: 59-66.
    21. Bruck, H., Leineweber, K., Ulrich, A., Radke, J., Heusch, G., Philipp, T., et al. Thr164Ile polymorphism of the humanβ2-adrenoceptor exhibits blunted desensitization of cardiac functional responses in vivo. Am J Physiol Heart Circ Physiol .2003c; 285: H2034-H2038.
    22. Bruck, H., Leineweber, K., Park, J., Weber, M., Heusch, G., Philipp, T., et al. Humanβ2-adrenergic receptor gene haplotypes and venodilation in vivo. Clin Pharmacol Ther . 2005a; 78: 232-238.
    23. Bruck, H., Leineweber, K., Temme, T.,Weber, M., Heusch, G., Philipp, T., et al. The Arg389Gly beta1-adrenoceptor polymorphism and catecholamine effects on plasma-renin activity. J Am Coll Cardiol .2005b;46: 2111-2115.
    24. Bruck, H., Schwerdtfeger, T., Toliat, M., Leineweber, K., Heusch, G., Philipp,T., et al. (inpress). Presynapticα-2C adrenoceptor-mediated control of noradrenaline release in humans: genotype- or age-dependent- Clin Pharmacol Ther. doi:10.1038/sj.clpt.6100181
    25. Büscher, R., Eilmes,K. J.,Grasemann,H., Torres, B.,Knauer,N., Sroka,K., et al.β2 adrenoceptor gene polymorphisms in cystic fibrosis lung disease.Pharmacogenetics. 2000;12: 347-353.
    26. Büscher, R., Belger, H., Eilmes, K. J., Tellkamp, R., Radke, J., Dhein, S., et al. In-vivo studies do not support amajor functional role for theGly389 Argβ1-adrenoceptor polymorphism in humans. Pharmacogenetics .2001;11: 199-205.
    27. Busjahn, A., Li, G.-H., Faulhaber, H.-D., Rosenthal,M., Becker, A., Jeschke, E.,et al.β2-Adrenergic receptor gene variations, blood pressure, and heart size in normal twins. Hypertension. 2000; 35: 555-560.
    28. Candy, G., Samani, N., Norton, G., Woodiwiss, A., Radevski, I., Wheatly, A., et al. Association analysis ofβ2 adrenoceptor polymorphisms with hypertension in a Black African population. J Hypertens .2000; 18: 167-172.
    29. Canham, R. M., Das, S. R., Leonard, D., Abdullah, S. M., Mehta, S. K., Chung,A. K., et al.α2cDel322-325 andβ1Arg389 adrenergic polymorphisms are not associated with reduced left ventricular ejection fraction or increased left ventricular volume. J Am Coll Cardiol 2007; 49: 274-276.
    30. Castellano, M., Rossi, F., Giacche,M., Perani, C., Rivadossi, F.,Muiesan,M. L., et al.β2-Adrenergic receptor gene polymorphism, age, and cardiovascular phenotype. Hypertension .2003; 41: 361-367.
    31. Chen, L., Meyers, D., Javorsky, G., Burstow, D., Lolekha, P., Lucas, M., et al. (in press). Arg389Gly-β1-adrenergic receptors determine improvement in left ventricular systolic function in non-ischemic cardiomyopathy patients with heart failure after chronic treatment with carvedilol. Pharmacogenet Genom.
    32. Cockroft, J. R., Gazis, A. G., Cross, D. J., Wheatley, A., Dewar, J., Hall, I. P., et al.β2-Adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension 2000;36: 371-375.
    33. Communal, C., Singh,K., Sawyer,D. B., Colucci,W. S. Opposing effects of beta(1)- and beta(2)-adrenergic receptors on cardiac myocyte apoptosis: role of a pertussis toxin-sensitive G-protein. Circulation. 1999; 100: 2210-2212.
    34. Contopoulos-Ioannidis, D. G.,Manoli, E. N., Ioannidis, J. P. A. Meta-analysis of theassociation ofβ2-adrenergic receptor polymorphisms with asthma phenotypes. J Allergy Clin Immunol .2005 ;115: 963-972.
    35. Covolo, L., Gelatti, U., Metra, M., Nodari, S., Picciche, A., Pezzali, N., et al. Role ofβ1- andβ2-adrenoceptor polymorphisms in heart failure: a case control study. Eur Heart J 2004;25: 1534-1541.
    36. Defoor, J.,Martens, K., Zielinska, D.,Matthijs, G., Van Nerum, H., Schepers, D.,et al.The CAREGENE study: polymorphisms of theβ1-adrenoceptor gene and aerobic power in coronary artery disease. Eur Heart J .2006; 27: 808-816.
    37. De Groote, P., Helbecque, N., Lamblin, N., Hermant, X., McFadden, E., Foucher-Hossein, C., et al. Association between beta-1 and beta-2adrenergic receptor gene polymorphisms and the response to beta-blockade in patients with stable congestive heart failure. Pharmacogenet Genom .2005a; 15: 137-142.
    38. De Groote, P., Lamblin, N., Helbecque, N., Mouquet, F., McFadden, E.,Hermant, X., et al.The impact of beta-adrenoreceptor gene polymorphisms on survival in patients with congestive heart failure. Eur J Heart Fail. 2005b; 7: 966-973.
    39. Dewar, J. C., Wheatley, A. P., Venn, A., Morrison, J. F., Britton, J., Hall, I. P.β2-Adrenoceptor polymorphisms are in linkage disequilibrium, but are not associated with asthma in an adult population. Clin Exp Allergy .1998;28: 442-448.
    40. Dishy, V., Sofowora, G. G., Xie, H. G., Kim, R. B., Byrne, D. W., Stein, C. M.,et al.The effect of common polymorphisms of theβ2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med. 2001; 345: 1030-1035.
    41. Dishy, V., Landau, R., Sofowora, G., Xie, H.-G.W., Smiley, R.M., Kim, R. B., et al.β2-Adrenoceptor Thr164Ile polymorphism is associated with markedly decreased vasodilator and increased vasoconstrictor sensitivity in vivo. Pharmacogenetics .2004; 14: 517-522.
    42. Doh, K., Sziller, I., Vardhana, S., Kovacs, E., Papp, Z., Witkin, S. S.β2-adrenergic receptor gene polymorphisms and pregnancy outcome.J Perinat Med .2004; 32: 413-417.
    43. Drysdale, C. M., McGraw, D. W., Stack, C. B., Stephens, J. C., Judson, R. S.,Nandabalan, K., et al. Complex promotor and coding regionβ2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness. Proc Natl Acad Sci U S A .2000;97: 10483-10488.
    44. Eisenach, J.H., McGuire, A.M., Schwingler, R.M., Turner, S. T.,Joyner,M. J. Arg16/Glyβ2-adrenergic receptor polymorphism is associated withaltered cardiovascular responses toisometric exercise. Physiol Genom .2004; 16: 323-328.
    45. Eisenach, J.H., Barnes, S.A., Pike, T.L., Sokolnicki,L.A., Masuki,S., Dietz,N.M.,et al.Arg16/Glyβ2-adrenergic receptor polymorphism alters the cardiac output response to isometric exercise. J Appl Physiol .2005; 99: 1776-1781.
    46. Engelhardt, S., Zieger,W., Kassubek, J.,Michel,M. C., Lohse,M. J., Brodde,O.-E. Tocolytic therapy with fenoterol induces selective down-regulation ofβ-adrenergic receptors in human myometrium. J Clin Endocrinol Metab.1997; 82: 1235-1242.
    47. Feldman, R. D., Gros, R. Impaired vasodilator function in hypertension: the role of alterations in receptor-G protein coupling. Trends Cardiovasc Med .1998; 8: 297-305.
    48. Filigheddu, F., Reid, J. E., Troffa, C., PinnaParpaglia, P., Argiolas, G., Testa, A.,et al.Genetic polymorphisms of theβ-adrenergic system: association with essential hypertension and response toβ-blockade. Pharmacogenom J. 2004; 4: 154-160.
    49. Forleo, C., Resta, N., Sorrentino, S., Guida, P., Manghisi, A., De Luca, V., et al. Association ofβ-adrenergic receptor polymorphisms and progression of heart failure in patients with idiopathic dilated cardiomyopathy. Am J Med .2004;117: 451-458.
    50. Forleo, C., Iaciviello, M., Lepera, M. E., Sorrentino, S., Guida, P., Grandinetti,G., et al.β1-Adrenergic receptor polymorphisms are correlated with exercise capacity in patients with idiopathic dilated cardiomyopathy. Eur J Heart Fail 6(Suppl 1), 2007 ;161 (abstr).
    51. Frielle, T., Collins, S., Daniel, K.W., Caron, M. G., Lefkowitz, R. J., Kobilka, B. K. Cloning of the cDNA for the humanβ1-adrenergic receptor.Proc Natl Acad Sci U S A.1987 ;84: 7920-7924.
    52. Galletti, F., Icone,R., Ragone, E., Russo,O.,DellaValle, E., Siani,A., et al. Lack of association between polymorphism in the beta2-adrenergic receptor gene, hypertension, and obesity in the Olivetti heart study. Am J Hypertens .2004 ;17: 718-720.
    53. Garovic, V. D., Joyner, M. J., Dietz, N. M., Boerwinkle, E., Turner, S. T.β2-Adrenergic receptor polymorphism and nitric oxide-dependent forearm blood flow responses to isoproterenol in humans. J Physiol .2003 ;546: 583-589.
    54. Ge, D., Huang, J., He, J., Li, B., Duan, X., Chen, R., et al.β2-Adrenergic receptor gene variations associated with stage-2 hypertension in northern Han Chinese. Ann Hum Genet 2005 ;69: 36-44.
    55. Gratze, G., Fortin, J., Labugger, R., Binder,A.,Kotanko, P., Timmermann, B., et al.β2-Adrenergic receptor variants affect resting blood pessure andagonist-inducedvasodilation in young adult Caucasians. Hypertension ,1999; 33: 1425-1430.
    56. Green, S. A., Cole, G., Jacinto, M., Innes, M., Liggett, S. B. A polymorphism of the humanβ2-adrenergic receptor within the 4th transmembrane domain alters ligand binding and functional properties of the receptor. J Biol Chem .1993 ;268: 23116-23121.
    57. Green, S. A., Turki, J., Innes, M., Liggett, S. B. Amino-terminal polymorphisms of the humanβ2-adrenergic receptor impart distinct agonist-promoted regulatory properties. Biochemistry .1994; 33: 9414-9419.
    58. Guimaraes, S., Moura, D. Vascular adrenoceptors: an update. Pharmacol Rev. 2001; 53: 319-356.
    59. Hahntow, I. N., Koopmans, R. P., Michel, M. C. Theβ2-adrenoceptor gene and hypertension: is it the promoter or the coding region or neither- J Hypertens .2006 ; 24: 1003-1007.
    60. Hata, J. A., Williams, M. L., Koch, W. J. Genetic manipulation of myocardialβ-adrenergic receptor activation and desensitization. J Mol Cell Cardiol .2004; 37: 11-21.
    61. Heckbert, S. R., Hindorff, L. A., Edwards, K. L., Psaty, B. M., Lumley, T., Siscovick, D. S., et al.β2-Adrenergic receptor polymorphisms and risk of incident cardiovascular events in the elderly. Circulation .2003 ; 107: 2021-2024.
    62. Herrmann, V., Büscher, R., Go,M.M., Ring, K.M., Hofer, J. K., Kailasam,M. T.,et al.β2-Adrenergic receptor polymorphisms at codon 16, cardiovascular phenotypes and essential hypertension in Whites and African Americans. Am J Hypertens 2000; 13: 1021-1026.
    63. Herrmann, S.-M., Nicaud, V., Tiret, L., Evans, A., Kee, F., Ruidavets, J.-B., et al. Polymorphisms of theβ2-adrenoceptor (ADRB2) gene and essential hypertension: the ECTIM and PEGASE studies. J Hypertens. 2002; 20: 229-235.
    64. Hindorff, L. A., Heckbert, S. R., Psaty, B. M., Lumley, T., Siscovick, D. S., Herrington, D.M., et al.β2-Adrenergic receptor polymorphisms and determinants of cardiovascular risk: the Cardiovascular Health Study. Am J Hypertens .2005 ;18: 392-397.
    65. Hoffstedt, J., Iliadou, A., Pedersen, N. L., Schalling, M., Arner, P. The effect of the beta2 adrenoceptor gene Thr164Ile polymorphism on human adipose tissue lipolytic function. Br J Pharmacol .2001; 133: 708-712.
    66. Hoit, B. D., Suresh, D. P., Craft, L., Walsh, R. A., Liggett, S. B.β2-Adrenergic receptor polymorphisms at amino acid 16 differentially influence agonist-stimulated blood pressure and peripheral blood flow in normal individuals. Am Heart J. 2000 ;139: 537-542.
    67. Humma, L. M., Puckett, B. J., Richardson, H. E., Terra, S. G., Andrisin, T. E.,Lejeune, B. L.,et al.Effects of beta1-adrenoceptor genetic polymorphisms on resting hemodynamics in patients undergoing diagnostic testing for ischemia. Am J Cardiol .2001; 88: 1034-1037.
    68. Hunt, S. A., Baker, D. W., Chin, M. H., Cinquegrani, M. P., Feldman, A. M.,Francis, G. S., et al.ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary. Areport of the American college of cardiology/American heart association task force on practice guidelines (committee to revise the 1995 guidelines for the evaluation and management of heart failure) developed in collaboration with the international society of heart and lung transplantation endorsed by the heart failure society of America. J Am Coll Cardiol .2001;38: 2103-2113.
    69. Iaccarino, G., Lanni, F., Cipolletta, E., Trimarco, V., Izzo, R., Iovino, G. L., et al. The Glu27 allele of theβ2 adrenergic receptor increases the risk of cardiac hypertrophy in hypertension. J Hypertens .2004;22: 2117-2122.
    70. Iaccarino, G., Izzo, R., Trimarco, V., Cipolletta, E., Lanni, F., Sorriento, D., et al.β2-Adrenergic receptor polymorphisms and treatment-induced regression of left ventricular hypertrophy in hypertension. Clin Pharmacol Ther .2006 ;80: 633-645.
    71. Israel, E., et al. for the National Heart, Lung and Blood Institute's Asthma clinical research network. The effect of polymorphisms of theβ2-adrenergic receptor on the response to regular use of albuterol in asthma. Am J Respir Crit Care Med. 2000; 162: 75-80.
    72. Israel, E., et al. for the National Heart, Lung, and Blood Institute's Asthma Clinical Research Network. Use if regularly scheduled albuterol treatment in asthma: genotype-stratified, randomized, placebo-controlled cross-over trial. The Lancet .2004; 364: 1505-1512.
    73. Iwai, C., Akita, H., Shiga, N., Takai, E., Miyamoto, Y., Shimizu, M., et al.Suppressive effect of the Gly389 allele of the beta1-adrenergic receptor gene on the occurrence of ventricular tachycardia in dilated cardiomyopathy. Circ J .2002; 66: 723-728.
    74. Iwai, C., Akita, H., Kanazawa, K., Shiga, N., Terashima, M., Matsuda, Y., et al. Arg389Gly polymorphism of the humanβ1-adrenergic receptor in patients with nonfatal myocardial infarction. Am Heart J .2003; 146: 106-109.
    75. Jia, H., Sharma, P., Hopper, R., Dickerson, C., Lloyd, D. D., Brown, M. J.β2-Adrenoceptor gene polymorphisms and blood pressure variations in East Anglian Caucasians. J Hypertens 2000;18: 687-693.
    76. Jindra, A., Horky, K., Peleska, J., Jachymova, M., Bultas, J., Umnerova, V., et al. Association analysis of Arg16Gly polymorphism of the beta2-adrenergic receptor gene in offspring from hypertensive and normotensive families. Blood Press. 2002 ;11: 213-217.
    77. Johnson, J. A., Terra, S. G.β-Adrenergic receptor polymorphisms:cardiovascular disease associations and pharmacogenetics. Pharm Res .2002; 19: 1779-1787.
    78. Johnson, J. A., Turner, S. T. Hypertension pharmacogenomics:current status and future directions. Curr Opin Mol Ther .2005; 7: 218-225.
    79. Johnson, J. A., Zineh, I., Puckett, B. J., McGorray, S. P., Yarandi, H. N., Pauly, D. F.β1-Adrenergic receptor polymorphisms and antihypertensive response to metoprolol. Clin Pharmacol Ther .2003 ;74: 44-52.
    80. Joseph, S. S., Lynham, J. A., Grace, A. A., Colledge, W. H., Kaumann, A. J. Markedly reduced effects of (-)-isoprenaline but not of (-)-CGP 12177 and unchanged affinity ofβ-blockers at Gly389-β1-adrenoceptorscompared to Arg389-β1-adrenoceptors. Br J Pharmacol .2004 ; 142: 51-56.
    81. Kanki, H., Yang, P., Xie, H. -G., Kim, R. B., George, A. L., Jr., Roden, D. M. Polymorphisms in beta-adrenergic receptor genes in the acquired long QT syndrome. J Cardiovasc Electrophysiol .2002;13: 252-256.
    82. Karlsson, J., Lind, L., Hallberg, P.,Michaelsson, K., Kurland, L., Kahan, T., et al. Beta1-adrenergic receptor gene polymorphisms and response to beta1-adrenergic receptor blockade in patients with essential hypertension.Clin Cardiol .2004 ; 27: 347-350.
    83. Kato, N., Sugiyama, T., Morita, H., Kurihara, H., Sato, T., Yamori, Y., et al. Association analysis ofβ2-adrenergic receptor polymorphisms with hypertension in Japanese. Hypertension. 2001: 37: 286-292.
    84. Kay, L. J., Chong, L. K., Rostami-Hodjegan, A., Peachell, P. T. Influence of the thr164ile polymorphism in theβ2-adrenoceptor on the effects ofβ-adrenoceptor agonists on human lung mast cells. Int Immunopharmacol .2003;3: 91-95.
    85. Kaye, D. M., Smirk, B., Williams, C., Jennings, G., Esler, M., Host, D.β-Adrenoceptor genotype influences the response to carvedilol in patients with congestive heart failure. Pharmacogenetics .2003;13: 379-382.
    86. Kirstein, S. L., Insel, P. A.Autonomic nervous system pharmaco-genomics: a progress report. Pharmacol Rev. 2004; 56: 31-52.
    87. Kobilka, B. K., Dixon, R. A. F., Frielle, T., Dohlman, H. G., Bolanowski,M. A.,Sigal, I. S., et al. cDNA for the humanβ2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci U S A.1987 ;84: 46-50.
    88. Koopmans, R. P., Insel, P. A., Michel, M. C. Pharmacogenetics of hypertension treatment: a structured review. Pharmacogenetics. 2003;13: 705-713.
    89. Kotanko, P., Binder, A., Tasker, J., DeFreitas, P., Kamdar, S., Clark, A. J. L., et al. Essential hypertension in African Caribbeans associates with a variant of theβ2-adrenoceptor. Hypertension .1997;30: 773-776.
    90. Landau, R., Xie, H. -G., Dishy, V., Stein, C.M., Wood,A. J. J.,Moore, J.H., et al.β2-Adrenergic receptor genotype and preterm delivery. Am J Obstet Gynecol .2002;187: 1294-1298.
    91. Landau, R., Morales, M. A., Antonarakis, S. E., Blouin, J. L., Smiley, R. M. Arg16 homozygosity of theβ2-adrenergic receptor improves the outcome afterβ2-agonist tocolysis for preterm labor. Clin Pharmacol Ther. 2005 ;78: 656-663.
    92. Lanfear, D. E., Jones, P. G.,Marsh, S., Cresci, S., McLeod, H. L., Spertus, J. A.β2-Adrenergic receptor genotype and survival among patients receivingβ-blocker therapy after an acute coronary syndrome. JAMA. 2005; 294: 1526-1533.
    93. LaRosee, K., Huntgeburth, M., Rosenkranz, S., Schnabel, P. Arg389Gly-Polymorphismus desβ1-Adrenozeptors: Unterschiedliche Effekte von Meto-prolol in Abh-ngigkeit vom Genotyp. Z Kardiol 92(Suppl 1), 2003;I/191 (abstr).
    94. LaRosee, K., Huntgeburth, M., Rosenkranz, S., B-hm, M., Schnabel, P(2004). The Arg389Glyβ1-adrenoceptor gene polymorphism determines contractile response to catecholamines. Pharmacogenetics 14,711-716.
    95. Lee,Y.-W.,Oh,V.M.S.,Garcia,E.,Taylor,E.A.,Wu,H.,Yap,E.P.H.,et al. Haplotypes of theβ2-adrenergic receptor gene are associated with essential hypertension in a Singaporean Chinese population. J Hypertens .2004; 22: 2111-2116
    96. Leineweber, K., Büscher, R., Bruck, H., Brodde, O.-E.β-Adrenoceptor polymorphisms. Naunyn Schmiedebergs Arch Pharmacol .2004; 369: 1-22.
    97. Leineweber, K., Bruck, H., Temme, T.,Weber, M., Heusch, G., Philipp, T., et al . The Arg389Glyβ1-adrenoceptor polymorphism does not affect cardiac effects of exercise after parasympathetic inhibition by atropine Pharmacogenet Genom .2006a;16: 9-13.
    98. Leineweber, K., Tenderich, G., Wolf, C., Wagner, S., Zittermann, A., Elter-Schulz, M., et al. Is there a role of the Thr164Ileβ2-adrenoceptor polymorphism for the outcome of chronic heart failure- Basic Res Cardio .2006b; 101: 479-484.
    99. Leineweber, K., Bogedain, P.,Wolf, C.,Wagner, S.,Weber,M., Jakob, H.-G., et al. In patients chronically treatedwithmetoprolol, the demand of inotropic catecholamine support after coronary artery bypass grafting is determined by the Arg389Gly-β1-adrenoceptor polymorphism. Naunyn Schmiedebergs Arch Pharmacol. 2007; 375: 303-309.
    100.Levin, M. C., Marullo, S., Muntaner, O., Andersson, B., Magnusson, Y. The myocardium-protective Gly-49 variant of theβ1-adrenergic receptor exhibits constitutive activity and increased desensitization and down-regulation. J Biol Chem.2002; 277: 30429-30435.
    101.Li, J. -L., Canham, R. M., Vongpatanasin, W., Leonard, D., Auchus, R. J., Victor, R. G. Do allelic variants inα2A andα2C adrenergic receptors predispose to hypertension in blacks- Hypertension .2006 ;47: 1140-1146.
    102.Liggett, S. B. The pharmacogenetics ofβ2-adrenergic receptors relevance to asthma. J Allergy Clin Immunol .2000;105: S487-S492.
    103.Liggett, S. B. Genetic variability of theβ2 adrenergic receptor and asthma exacerbations. Thorax .2007; 61: 925-927.
    104.Liggett, S. B., Wagoner, L. E., Craft, L. L., Hornung, R. W., Hoit, B. D. McIntosh, T. C., et al. The Ile164β2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest .1998; 102: 1534-1539.
    105.Liggett, S. B., Mialet-Perez, J., Thaneemit-Chen, S., Weber, S. A., Greene, S.M. Hodne, D., et al. A polymorphism within a conservedβ1-adrenergic receptor motif alters cardiac function andβ-blocker response in human heart failure. Proc Natl Acad Sci U S A . 2006 ;103: 11288-11293.
    106.Lipworth, B., Koppelman, G. H., Wheatley, A. P., Le Jeune, I., Coutie, W.,Meurs, H., et al.β2 Adrenoceptor promoter polymorphisms: extended haplotypes and functional effects in peripheral blood mononuclear cells. Thorax. 2002; 57: 61-66.
    107.Litonjua, A. A. The significance ofβ2-adrenergic receptor polymorphisms in asthma. Curr Opin Pulm Med ,2006; 12: 12-17.
    108.Liu, J., Liu, Z.-Q., Tan, Z.-R., Chen, X.-P., Wang, L.-S., Zhou, G., et al. Gly389Arg polymorphism ofβ1-adrenergic receptor is associated with the cardiovascular response to metoprolol. Clin Pharmacol Ther. 2003; 74: 372-379.
    109.Liu, J., Liu, Z.-Q., Yu, B.-N., Xu, F.-H., Mo, W., Zhou, G., et al.β1-Adrenergic receptor polymorphisms influence the response to metoprolol monotherapy in patients with essentialhypertension. Clin Pharmacol Ther .2006; 80: 23-32.
    110.Lohse, M. J., Engelhardt, S., Eschenhagen, T. What is the role ofβ-adrenergic signaling in heart failure- Circ Res .2003 ; 93: 896-906.
    111.Magnusson, Y., Levin, M. C., Eggertsen, R., Nystr-m, E., Mobini, R., Schaufelberger, M., et al. Ser49Gly ofβ1-adrenergic receptor is associated with effectiveβ-blocker dose in dilated cardiomyopathy. Clin Pharmacol Ther .2005; 78: 221-231.
    112.Maqbool, A., Hall, A. S., Ball, S. G., Balmforth, A. J. Common polymorphisms ofβ1-adrenoceptor: identification and rapid screening assay.Lancet .1999 ;353: 897.
    113.Mason, D. A., Moore, J. D., Green, S. A., Liggett, S. B. A gain-of-function polymorphism in a G-protein coupling domain of the humanβ1-adrenergic receptor. J Biol Chem .1999 ;274: 12670-12674.
    114.Masuo, K., Katsuya, T., Fu, Y., Rakugi, H., Ogihara, T., Tuck, M. L.β2-andβ3-Adrenergic receptor polymorphisms are related to the onset of weight gain and blood pressure elevation over 5 years. Circulation .2005; 111: 3429-3434.
    115.Maxwell, T. J., Ameyaw, M.-M., Pritchard, S., Thornton, N., Folayan, G., Githanga, J., et al. Beta-2 adrenergic receptor genotypes and haplotypes in different ethnic groups. Int J Mol Med .2005;16: 573-580.
    116.McCaffery, J. M., Pogue-Geile, M. F., Ferrell, R. E., Petro, N., Manuck, S. B. Variability withinα-andβ-adrenoreceptor genes as a predictor of cardiovascular function at rest and in response tomental challenge. Jhypertens .2002; 20: 1105-1114.
    117.McDevitt, D. G. In vivo studies on the function of cardiacβ-adrenoceptors in man. Eur Heart J .1989;10(Suppl B): 22-28.
    118.McGraw, D. W., Forbes, S. L., Kramer, L. A., Liggett, S. B. Polymorphisms of the 5′leader cistron of the human beta2-adrenergic receptor regulate receptor expression. J Clin Invest. 1998; 102: 1927-1932.
    119.Metra, M., Zani, C., Covolo, L., Nodari, S., Pezzali, N., Gelatti, U., et al. Role ofβ1- andα2c-adrenergic receptor polymorphisms and their combination in heart failure: a case-control study. Eur J Heart Fail .2006; 8: 131-135.
    120.Metra, M., Nodari, S., Pezzali, N., Covolo, L., Orizio, G., Gelatti, U., et al. Beta-2 adrenergic receptors polymorphisms influence the effects of carvedilol in the patients with chronic heart failure. Eur J Heart Fail .2007; 6(Suppl 1):100(abstr).
    121.Mialet Perez, J., Rathz, D. A., Petrashevskaya, N. N., Hahn, H. S., Wagoner,L. E., Schwartz,A., et al.β1-Adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat Med .2003 ; 9: 1300-1305.
    122.Michel, M. C., Pingsmann, A., Nohlen, M., Siekmann, U., Brodde, O. -E. Decreased myometrialβ-adrenoceptors in women receivingβ2-adrenergic tocolytic therapy: correlation with lymphocyteβ-adrenoceptors.Clin Pharmacol Ther .1989; 45: 1-8.
    123.Migita, O., Noguchi, E., Jian, Z., Shibasaki, M.,Migita, T., Ichikawa, K., et al. ADRB2 polymorphisms and asthma susceptibility: transmission disequilibrium test and meta-analysis. Int Arch Allergy Immunol .2004; 134: 150-157.
    124.Molenaar, P., Parsonage, W. A. Fundamental considerations ofβ-adrenoceptor subtypes on human heart failure. Trends Pharmacol Sci .2005; 26: 368-375.
    125.Molenaar, P., Rabnott, G., Yang, I., Fong, K.M., Savarimuthu, S.M., Li, L., et al. Conservation of the cardiostimulant effects of (-)-norepinephrine accross Ser49Gly and Gly389Arg beta1-adrenergic receptor polymorphisms in human right atrium in vitro. J Am Coll Cardiol .2002; 40: 275-1282.
    126.Molenaar, P., Savarimuthu, S. M., Sarsero, D., Chen, L., Semmler, A. B. T., Carle, A., et al. (-)-Adrenaline elicits positive inotropic, lusitropic,and biochemical effects throughβ2-adrenoceptors in human atrial myocardium from nonfailing and failing hearts, consistent with Gs coupling but not with Gi coupling. Naunyn Schmiedebergs Arch Pharmacol 2007; 375: 11-28.
    127.Moore, J. D., Mason, D. A., Green, S. A., Hsu, J., Liggett, S. B. Racial differences in the frequencies of cardiacβ1-adrenergic receptor polymorphisms: analysis of c145ANG and c1165GNC. Hum Mutat 1999; 14: 271.
    128.Neumeister,A., Charney,D. S., Belfer, I.,Geraci,M.,Holmes, C., Sharabi,Y., et al. Sympathoneural and adrenomedullary functional effects ofα2C-adrenoreceptor gene polymorphism in healthy humans. Pharmacogenet Genom 2005; 15: 143-149.
    129.Nieminen, T., Lehtim-ki, T., Laiho, J., Rontu, R., Niemel-, K., K--bi, T., et al. Effects of polymorphisms inβ1-adrenoceptor andα-subunit of G protein on heart rate and blood pressure during exercise test. The Finnish Cardiovascular Study. J Appl Physiol .2006;100: 507-511.
    130.Nonen, S., Okamoto, H., Akino,M., Matsui, A., Fujio, Y., Yoshiyama, M., et al. No positive association between adrenergic receptor variants ofα2CDel322-325,β1Ser49,β1Arg389 and the risk of heart failure in the Japanese population. Br J Clin Pharmacol .2005;60 : 414-417.
    131.O'Shaughnessy, K. M., Fu, B., Dickerson, C., Thurston, D., Brown, M. J. The gain-of-function G389R variant of theβ1-adrenoceptor does not influence blood pressure or heart rate response toβ-blockade in hypertensive subjects. Clin Sci .2000; 99: 233-238.
    132.Ozkur, M., Dogulu, F., Ozkur, A., Gokmen, B., Inaloz, S. S., Aynacioglu, A. S. Association of the Gln27Glu polymorphism of the beta-2-adrenergic receptor with preterm labor. Int J Gynaecol Obstet .2002; 77: 209-215.
    133.Pacanowski, M. A., Johnson, J. A. PharmGKB submission update: IX. ADRB1 gene summary. Pharmacol Rev .2007; 59: 2-4.
    134.Palmer, C. N. A., Lipworth, B. J., Lee, S., Ismail, T., Maxgregor, D. F., Mukhopadhyay, S. Arginine-16β2 adrenoceptor genotypepredisposes to exacerbations in young asthmatics taking regular salmeterol.Thorax .2006; 61: 940-944.
    135.Pereira, A. C., Floriano, M. S., Mota, G. F., Cunha, R. S., Herkenhoff, F. L.,Mill, J. G., et al.β2 adrenoceptor functional gene variants, obesity, and blood pressure level interactions in the general population. Hypertension .2003; 42: 685-692.
    136.Philipp, M., Hein, L. Adrenergic receptor knockout mice: distinct functions of 9 adrenergic receptor subtypes. Pharmacol Ther .2004; 101: 65-74.
    137.Podlowski, S.,Wenzel, K., Luther, H. P., Müller, J., Bramlage, P., Baumann, G.,et al.β1-Adrenoceptor gene variations: a role in idiopathic dilated cardiomyopathy- J Mol Med 2000; 78: 87-93.
    138.Port, J. D., Bristow, M. R. Altered beta-adrenergic receptor gene regulation and signaling in chronic heart failure. J Mol Cell Cardiol .2001 ; 33: 887-905.
    139.Ranade, K., Shue, W. H.-H., Hung, Y.-J., Hsuing, C. A., Chiang, F.-T., Pesich, R., et al. The glycine allele of a glycine/arginine polymorphism in theβ2-adrenergic receptor gene is associated with essential hypertension in a population of Chinese origin. Am J Hypertens 2001; 14: 1196-1200.
    140.Ranade, K., Jorgenson, E., Sheu,W. H.-H., Pei,D.,Hsiung, C. A., Chiang, F., et al. A polymorphism in theβ1 adrenergic receptor is associated with resting heart rate. Am J Hum Genet. 2002 ; 70: 935-942.
    141.Rathz, D. A., Brown, K.M., Kramer, L. A., Liggett, S. B. Amino acid 49 polymorphisms of the humanβ1-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol .2002; 39: 155-160.
    142.Rathz, D. A., Gregory, K. N., Fang, Y., Brown, K. M., Liggett, S. B. Hierarchy ofpolymorphic variation and desensitization permutations relative toβ1-andβ2-adrenergic receptor signaling. JbiolChem. 2003; 278: 10784-10789.
    143.Regitz-Zagrosek, V., Hocher, B., Bettmann, M., Brede, M., Hadamek, K.,Gerstner, C., et al.α2C-Adrenoceptor polymorphism is associated with improved event-free survival in patients with dilated cardiomyopathy.Eur Heart J .2006; 27: 454-459.
    144.Reihsaus, E., Innis,M., MacIntyre, N., Liggett, S. B. Mutations in the gene encoding for theβ2-adrenergic receptor in normal and asthmatic subjects. Am J Respir Cell Mol Biol 1993; 8: 334-339.
    145.Ryden, M., Hoffstedt, J., Eriksson, P., Bringman, S., Arner, P. The Arg389Glyβ1-adrenergic receptor gene polymorphism and human fat cell lipolysis. Int J Obes. 2001 ;25: 1599-1603.
    146.Sandilands, A. J., O'Shaughnessy, K. M. The functional significance of genetic variation within theβ1-adrenoceptor.Br J Clin Pharmacol .2004; 60: 235-243.
    147.Sandilands, A. J., O'Shaughnessy, K. M., Brown, M. J. Greater inotropic and cyclic AMP responses evoked by noradrenaline through Arg389β1-adrenoceptors versus Gly389β1-adrenoceptors in isolated human atrial myocardium. Br J Pharmacol. 2003;138:386-392.
    148.Sandilands, A., Yeo, G., Brown, M. J., O'Shaughnessy, K. M. Functional responses of humanβ1 adrenoceptors with defined haplotypes for the common 389RNG and 49SNG polymorphisms. Pharmacogenetics .2004; 14: 343-349.
    149.Sandilands, A. J., Parameshwar, J., Large, S., Brown, M. J., O'Shaughnessy,K. M. Confirmation of a role for the 389RNGβ-1 adrenoceptor polymorphism on exercise capacity in heart failure. Heart .2005; 91: 1613-1614.
    150.Sayers, I., Hall, I. P. Pharmacogenetic approaches in the treatment of asthma. Curr Allergy Asthma Rep .2005; 5: 101-108.
    151.Scott, M. G., Swan, C., Wheatly, A. P., Hall, I. P. Identification of novel polymorphisms within the promotor region of the humanβ2-adrenergic receptor gene. Br J Pharmacol1999 ; 126, 841-844.
    152.Sehti, A. A., Tybjaerg-Hansen, A., Jensen, G. B., Nordestgaard, B. G. 164Ile allele in theβ2-adrenergic receptor gene is associated with risk of elevated blood pressure in women. The Copenhagen City Heart Study.Pharmacogenet Genom .2005 ;15: 633-645.
    153.Shin, J., Lobmeyer, M. T., Gong, Y., Zineh, I., Langaee, T. Y., Yarandi, H., et al. Relation ofβ2-adrenoceptor haplotype to risk of death and heart transplantation in patients with heart failure. Am J Cardiol. 2007 ;99: 250-255.
    154.Shioji, K., Kokubo, Y., Mannami, T., Inamoto, N., Morisaki, H., Mino, Y., et al. Association between hypertension and theα-adducin,β1-adrenor-eceptor, and G-proteinβ3subunit genes in the Japanese population; the Suita study. Hypertens Res .2004; 27: 31-37.
    155.Silverman, E. K., Kwiatkowski, D. J., Sylvia, J. S., Lazarus, R., Drazen, J. M., Lange, C., et al. Family-based association analysis ofβ2-adrenergic receptor polymorphisms in the childhood asthma management program.J Allergy Clin Immunol. 2003; 112: 870-876.
    156.Small, K. M., Liggett, S. B. Identification and functional characterization ofα2-adrenoceptor polymorphisms. Trends Pharmacol Sci. 2001 ;22: 471-477.
    157.Small, K. M., Forbes, S. L., Rahman, F. F., Bridges, K. M., Liggett, S. B. A four amino acid deletion polymorphism in the third intracellular loop of the humanα2C-adrenergic receptor confers impaired coupling to multiple effects. J Biol Chem .2000 ;275: 23059-23064.
    158.Small, K. M., Wagoner, L. E., Levin, A. M., Kardia, S. L. R., Liggett, S. B. Synergistic polymorphisms ofβ1- andα2C-adrenergic receptors and the risk of congestive heart failure. N Engl J Med. 2002; 347: 1135-1142.
    159.Small, K. M., McGraw, D. W., Liggett, S. B. Pharmacology and physiology of human adrenergic receptor polymorphisms. Annu Rev Pharmacol Toxicol .2003; 43: 381-411.
    160.Snapir, A., Koskenvuo, J., Toikka, J., Orho-Melander, M., Hinkka, S., Saraste, M., et al. Effects of common polymorphisms in theα1A-,α2B-,β1-andβ2-adrenoreceptors on haemodynamic responses to adrenaline. Clin Sci .2003 ;104: 509-520.
    161.Snieder, H., Dong, Y., Barbeau, P., Harshfield, G. A., Dalageogou, C., Zhu, H., et al.β2-Adrenergic receptor gene and resting hemodynamics in European and African American youth. Am J Hypertens .2002; 15: 973-979.
    162.Sofowora, G. G., Dishy, V., Muszkat, M., Xie, H. G., Kim, R. B., Harris, P. A., et al.. A commonβ1-adrenergic receptor polymorphism (Arg389Gly) affects blood pressure response toβ-blockade. Clin Pharmacol Ther .2003; 73: 366-371.
    163.Sotoodehnia, N., Siscovick, D. S., Vatta, M., Psaty, B. M., Tracy, R. P., Towbin, J. A., et al.β2-Adrenergic receptor genetic variants and risk of sudden cardiac death. Circulation.2006; 113: 1842-1848.
    164.Stanton, T., Inglis, G. C., Padmanabhan, S., Dominiczak, A. F., Jardine, A. G., Connell, J. M. C.Variation at the beta-1 adrenoceptor gene locus affects left ventricular mass in renal failure. J Nephrol .2002;15: 512-518.
    165.Swan, L., Birnie, D. H., Padmanabhan, S., Inglis, G., Connell, J.M. C., Hillis, W. S. Thegenetic determination of left ventricular mass in healthy adults. Eur Heart J .2003;24: 577-582.
    166.Taylor, D. R. Pharmacogenetics ofβ2-agonist drugs in asthma. Clin Rev Allergy Immunol . 2006;31:247-258.
    167.Taylor, M. R., Bristow,M. R. The emerging pharmacogenomics of theβ-adrenergic receptors. Congest Heart Fail .2004; 10: 281-288.
    168.Taylor, D. R., Kennedy, M. A. Genetic variation of theβ2-adrenoceptor. Its functional and clinical importance in bronchial asthma. Am J Pharmacogenomics .2001; 1: 165-174.
    169.Taylor, D. R., Drazen, J. M., Herbison, G. P., Yandava, C. N., Hancox, R. J., Town, G. I. Asthma exacerbations during long termβagonist use: influence ofβ2 adrenoceptor polymorphism. Thorax .2000; 55: 762-767.
    170.Taylor, D. R., Epton, M. J., Kennedy,M.A., Smith,A.D., Iles, S.,Miller,A. L., et al. Bronchodilator response in relation toβ2-adrenoceptor haplotypes in patients with asthma. Am J Respir Crit Care Med .2005; 172: 700-703.
    171.Terra, S. G., Hamilton, K. K., Pauly, D. F., Lee, C. R., Patterson, J. H., Adams, K. F., et al.β1-Adenergic receptor polymorphisms and left ventricular remodeling changes in response toβ-blocker therapy. Pharmacogenet Genom .2005a; 15: 227-234.
    172.Terra, S. G., McGorray, S. P., Wu, R., McNamara, D. M., Cavallari, L. H.,Walker, J. R., et al. Association between theβ-adrenergic receptor polymorphisms and their G-protein-coupled receptors with body mass index and obesity in women: a report from the NHLBI-sponsored WISE study. Int J Obes .2005b; 29: 746-754.
    173.Terra, S. G., Pauly, D. F., Lee, C. R., Patterson, J. H., Adams, K. F., Schofield, R. S., et al.β-Adenergic receptor polymorphisms and responses during titration of metoprolol controlled release/extended release in heart failure. Clin Pharmacol Ther .2005c;77: 127-137.
    174.Tesson, F., et al. for the CARDIGENE group Characterization of a unique genetic variant in theβ1-adrenoceptor gene and evaluation of its role in idiopathic dilated cardiomyopathy. J Mol Cell Cardiol .1999; 31: 1025-1032.
    175.Thakkinstian,A.,McEvoy,M.,Minelli, C.,Gibson, P.,Hancox, B.,Duffy,D., et al. Systematic review and meta-analysis of the association betweenβ2-adrenoceptor polymorphisms and asthma: a HuGE review. Am J Epidemiol .2005 ; 162: 201-211.
    176.Timmermann, B., Mo, R., Luft, F. C., Gerdts, E., Busjahn, A., Omvik, P., et al.β2-Adrenoceptor genetic variation is associated with genetic predisposition to essentialhypertension: the Bergen Blood Pressure Study.Kidney Int .1998; 53: 1455-1460.
    177.Tomaszewski, M., Brain, N. J., Charchar, F. J., Wang, W. Y. S., Lacka, B.,Padmanabahn, S., et al. Essential hypertension andβ2-adrenergic receptor gene: linkage and association analysis. Hypertension .2002; 40: 286-291.
    178.Trombetta, I. C., Batalha, L. T., Rondon, M. U. P. B., Laterza, M. C., Frazzatto,E., Alves, M. J. N. N., et al. Gly16 +Glu27β2-adrenoceptor polymorphisms cause increased forearm blood flow responses to mental stress and handgrip in humans. J Appl Physiol .2005;98: 787-794.
    179.Turki,J.,Lorenz,J.N.,Green,S.A.,Donnelly,E.T.,Jacinto,M., Liggett,S. B. Myocardial signaling defects and impaired cardiac function of a humanβ2-adrenergic receptor polymorphism expressed in transgenic mice. Proc Natl Acad Sci U S A .1996; 93: 10483-10488.
    180.Wagoner, L. E., Craft, L. L., Singh, B., Suresh, D. P., Zengel, P. W., McGuire,N., et al. Polymorphisms of theβ2-adrenergic receptor determine exercise capacity in patients with heart failure. Circ Res .2000;86: 834-840.
    181.Wagoner, L. E., Craft, L. L., Zengel, P., McGuire, N., Rathz, D. A., Dorn, G.W., II, et al. Polymorphisms of theβ1-adrenergic receptor predict exercise capacity in heart failure. Am Heart J .2002; 144: 840-846.
    182.Wallerstedt, S.M., Eriksson, A.-L., Ohlsson, C., Hedner, T. Haplotype association analysis of the polymorphisms Arg16Gly and Gln27Glu of the adrenergicβ2 receptor in a Swedish hypertensive population. J Hum Hypertens. 2005; 19: 705-708.
    183.Wechsler, M. E., et al. for the National Heart, Lung and Blood Institute's Asthma Clinical Research Network.β-Adrenergic receptor polymorphisms and response to salmeterol. Am J Respir Crit Care Med .2006; 173: 519-526.
    184.Wenzel, K., Felix, S. B., Bauer, D., Heere, P., Flachmeier, C., Podlowski, S.,et al. Novel variants in 3 kb of 5'UTR of theβ1-adrenergic receptor gene (-93CNT,-210CNT, and -2146TNC): -2146C homozy-gotes present in patients with idiopathic dilated cardiomyopathy and coronary heart disease. Hum Mutat .2000; 16: 534.
    185.White, H. L., Maqbool, A., McMahon, A. D., Yates, L., Ball, S. G., Hall, A. S.,et al. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals at risk of coronary events. A WOSCOPS substudy. Eur Heart J . 2002; 23: 1087-1092.
    186.White, H. L., De Boer, R. A.,Maqbool, A., Greenwood, D., Van Veldhuisen, D. J.,Cuthbert,R., et al. An evaluation of the beta-1 adrenergic receptor Arg389Gly polymorphism in individuals with heart failure: a MERIT-HF sub-study. Eur J Heart Fail. 2003 ; 5: 463-468.
    187.Wu, H., Tang, W., Li, H., Zhou, X., Yang, Y., Yu, H., et al. Association of theβ2-adrenergic receptor gene with essential hypertension in the non-Han Chinese Yi minority population. J Hypertens. 2006; 24: 1041-1047.
    188.Xiao, R.-P., Zhu, W., Zheng, M., Chakir, K., Bond, R. A., Lakatta, E. G., et al. Subtype-specificβ-adrenoceptor signaling pathways in the heart and their potential clinical implications. Trends Pharmacol Sci .2004 ; 25: 358-365.
    189.Xie, H.-G., Stein, C. M., Kim, R. B., Xiao, Z. S., He, N., Zhou, H.-H., et al. Frequency of functionally important beta-2 adrenoceptor polymorphisms varies markedly among African-American, Caucasian and Chinese individuals. Pharmacogenetics .1999;9:511-516.
    190.Xie, H.-G., Stein, C. M., Kim, R. B., Gainer, J. V., Sofowora, G., Dishy, V., et al. Humanβ2-adrenergic receptor polymorphisms: no association with essential hypertension in Black or White Americans. Clin Pharmacol Ther. 2000; 67: 670-675.
    191.Xie, H.-G., Dishy, V., Sofowora, G., Kim, R. B., Landau, R., Smiley, R.M., et al. Arg389Glyβ1-adrenoceptor polymorphism varies in frequency among different ethnic groups but does not alter response in vivo. Pharmacogenetics .2001; 11: 191-197.
    192.Zee, R. Y. L., Cook, N. R., Reynolds, R., Cheng, S., Ridker, P. M. Haplotype analysis of theβ2 adrenergic receptor gene and risk of myocardial infarction in humans. Genetics .2005;169: 1583-1587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700