用户名: 密码: 验证码:
蛋白质折叠和稳定性的全原子模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质折叠和稳定的机制是生命科学中没有解决的重大科学问题,一直是国际上研究的热点。所谓蛋白质折叠机制,即指蛋白质由一维序列折叠到三维结构的具体过程。了解该机制将加深我们对蛋白质自组装过程的认识,进而为治疗各种蛋白质折叠病(如疯牛病和老年痴呆症)提供帮助,为蛋白质分子设计提供指导。另一方面,天然和设计蛋白质分子三维结构的稳定性是它们实现其功能的基础,因此对蛋白质稳定机制的研究具有重要理论和应用价值。
     本论文针对蛋白质折叠和稳定性问题主要做了三方面的工作:
     第一,提出了一种提高蛋白质分子模拟采样效率的新方法。目前,蛋白质折叠模拟中的难题之一,是传统的蒙特卡罗和分子动力学等方法采样效率过低,不能有效地模拟蛋白质分子的折叠。目前国际上提出了各种改进算法,其中最著名的是Essential Dynamics Sampling (EDS),Amplified Collective Motion (ACM)和Replica Exchange Method (REM)。我们在EDS和ACM的基础上提出了一种简单有效的新算法:Directed Essential Dynamics (DED)。DED的主要思想是,利用主分量分析法(Principal Component Analysis,PCA)找出分子在每20飞秒间隔内本征值最大(即包含分子运动的信息最多)的六个集合运动模式,然后在这些模式对应的方向上加一个弱力,以加强分子在这些模式中采样。该方法能够大大提高构象空间的采样效率,避免长时间陷入局部最小态。对长度为15个氨基酸的S肽分子模拟结果表明,在DED的帮助下,S肽可以很顺利地折叠到天然态,而传统动力学方法却很难做到这一点。
     第二,发现β-发卡trpzip2能够通过不同的折叠机制折叠到天然态。由于蛋白质自由度太大,目前还不能在全原子水平上模拟整个蛋白质的折叠。β-发卡由于具有类似于蛋白结构中的长程作用和疏水核,对理解蛋白质整体的折叠机制非常有帮助,成为研究的焦点之一。对于β-发卡的折叠机制,目前国际上有几种不同的模型,其中最著名的是zip-out和hydrophobic cluster模型。我们利用传统分子动力学方法成功地得到了β-发卡trpzip2的10个折叠事件,发现它可以随着疏水核形成方式不同而采用不同的折叠机制。这说明目前提出的折叠机制并不互相矛盾,可以用一个统一图像来描述。我们同时发现,在发卡的自由能表面上,存在一些比天然态的熵更低的局部稳定态,这是出乎预料的现象。
     第三,提出了用全原子相互作用能定义氨基酸接触(contact)。一般认为蛋白质的稳定性与其内部氨基酸接触网络有关。氨基酸接触通常是用氨基酸间距离来定义的。我们认为用相互作用能定义更严格和精确,而且实际应用表明这是正确的。通过分析了15个家族的嗜热和常温蛋白,我们发现接触能和对应的接触数作为特征量比其它方法能更好地区分嗜热和常温蛋白。特别是还发现,除了公认的带电残基接触外,带电-极性和带电-非极性接触也是蛋白质稳定的重要因素。我们还研究了转导素蛋白Gβ结构域中的关键氨基酸,发现关键氨基酸一般都具有较低的接触能,这为预测蛋白质中关键氨基酸提供了一种新的途径。用基于距离定义的氨基酸接触无法定位这些关键氨基酸。
The folding and stability mechanisms of proteins are unsolved key problems in life science and have been a hotspot of researches. The folding mechanism is referred to the process that protein folds from one-dimensional sequence to the 3-dimensional structure. Understanding this mechanism would greatly accelerate our study on the protein self-assembling, and moreover, be helpful to protein design and to the treatment of various diseases relevant to protein misfolding (such as mad cow disease and Alzheimer disease). And the stability of native and designed proteins is the base of protein function. So it is also very significant to study the stability mechanism of proteins.
     This thesis includes works of three aspects in protein folding and stability:
     First, we proposed a new method of increasing the sampling efficiency of protein simulation. Currently, the sampling efficiency in traditional methods, such as Monte Carlo and molecular dynamics, is the big obstacle to simulate protein folding. Up to now, many novel methods have been put out. The most famous of them are Essential Dynamics Sampling (EDS), Amplified Collective Motion (ACM), and Replica Exchange Method (REM). Based on EDS and ACM, we proposed a new sampling method: Directed Essential Dynamics (DED). The main idea of DED is to use the principal component analysis (PCA) to determine six slowest collective motions of peptide every 20fs during the folding process and then add an additional weak force along the combined direction of this motions to adjust the folding direction. This method can make the peptides avoid trapping in the local minima for long time and enhance the sampling efficiency in conformational space during the simulation. As an application, one S-peptide with 15 amino acids is used to demonstrate the DED method. The results show that DED can lead the S-peptide fold quickly into the native state, while the traditional molecular dynamics needs more times to do this.
     Second, we found that theβ-hairpin trpzip2 can fold into its native state through multiple pathways. Due to the large degrees of freedom, it is difficult to simulate the entire folding processes of large proteins. Therefore, smallβ-hairpins become the focus since they have similar long-range interactions and hydrophobic cores in the protein structures and their folding mechanism would be very helpful to understand those of entire proteins. Forβ-hairpin folding mechanisms, different models have been proposed, including the famous zip-out and hydrophobic cluster models. We studied the trpzip2 and obtained 10 successful entire folding trajectories. The results show the trpzip2 could fold into the native state though multiple pathways, depending on the ways of the formation of the hydrophobic core. This means that the previously proposed folding mechanisms are not in paradox and they could be described in a unified way. Furthermore, we find that the native state of the hairpin does not have the lowest entropy and some non-native states exhibit even lower entropies.
     Third, we proposed a new method to define inter-residue contact in proteins. Generally, protein stability is thought to be related to its inter-residue contact network. Inter-residue contact is usually defined by the distance between the residues. Our analysis suggests it is more accurate to define the contact with all-atom interaction energy. Our following applications support this. We study fifteen groups of mesophilic and thermophilic proteins and find that the contact energy and contact number are better criterions, comparing with other methods, to distinguish thermophilic proteins from their mesophilic counterparts. Additionally it indicates that the charged-polar and charged-nonpolar contacts are also the key factors for the protein stability, besides the charged-charged contacts. We also apply our method in identifying the key residues in the Gβprotein domain from transducin. We find that most key residues in this protein can be located by the lowest contact energies, but not by distance-defined contacts. This gives a new approach to predict and analyze the key residues in proteins.
引文
[1] Gnanakaran S., Nymeyer H., Portman J., Sanbonmatsu K.Y, Garc?a A.E. Peptide folding simulations. Current Opinion in Structural Biology 2003. 13: 168-174.
    [2] Finkelstein A.V., Galzitskaya O.V. Physics of protein folding. Physics of Life Reviews 2004. 1: 23-56.
    [3] Shakhnovich E., Gutin A. Engineering of stable and fast-folding sequences of model proteins. Proc. Natl. Acad. Sci. USA 1993. 90: 7195-7199.
    [4] Gutin A.M., Abkevich V.I, Shakhnovich E.I. Evolutionlike selection of fast-folding model proteins. Proc. Natl. Acad. Sci. USA 1995. 92: 1282-1286.
    [5] Irback A., Sjunnesson F., Wallin S. Three-helix-bundle protein in a Ramachandran model. Proc. Natl. Acad. Sci. USA 2000. 97: 13614-13618.
    [6] Takada S., Luthey-Schulten Z., Wolynes P.G. Folding dynamics with nonadditive forces: a simulation study of a designed helical protein and a random heteropolymer. J. Chem. Phys. 1999. 110: 11616-11629.
    [7] Kaya H., Chan H.S. Polymer principles of protein calorimetric two-state cooperativity. Proteins: Struct. Funct. Genet. 2000. 40: 637-661.
    [8] Boczko E.M., Brooks C.L. First principle calculation of the folding free energy of a three-helix bundle protein. Science 1995. 269: 393-396.
    [9] Anfinsen C.B. Principles that govern the folding of protein chains. Science 1973. 181: 223-224.
    [10] Dobson C., Sali A., Karplus M. Protein folding: A perspective from theory and experiment. . Angew. Chem. Int. Ed. 1998. 37: 868-893.
    [11] Leopold P., Montal M., Onuchic J. Protein folding funnels: A kinetic approach to the sequence-structure relationship. Proc. Natl. Acad. Sci. USA 1992. 89: 8721-8725.
    [12] Bryngelson J.D, Onuchic J.N., Socci N.D., Wolynes P.G. Funnels, pathways, andthe energy landscape of protein folding-A systhesis. Proteins: Struct. Funct. Genet. 1995. 21: 167-195.
    [13] Mirny L.A., Shakhnovich E.I. Protein folding theory: From lattice to all-atom models. Annu. Rev. Biophys. Biomol. Struct. 2001. 30: 361-396.
    [14] Ptitsyn O.B. Sequential mechanism of protein folding. Doklady Akademii Nauk SSSR 1973. 210: 1213-1215.
    [15] Kim P.S., Baldwin R.L. Intermediates in the folding reactions of small proteins. Annu. Rev. Biochem. 1990. 59: 631-660.
    [16] Dyson H.J., Wright P.E. Peptide conformation and protein folding. Curr. Opin. Struc. Biol. 1993. 3,1: 60-65.
    [17] Dill K.A., Bromberg S., Yue K.Z., Fiebig K.M., Yee D.P., Thomas P.D., Chan H.S. Principles of protein folding - A perspective from simple exact models. Protein Sci. 1995. 4: 561-602.
    [18] Ptitsyn O.B. How molten is the molten globule? Nat. Struct. Biol. 1996. 3: 488-490.
    [19] Abkevich V.I., Gutin A.M., Shakhnovich E.I. Specific nucleus as the transition-state for protein-folding-Evidence from the lattice model. Biochemistry 1994. 33: 10026-10036.
    [20] Wetlaufer D. B. Nucleation, rapid folding, and globular intrachain regions in proteins. Proc. Natl Acad. Sci. USA 1973. 70: 697-701.
    [21] Fersht A.R. Nucleation mechanisms in protein folding. . Curr. Opin. Struc. Biol 1997. 7: 3-9.
    [22] Jackson S.E., Fersht A.R. Folding of chymotrypsin inhibitor-2. 1. evidence for a two-state transition. Biochemistry 1991. 30: 10428-10435.
    [23] Jackson S.E., Fersht A.R. Folding of chymotrypsin inhibitor-2. 2. influence of proline isomerization on the folding kinetics and thermodynamic characterization of the transition-state of folding. Biochemistry 1991. 30: 10436-10443.
    [24] Fersht A.R. Optimisation of rates of protein folding-The nucleation-condensationmechanism and its implications. Proc. Natl. Acad. Sci. USA 1995. 92: 10869-10873.
    [25] Galzitskaya O.V., Higo J., Finkelstein A.V. Alpha-helix and beta-hairpin folding from experiment, analytical theory and molecular dynamics simulations. Curr. Protein Pept. Sci. 2002. 3: 191-200.
    [26] Levitt M., Sander C., Stern P.S. Normal-mode dynamics of a protein: Bovine Pancreatic Trypsin Inhibitor. Int. J. Quant. Chem: Quant. Biol. Symp. 1983. 10: 181-199.
    [27] Go N., Noguti T., Nisikawa T. Dynamics of a small globular protein in terms of low-frequency vibrational modes. Proc. Natl. Acad. Sci. USA 1983. 80: 3696-3700.
    [28] Brooks B.R, Karplus M. Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. Proc. Natl. Acad. Sci. USA 1983. 80: 6571-6575.
    [29] Amadei A., Linssen A.B.M., Berendsen H.J.C. Essential dynamics of proteins. Proteins: Struct. Funct. Genet. 1993. 17: 412-425.
    [30] Balsera M.A, Wriggers W., Oono Y., Schulten K. Principal component analysis and long time protein dynamics. J. Phys. Chem. A 1996. 100: 2567-2572.
    [31] Teeter M.M., Case D.A. Harmonic and quasiharmonic descriptions of crambin. J. Phys. Chem. A 1999. 94: 8091-8097.
    [32] Kitao A., Go N. Investigating protein dynamics in collective coordinate space. Curr. Opin. Struc. Biol. 1999. 9: 164-169.
    [33] Zhang Z., Shi Y., Liu H. Molecular dynamics simulations of peptides and proteins with amplified collective motions. Biophys. J. 2003. 84: 3583-3593.
    [34] Amadei A., Linssen A.B.M., de Groot B.L., van Aalten D.M.F., Berendsen H.J.C. An efficient method for sampling the essential subspace of proteins. Biomolec. Struct. and Dyn. 1996. 13: 615-625.
    [35] Munoz V., Thompson P.A., Hofrichter J., Eaton W. Folding dynamics andmechanism ofβ-hairpin formation Nature 1997. 390: 196-199.
    [36] Munoz V., Henry E.R., Hofrichter J., Eaton W. A statistical mechanical model forβ-hairpin kinetics Proc. Natl Acad. Sci. USA 1998 95: 5872-5879.
    [37] Pande V.S. , Rokhsar D.S. Molecular dynamics simulations of unfolding and refolding of aβ-hairpin fragment of protein G. Proc. Natl Acad. Sci. USA 1999. 96: 9062-9067.
    [38] Dinner A. R., Lazaridis T., Karplus M. Understandingβ-hairpin formation. Proc. Natl Acad. Sci. USA 1999 96: 9068-9073.
    [39] Miyazawa S., Jernigan R.L. Estimation of interresidue contact energies from protein crystal structures: quasi-chemical approximation. Macromolecules 1985. 18: 534-552.
    [40] Miyazawa, S., Jernigan, R.L. Residue–residue potentials with a favorable contact pair term and an unfavorable high packing density term, for simulation and threading. J. Mol. Biol. 1996. 256: 623-644.
    [41] Khatun J., Khare S.D., Dokholyan N.V. Can contact potentials reliably predict stability of proteins? J. Mol. Biol. 2004. 336:: 1223-1238.
    [42] Jaenicke R., Bohm G. The stability of proteins in extreme environments. Curr. Opin. Struct. Biol. 1998. 8: 738-748.
    [43] Ladenstein R., Antranikian G. Proteins from hyperthermophiles: Stability and enzymatic catalysis close to the boiling point of water. Adv. Biochem. Engng. Biotechnol. 1998. 61: 37-85.
    [44] Vogt G., Argos P. Protein thermal stability: hydrogen bonds or internal packing? Fold. Des. 1997. 2: 40-46.
    [45] Kumar S., Tsai C.J., Nussinov R. Factors enhancing protein thermostability. Protein Eng. 2000. 13: 179-191.
    [46] Gromiha M.M., Oobatake M., Sarai A. Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophys. Chem. 1999. 82: 51-67.
    [47] Buyong M., Tal E., Haim W., Ruth N. Protein–protein interactions: Structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl. Acad. Sci. USA 2003. 100: 5772-5777.
    [48] Shakhnovich E., Abkevich V., Ptitsyn O. Conserved residues and the mechanism of protein folding. Nature 1996. 379: 96-98.
    [49] Venkat G., Andreas D.B., David L., Sidney A. Analysis of the functional role of conserved residues in the protein subunit of Ribonuclease P from Escherichia coli. J. Mol. Biol. 1997. 267: 818-829.
    [50] Berman H.M., Westbrook J., Feng Z., et al. The Protein Data Bank. Nucleic. Acids. Res. 2000. 28: 235-242.
    [51] Bernstein F., Koetzel T., Williams G., Meyer E., Brice M., Rodgers J., Kennard O., Shimanouchi T., Tasumi M. The protein databank: a computer-based archival ?le for macromolecular structures. J. Mol. Biol. 1977. 112: 535-542.
    [52] Jaenicke R. Stability and stabilization of globular proteins in solution. J. Biotechnol. 2000. 79: 193-203.
    [53] Majeux N., Scarsi M., Caflisch A. Efficient electrostatic salvation model for protein-fragmend docking. Proteins: Struct. Funct. Genet. 2001. 42: 256-268.
    [54] Knapp-Mohammady M., Jalkanen K.J., Nardi F., Wade R.C., Suhai S. L-alanyl-L-alanine in the zwitterionic state: structures determined in the presence of explicit water molecules and with continuum models using density functional theory. Chem. Phys. 1999. 240: 63-77.
    [55] Luque I., Mayorga O.L., Freire E. Structure-based thermodynamic scale of alpha-helix propensities in amino acids. Biochemistry 1996. 35: 13681-13688.
    [56] Oxana V., Galzitskaya, Higo J., Kuroda M., Nakamura H.β-hairpin folds by molecular dynamics simulations. Chemical Physics Letters 2000. 326: 421-429.
    [57] Zagrovic B., Sorin E.J. , Pande V.β-Hairpin folding simulations in atomistic detail using an implicit solvent model. J. Mol. Biol. 2001. 313: 151-169.
    [58] Zhang L., Gallicchio E., Friesner R., Levy R.M. Solvent Models for protein-lgandBinding: Comparison of implicit solvent poisson and surface generalized Born models with explicit solvent Simulations. J. Comp. Chem. 2001. 22: 591-607.
    [59] Gsponer J., Caflisch A. Molecular dynamics simulations of protein folding from the transition State. Proc. Natl. Acad. Sci. USA 2002. 99: 6719-6724.
    [60] Duan Y., Kollman P.H. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution. Science 1998. 282: 740-744.
    [61] Garcia A.E. Large-amplitude nonlinear motions in proteins. Phys. Rev. Letts 1992. 68: 2696-2699.
    [62] Hayward S., Kitao A., Go N. Harmonicity and Anharmonicity in Protein Dynamics Normal Mode Analysis and Principal Component Analysis. Proteins 1995. 23: 177-186.
    [63] Van Aalten D.M.F., Amadei A., LinssenA B.M., EijsinkV G.H. , Vriend G. The essential dynamics of thermolysin-conformation of the hinge-bending motion and comparison of simulations in vacuum and water. Proteins: Struct. Funct. Genet. 1995. 22: 45-54.
    [64] De Groot B.L., Daura X., Mark A.E., Grubmuller H. Essential dynamics of reversible peptide folding: Memory-free conformational dynamics governed by internal hydrogen bonds. J. Mol. Biol. 2001. 309: 299-313.
    [65] Elmaci N., Berry R.S. Principal coordinate analysis on a protein model. J. Chem. Phys. 1999. 110: 10606-10622.
    [66] Ota N., Agard D.A. Enzyme specificity under dynamic control II: Principal component analysis ofα-lytic protease using global and local solvent boundary conditions. Protein. Sci. 2001. 10: 1403-1414.
    [67] Daidone I., Amadei A., Roccatano D., Nola A.D. Molecular dynamics simulation of protein folding by essential dynamics sampling: folding landscape of horse heart cytochrome c. Biophys. J. 2003. 85: 2865-2871.
    [68] Cregut D., Drin G., Liautard J.P., Chiche L. Hinge-bending motions in annexins: molecular dynamics and essential dynamics of apo-annexin V and of calciumbound annexin V and I. Protein Eng. 1998. 11: 891-900.
    [69] Van Aalten D.M.F., Grotewold E., Joshua-Tor L. Essential dynamics from NMR clusters: dynamic properties of the Myb DNA-binding domain and a hinge-bending enhancing variant. Methods 1998. 14: 318-328.
    [70] Atilgan A.R., Durrell S.R, Jernigan R.L., Demirel M.C., Keskin O., Bahar I. Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 2001. 80: 505-515.
    [71] S?gaard T.M.M., Jakobsen C.G., Justesen J. A sensitive assay of translational fidelity (Readthrough and Termination) in eukaryotic cells. Biochemistry 1999. 64: 1408-1417.
    [72] Tirado-Rives J., Jorgensen W.L. Molecular dynamics simulations of the unfolding of anα-helical analogue of ribonuclease a S-peptide in water. Biochemistry 1991. 30: 3864-3871.
    [73] Still V.C., Tempezvk A., Hawley R.C., Hendrickson T. Semianalytical treatment of solvation for molecular mechanics and dynamics. J. Am. Chem. Soc. 1990. 112: 6127-6129.
    [74] Qiu D., Shenkin P.S., Hollinger F.P., Still W.C. The GB/SA Continuum Model for Solvation. A Fast Analytical Method for the Calculation of Approximate Born Radii. J. Phys. Chem. A 1997. 101: 3005-3014.
    [75] MacKerell A.D., Fischer S. et al All-Atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B. 1998. 102: 3586-3616.
    [76] Creamer T.P., Rose G.D. Side chain entropy opposes alpha-helix formation but rationalizes experimentally-determined helix-forming propensities. Proc. Natl. Acad. Sci. USA 1992. 89: 5937-5941.
    [77] Pickett S.D., Sternberg M.J.E. Empirical scale of side-chain conformational entropy in protein folding. protein folding. J. Mol. Biol. 1993. 231: 825-839.
    [78] Lee K.H., Xie D., Freire E., Amzel L.M. Estimation of changes in side chainconfigurational entropy in binding and folding: general methods and application to helix formation. Proteins 1994. 20: 68-84.
    [79] Makhatadze G.I., Clore G.M. , Gronenborn A.M. Solvent isotope effect and protein stability. Nature Struct. Biol. 1995. 2: 852-855.
    [80] Day R., Bennion B.J., Ham S., Daggett V. Increasing temperature accelerates protein unfolding without changing the pathway of unfolding. J. Mol. Biol. 2002. 322: 189-203.
    [81] Snow C.D., Qiu L., Du D., Gai F., Hagen S.J., Pande V.S. Trp zipper folding kinetics by molecular dynamics and temperature-jump spectroscopy. Proc. Natl. Acad. Sci. USA 2004. 101: 4077-4082.
    [82] Alexandre M.J., Bonvin J., van Gunsteren W.F.β-Hairpin stability and folding: molecular dynamics studies of the firstβ-hairpin of tendamistat. J. Mol. Biol. 2000. 296 255-268.
    [83] Lee J. , Shin S. Understandingβ-hairpin formation by molecular dynamics simulations of unfolding. Biophys. J. 2001. 81: 2507-2516.
    [84] Lee J., Jang S., Pak Y. ,Shin S. Folding dynamics ofβ-hairpins: molecular dynamics simulations. Bull. Korean Chem. Soc. 2003. 24: 785-791.
    [85] Galzitskaya O.V., Higo J., Kuroda M., Nakamura H.β-hairpin folds by molecular dynamics simulations. Chem. Phys. Lett. 2000. 326: 421-429.
    [86] Zhou R., Berne B.J. Can a continuum solvent model reproduce the free energy landscape ofβ-hairpin folding in water? Proc. Natl. Acad. Sci. USA 2002. 99: 12777-12782.
    [87] Yang W.Y., Pitera J.W., Swope W.C., Gruebele M. Heterogeneous folding of the trpzip Hairpin: Full atom simulation and experiment. J. Mol. Biol. 2004. 336: 241-251.
    [88] Andrec M., Felts A.K., Gallicchio E., Levy R.M. Protein folding pathways from replica exchange simulations and a kinetic network model. Proc. Natl. Acad. Sci. USA 2005. 102: 6801-6806.
    [89] Liwo A., Khalili M. , Scherana H.A. Ab initio simulations of protein-folding pathways by molecular dynamics with the united-residue.model of polypeptide chains. Proc. Natl. Acad. Sci. USA 2005. 102: 2362-2367.
    [90] Ding F., Borreguero J.M., Buldyrey S.V., Stanley H.E. , Dokholyan N.V. Mechanism for theα-Helix toβ-Hairpin Transition Proteins: Struct. Funct. Genet. 2003. 53: 220-228.
    [91] Zhou Y., Linhananta A. Role of hydrophilic and hydrophobic Contacts in folding of the secondβ-hairpin fragment of protein G: Molecular dynamics simulation studies of an all-atom model Proteins: Struct. Funct. Genet. 2002. 47: 154-162.
    [92] Bryant Z., Pande V.S., Rokhsar D.S. Mechanical unfolding of aβ-hairpin using molecular dynamics Biophys. J. 2000. 78: 584-589.
    [93] Wei G., Derreumaux P. , Mousseau N. Sampling the complex energy landscape of a simple-hairpin. J. Chem. Phys. 2003. 119: 6403-6406.
    [94] Wei G., Mousseau N. , Derreumaux P. Complex folding pathways in a simpleβ-hairpin. Proteins: Struct. Funct. Bio. 2004. 56: 464-474.
    [95] Kolinski A., Ilkowski B. , Skolnick J. Dynamics and thermodynamics ofβ-hairpin assembly: insights from various simulation techniques Biophys. J. 1999. 77: 2942-2952.
    [96] Du D., Zhu Y., Huang C.Y., Gai F. Understanding the key factors that control the rate ofβ-hairpin folding. Proc. Natl. Acad. Sci. USA 2004. 101: 15915-15920.
    [97] Zhang J., Qin M., Wang W. Folding mechanism ofβ-Hairpins studied by replica exchange molecular simulations. Proteins: Struct. Funct. Bio. 2006. 62: 672-685.
    [98] Garcia A.E., Sanbonmatsu K.Y. Exploring the energy landscape of aβ-hairpin in explicit solvent. Proteins: Struct. Funct. Genet. 2001. 42: 345-354.
    [99] Imamura1 H., Chen J.Z.Y. Dependence of folding dynamics and structural stability on the location of a hydrophobic pair inβ-hairpin. Proteins: Struct. Funct. Genet. 2006. 63: 555-570.
    [100] Cornell W.D., Cieplak P., Bayly C.I et al. A second generation force field for thesimulation of proteins, nucleic acids, and organic molecules. J. Am. Chem. Soc. 1995. 117: 5179-5197.
    [101] Wu X., Brooks B.R.β-Hairpin folding mechanism of a nine-residue peptide revealed from molecular dynamics simulations in explicit water. Biophys. J. 2004. 86: 1946-1958.
    [102] Blanco F. J., Jimenez M. A., Herranz J., Rico M., Santoro J., Nieto J.L. NMR evidence of a short linear peptide that folds into aβ-hairpin in aqueous solution. J. Am. Chem. Soc. 1993. 115: 5887-5888.
    [103] Zhou R., Berne B.J., Germain R. Free energy landscape of aβ-hairpin folding in explicit water. Proc. Natl. Acad. Sci. USA 2001. 98: 14931-14936.
    [104] Chen C., Xiao Y., Zhang L. A directed essential dynamics simulation of peptide folding. Biophys. J. 2005. 88: 3276-3285.
    [105] Krivov S.V., Karplus M. Hidden complexity of free energy surfaces forpeptide (protein) folding. Proc. Natl. Acad. Sci. USA 2004. 101 14766-14770.
    [106] Gronenborn A.M., Filpula D.R., Essig N.Z., Achari A., Whitlow M., Wingfield P.T., Clore G.M. A novel, highly stable fold of the immunoglobulin binding domain of streptococcal protein G. Science 1991. 253: 657-661.
    [107] Krivov S.V., Karplus M. Free energy disconnectivity graphs: Application to peptide models. J. Chem. Phys. 2002. 117: 10894-10903.
    [108] Cochran A.G., Skelton N.J., Starovasnik M.A. Tryptophan zippers: stable, monomericβ-hairpins. Proc. Natl. Acad. Sci. USA 2001. 98: 5578-5583.
    [109] Chen C., Xiao Y. Molecular dynamics simulations of folding processes of aβ-hairpin in an implicit solvent. Phys. Biol. 2006. 3: 161-171.
    [110] Itzhaki L.S., Otzen D.E., Fersht A.R. The structure of the transition state for folding of chymotrypsin inhibitor 2 analysed by protein engineering methods: evidence for a nucleation–condensation mechanism for protein folding. J. Mol. Biol. 1995. 254: 260-288.
    [111] Matouschek A., Kellism J.T., Serrano L., Fersht A.R. Mapping the transitionstate and pathway of protein folding by protein engineering. Nature 1989. 340: 122-126.
    [112] Matouschek A., Kellis J.T., Serrano L.,Fersht A.R. Mapping the transition state and pathway of protein folding by protein engineering. Nature 1998. 340: 122-126.
    [113] Ponnuswamy P.K., Gromiha M.M. On the conformational stability of folded proteins. J. Theor. Biol. 1994. 166: 63-74.
    [114] Gromiha M.M., Selvaraj S. Inter-residue interactions in protein folding and stability. Biophys. & Mol. Biol. 2004. l86: 235-277.
    [115] Sharp K.A., Nicholls A., Friedman R., Honig B. Extracting hydrophobic free energies from experimental data: relationship to protein folding and theoretical models. Biochemistry 1991. 30: 9686-9697.
    [116] Bahar I., Jernigan R.L. Inter-residue potentials in globular proteins and the dominance of highly specific hydrophobic interactions at close separation. J. Mol. Biol. 1997. 266: 195-214.
    [117] Rose G., Geselowitz A., Lesser G., Lee R., Zehfus M. Hydrophobicity of amino acid residues in globular proteins. Science 1985. 229: 834-838.
    [118] Cootes A.P., Curmi P.M.G., Cunningham R., Donnelly C., Torda A.E. The dependence of amino acid pair correlations on structural environment. Proteins Struct. Funct. Genet. 1998. 32: 175-189.
    [119] Hutchinson E.G., Sessions R.B., Thornton J.M., Woolfson D.N. Determinants of strand register in antiparallelβ-sheets of proteins. Protein Sci. 1998. 7: 2287-2300.
    [120] Zhang C., Kim S. Environment-dependent residue contact energies for proteins. Proc. Natl. Acad. Sci. USA 2000. 97: 2550-2555.
    [121] Hao M.H., Scheraga H.A. Designing potential energy functions for protein folding. Curr. Opin. Struct. Biol. 1999. 9: 184-188.
    [122] Vendruscolo M., Najmanovich R., Domany E. Protein folding in contact mapspace. Phys. Rev. Lett. 1999. 82: 656-659.
    [123] Chelli R., Gervasio F.L., Procacci P., Schettino V. Inter-residue and Solvent-residue Interactions in Proteins: A Statistical Study on Experimental Structures. Proteins: Struct. Funct. Genet. 2004. 55: 139-151.
    [124] Vogt G., Woell S., Argos P. Protein thermal stability, hydrogen bonds, and ion pairs. J. Mol. Biol. 1997. 269: 631-643.
    [125] Haney P., Konisky J., Koretke K.K., Luthey-Schulten Z., Wolynes P.G. Structural basis for thermostability and identification of potential active site residues for adenylate kinases from the archaeal genus Methanococcus. Proteins Struct. Funct. Genet. 1997. 28: 117-130.
    [126] Salminen T., Teplyakov A., Kankare J., Cooperman B.S., Lahti R., Goldman A. An unusual route to thermostability disclosed by the comparison of Thermus thermophilus and Escherichia coli inorganic pyrophosphatases. Protein Sci. 1996. 5: 1014-1025.
    [127] Xiao L., Honig B. Electrostatic contributions to the stability of hyperthermophilic proteins. J. Mol. Biol. 1999. 289: 1435-1444.
    [128] Szilagyi A., Zavodszky P. Structural differences between mesophilic, moderately thermophilic and extremely thermophilic protein subunits: results of a comprehensive survey. Structure 2000. 8: 493-504.
    [129] Petsko G. A. Structural basis of thermostability in hyperthermophilic proteins, or "there's more than one way to skin a cat". Methods Enzymol. 2001. 334: 469-478.
    [130] Zhou H.X. Residual electrostatic effects in the unfolded state of the N-terminal domain of L9 can be attributed to nonspecific nonlocal charge-charge interactions. Biochemistry 2002. 41: 6533-6538.
    [131] Zhou H.X., Dong F. Electrostatic contributions to the stability of a thermophilic cold shock protein. Biophys. J. 2003. 84: 2216-2222.
    [132] Dominy B.N., Perl D., Schmid F.X., Brooks 3rd C.L. The effects of ionic strength on protein stability: the cold shock protein family. J. Mol. Biol. 2002. 319:541-554.
    [133] Elcock A.H. The stability of salt bridges at high temperatures: implications for hyperthermophilic proteins. J. Mol .Biol. 1998. 284: 489-502.
    [134] Querol E., Perez-Pons J.A., Mozo-Villarias A. Analysis of protein conformational characteristics related to thermostability. Protein Eng. 1996. 9: 265-271.
    [135] Das R., Gerstein M. The stability of thermophilic proteins: a study based on comprehensive genome comparison. Funct. Integr. Genomics. 2000. 1: 76-88.
    [136] England J.L., Shakhnovich B.E., Shakhnovich E.I. Natural selection of more designable folds: a mechanism for thermophilic adaptation. Proc. Natl. Acad. Sci. USA 2003. 100: 8727-8731.
    [137] Mozo-Villiarías A., Querol E. Theoretical analysis and computational predictions of protein thermostability. Current. Bioinformatics 2006. 1: 25-32.
    [138] Colacino F., Crichton R. R. Enzyme thermostabilization: the state of the art. Biotechnol. Genet. Eng. Rev. 1997. 14: 211-277.
    [139] Russell R.J.M., Taylor G.L. Engineering thermostability: lessons from thermophilic proteins. Curr. Opin. Biotechnol. 1995. 6: 370-374.
    [140] Scandurra R., Consalvi V., Chiaraluce R., Politi L., Engel P.C. Protein thermostability in extremophiles. Biochimie. 1998. 80: 933-941.
    [141] Vieille C., Burdette D.S., Zeikus J.G. Thermozymes. Biotechnol. Annu. Rev. 1996. 2: 1-83.
    [142] Gromiha M.M. Important inter-residue contacts for enhancing the thermal stability of thermophilic proteins. Biophys. Chem. 2001. 91: 71-77.
    [143] Berezovsky I.N., Shakhnovich E.I. Physics and evolution of thermophilic adaptation. Proc. Natl. Acad. Sci. USA 2005. 102: 12742-12747.
    [144] Tanner J., Hecht R., Krause K. Determinants of enzyme thermostability observed in the molecular structure of Thermus aqaticus D-glyceraldehyde-3-phosphate dehydrogenase at 2.5 ? resolution. Biochemistry 1996. 35: 2597-2609.
    [145] Leibowitz N, Nussinov R., Wolfson H. MUSTA-A general, efficient, automatedmethod for multiple structure alignment and detection of common motifs: Application to proteins. J. Comp. Biol. 2001. 8: 93-121.
    [146] Leibowitz N., Fligelman Z., Nussinov R., Wolfson H. An automated multiple structure alignment and detection of a common substructural motif. Proteins Struct. Funct. Genet. 2001. 43: 235-245.
    [147] DeLano W.L. Unraveling hot spots in binding interfaces: progress and challenges. Curr. Opin. Struct. Biol. 2002. 12: 14-20.
    [148] Mirny L., Shakhnovich E. Evolutionary conservation of the folding. Nucleus 2001. 308: 123-129.
    [149] Neer E.J., Schmidt C.J., Nambudripad R., Smith T.F. The ancient regulatory-protein family of WD-repeat proteins. Nature 1994. 371: 297-300.
    [150] Smith T.F., Gaitatzes C.G., Saxena K., Neer E.J. The WD-repeat: a common architecture for diverse functions. TIBS 1999. 24: 181-185.
    [151] Sondek J., Bohm A., Lambright D.G., Hamm H.E., Sigler P.B. Crystal structure of a G-protein beta gamma dimer at 2.1 ? resolution. Nature 1996. 379: 369-374.
    [152] Haliloglu T., Bahar I., Erman B. Gaussian dynamics of folded proteins. Phys. Rev. Lett. 1997. 79: 3090-3093.
    [153] Bahar I., Atilgan A.R., Demirel M.C., Erman B. Vibrational dynamics of proteins: Significance of slow and fast modes in relation to function and stability. Phys. Rev. Lett. 1998. 80: 2733-2736.
    [154] Kundu S., Melton J.S., Sorensen D.C., Jr.Phillips G.N., Dynamics of proteins in crystals: comparison of experiment with simple models. Biophys. J. 2002. 83: 723-732.
    [155] Doruker P., Atilgan A.R., Bahar I. Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to alpha-amylase inhibitor. Proteins Struc. Funct. Genet. 2000. 40: 512-524.
    [156] Chennubhotla C., Rader A.J., Yang L., Bahar I. Elastic network models for understanding biomolecular machinery: from enzymes to supramolecularassemblies. Phys. Biol. 2005. 2: 173-180.
    [157] Rader A.J., Bahar I. Folding core predictions from network models of proteins. Polymer 2004. 45: 659-668.
    [158] Isin B., Doruker P., Bahar I. Functional motions of influenza virus hemagglutinin: a structure-based analytical approach. Biophys. J. 2002. 82: 569-581.
    [159] Wang Y., Rader A.J., Bahar I., Jernigan R.L. Global ribosome motions revealed with elastic network model. J. Struc. Biol. 2004. 147: 302-314.
    [160] Jernigan R.L., Demirel M.C., Bahar I. Relating structure to function through the dominant modes of motion of DNA topoisomerase II. Inter. J. Quan. Chem. 1999. 75: 301-312.
    [161] Gromiha M.M., Selvaraj S. Comparison between long-range interactions and contact order in determining the folding rate of two-state proteins: application of long-range order to folding rate prediction. J. Mol. Biol. 2001. 310: 27-32.
    [162] Plaxco K.W., Simons K.T., Baker D. Contact order, transition state placement and the refolding rates of single domain proteins. J. Mol. Biol. 1998. 277: 985-994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700