用户名: 密码: 验证码:
双参通冠方促血管新生作用的物质基础及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冠心病,又称缺血性心脏病,是由于冠状动脉粥样硬化造成血管痉挛,引起血管狭窄或阻塞,产生冠脉循环障碍,造成心肌缺血、缺氧或坏死的一种心脏病。目前,国际上公认的三大治疗途径包括药物治疗、介入治疗及外科治疗。由于大多数药物对病变严重的心肌缺血治疗效果有限,而介入治疗和外科治疗又不能阻止病人的冠状动脉其他部位发生再狭窄,所以这三种治疗只能暂时缓解冠心病症状,而不能根治冠心病。20世纪末,一些学者提出了治疗性血管新生的思路,即通过某些药物的治疗增加功能性的冠状动脉分支或侧支循环,达到恢复缺血心肌血供,改善患者症状和预后的目的,有人形象地称它为“药物促进人体的自身搭桥”。
     研究发现,血管新生能帮助肌体建立有效的侧支循环,从根本上缓解心肌缺血症状,改善病情。目前国外大多研究利用基因方法,即直接补充VEGF或FGF等细胞因子的方法或蛋白方法及细胞移植等方法来促进冠心病患者的血管新生然而这些方法不但价格昂贵,而且目前还只是停留在研究阶段,尚无法应用于临床。
     完整的内皮功能在心血管疾病的发生发展过程中扮演重要角色,其功能受损导致许多血管性疾病的发生。然而,成熟的内皮细胞是终端分化细胞,其再生能力有限。大量的研究表明EPCs (endothelial progenitor cells)在受损血管内皮的自我修复中发挥重要作用,它不仅参与胚胎时期血管生成,还与损伤的血管内皮的愈合和血管新生(neovascularization)密切相关,尤其是对于前者具有重要的促进作用。它主要存在于骨髓中,在某些生理、病理状态下,可从骨髓释放到外周血,随血液循环迁移到局部血管损伤处,分化为成熟的血管内皮细胞,从而修复损伤内皮、促进血管再内皮化。寻找能够改善内皮功能促进其修复,刺激血管新生的物质受到越来越多研究者的关注
     中医治疗缺血性疾病的研究起源久远,并且取得了显著的成效。因此,从中药中寻找具有促进血管新生作用的药物具有重要的经济及社会意义。双参通冠方(SSTG)是由提取的人参总皂苷、丹参总酚酸、元胡总生物碱三种有效组分配伍而成,本实验室前期的药效学研究表明,该方能明显减轻急性心肌缺血犬和大鼠的心肌损伤程度,对缺血心肌有很好的保护作用。但是,之前缺少对其在促进血管新生作用、作用机理及物质基础方面的研究。
     本课题采用鸡胚绒毛尿囊膜(chick embryo chorioallantoic membrane,CAM),体外培养内皮祖细胞数量、功能及冠状动脉结扎大鼠模型,观察SSTG促血管生成作用及其物质基础,探寻其作用机制,为其治疗缺血性心脏病的临床应用提供实验依据。
     本课题分为三个部分:
     一、双参通冠方(SSTG)对鸡胚绒毛尿囊膜(CAM)血管新生的影响
     1. SSTG及有效组分含药血清对鸡胚绒毛尿囊膜血管新生的影响
     目的:探讨SSTG及单味药提取物含药血清对鸡胚绒毛尿囊膜血管新生的影响。方法:将无菌8日龄鸡胚制备CAM模型,随机分成5组:对照组,SSTG、丹参总酚酸、人参总皂苷及元胡总生物碱组。将蛋壳用75%乙醇消毒后,用镊子小心开1.5cm×1.5cm的窗口,暴露CAM,将受试物品加到无菌的滤纸上,待风干后,小心置于CAM上血管较少的部位,将窗口封上,放入孵箱,于37℃,60%相对湿度继续孵育3天后,对CAM固定后,采集数据进行分析。结果:SSGT(3.25±0.80)、丹参总酚酸(3.11±0.83)及人参总皂苷组(2.97±0.47)血管密度比明显高于对照组(2.45±0.64)(P<0.05,P<0.05,P<0.05)。结论:SSTG、丹参及人参可明显促进鸡胚绒毛尿囊膜血管新生。
     2.丹参总酚酸及丹酚酸A、B对鸡胚绒毛尿囊膜血管新生的影响
     目的:探讨丹参总酚酸及丹酚酸A、B对鸡胚绒毛尿囊膜血管新生的影响。方法:同前。结果:总酚酸100mg/L (2.97±0.39)、300mg/L (3.07±0.36)给药组血管密度比明显高于对照组(2.47±0.35)(P<0.05,P<0.05);丹酚酸A 5.56mg/L(4.42±1.16)、16.67 mg/L(5.51±1.15)、50 mg/L(4.60±0.71)给药组血管密度比明显高于对照组(3.07±0.85)(P<0.05,P<0.001,P<0.01);丹酚酸B50mg/L(2.18±0.31)、150 mg/L(2.43±0.32)给药组血管密度比明显高于对照组(1.86±0.30)(P<0.05,P<0.01)。结论:丹参总酚酸、丹酚酸A及丹酚酸B可明显促进鸡胚绒毛尿囊膜血管新生
     二、丹参总酚酸及丹酚酸A对内皮祖细胞(EPCs)功能的影响
     1.内皮祖细胞的培养及鉴定
     目的:建立新生鼠脾脏来源的内皮祖细胞的培养方法并对其进行鉴定。方法:密度梯度离心法分离SD新生鼠脾脏单个核细胞,EGM-2完全培养基贴壁法,37℃,5%CO2,饱和湿度的恒温培养箱中原代培养。细胞长至近融合时传代,分别于第9天进行细胞鉴定。内皮祖细胞鉴定:免疫细胞化学的CD34和VEGFR-2染色;内吞DiI标记的乙酰低密度脂蛋白(DiI-acLDL)和结合FITC标记的荆豆凝集素-1(FITC-UEA-1)的激光共聚焦显微镜观察及超微结构鉴定。结果:培养细胞的形态学改变:脾脏单个核细胞接种24h后部分细胞开始贴壁、变大,倒置显微镜下贴壁细胞透亮度增强,并逐渐伸出伪足样突起,呈小杆状或梭形。培养第3天贴壁细胞开始增殖,呈“集落”样生长,外周梭形细胞较多;共聚焦显微镜观察显示细胞DiI-acLDL和FITC-UEA-1呈红绿免疫双荧光阳性;培养第9天细胞VEGFR-2和CD34免疫细胞化学染色呈阳性;电镜下观察可见内皮细胞特异性的W-P小体存在;功能鉴定显示EPCs体外培养形成血管结构。结论:新生鼠的脾脏单个核细胞可以培养为内皮祖细胞并能够形成血管结构。
     2.丹参总酚酸对正常及H2O2损伤内皮祖细胞功能的影响
     目的:探讨丹参总酚酸对内皮祖细胞数量及功能的影响以及对H2O2损伤内皮祖细胞功能。方法:密度梯度离心法获取新生鼠脾脏单个核细胞,细胞长至融合状态后,收集贴壁细胞并加入丹参总酚酸(0.3,3和30mg/L)干预24h,分别观察其对EPCs的增殖、迁移、粘附、体外成管能力的影响。同时,应用200u mol/LH2O2对EPCs进行损伤,观察丹参总酚酸的保护作用。结果:丹参总酚酸促进EPC扩增,3及30mg/L丹参总酚酸作用24h对EPCs数量有显著性影响(P<0.05,P<0.05),同时也显著改善了EPCs的粘附、迁移及体外成管能力。对200μmol/LH2O2损伤EPCs的粘附及成管能力有明显的改善作用。结论:丹参总酚酸可增加EPCs数量并改善其功能并对H2O2损伤的EPCs的功能有改善作用。
     3.丹酚酸A对正常及H2O2损伤内皮祖细胞功能的影响及初步机制研究
     目的:探讨丹酚酸A对内皮祖细胞数量及功能的影响以及对H2O2损伤内皮祖细胞功能。方法:密度梯度离心法获取新生鼠脾脏单个核细胞,细胞长至融合状态后,收集贴壁细胞并加入丹酚酸A(10-9,10-8和10-7mol/L)干预24h,分别观察其对EPCs的增殖、迁移、体外成管能力的影响,并采用ELISA试剂盒检测加入丹酚酸A对培养上清中SDF-1及MMP-9含量的影响,采用NO试剂盒检测细胞上清中NO量的变化。同时,应用200μmol/LH2O2对EPCs进行损伤,观察丹酚酸A的保护作用。结果:丹酚酸A促进EPCs扩增,10-9,10-8和10-7mol/L酚酸A作用24h对EPCs数量有显著性影响(P<0.05,P<0.05),同时也显著改善了EPCs的迁移、成管能力;显著增加条件培养上清中SDF-1、MMP-9及NO的量。对200μmol/LH2O2损伤EPCs的粘附及成管能力有明显的改善作用。结论:丹酚酸A可增加EPC数量并改善其功能,其机制可能与增加SDF-1、MMP-9表达及NO的量有关,并对H2O2损伤的EPCs的功能有改善作用。
     三、丹酚酸A对冠脉结扎大鼠血管新生的影响及机制研究
     目的:探讨丹酚酸A对冠脉结扎大鼠血管新生的影响及其机制探讨。方法:结扎Wistar大鼠冠状动脉左旋降支建立心肌缺血大鼠模型,随机分为模型组,丹酚酸A 2.5、5、10mg/kg给药组,阳性对照药组及假手术组。于手术后第二天尾静脉注射给药,每天1次,7天后做以下实验:1)检测心肌缺血面积(NBT染色法);2)HE染色观察缺血心肌的病理改变;3)免疫组化方法检测心肌梗死周围区VEGF/VEFGR-2的表达以及CD34标记的微血管密度;4) ELISA法检测血清中SDF-1及MMP-9表达量的变化。结果:与假手术组比较,模型组大鼠缺血心肌部位心肌细胞明显损伤(P<0.05),丹酚酸A 10、5剂量组梗死面积/心脏面积比值明显降低(P<0.01,P<0.05);与假手术组比较,模型组梗死周围区CD34+细胞(P<0.05)明显增多,VEGF (P<0.001)和VEGFR-2 (P<0.001)表达明显增强,与模型组比较,丹酚酸A 10、5、2.5mg/kg剂量组梗死周围区微血管密度明显增多(P<0.001,P<0.001,P<0.001),丹酚酸A10、5mg/kg梗死周围区VEGF(P<0.001,P<0.05)和VEGFR-2 (P<0.001, P<0.001)表达显著升高;与假手术组比较,模型组SDF-1 (P<0.05)及MMP-9 (P<0.05)表达上升;与模型组比较,丹酚酸A10、5、2.5 mg/kg剂量组显著促进SDF-1 (P<0.01, P<0.05)及MMP-9(P<0.001,P<0.001,P<0.05)的表达。结论:丹酚酸A可降低心肌缺血大鼠梗死面积,其可能机制是通过上调VEGF和VEGFR-2及增加SDF-1、MMP-9的表达促进了内源性的血管新生。
     综上所述,首先CAM模型的结果显示:双参通冠方具有促进血管新生的作用,其有效组分丹参总酚酸及人参总皂苷也具有促CAM血管新生的作用,我们选择了丹参作为继续研究的对象,结果显示丹酚酸A比丹酚酸B有更好的促进CAM血管新生的作用;丹酚酸A促进体外培养EPCs的数量的增加及功能的改善;整体心肌缺血模型的结果显示,丹酚酸A有明显降低缺血心肌梗死面积,促进缺血后心肌MVD增加的作用,其促进血管新生的可能作用机理为通过上调VEGF和VEGFR-2及增加SDF-1、MMP-9的表达促进EPCs的动员、分化与归巢,促进了内源性的血管新生。因此,我们得出结论:丹酚酸A为双参通冠方促血管新生的有效物质基础之一。
     本论文的创新点:
     1、首次研究了双参通冠方的促血管新生作用,为用于冠心病的治疗提供实验依据;
     2、首次研究了丹酚酸A的促血管新生作用,并对其作用机制作了初步研究。
Cardiovascular disease is the global leading cause of death in the whole world. Currently available approaches for treating patients with ischemic heart disease include medical therapy or coronary revascularization by percutaneous coronary angioplasty (PCA) or coronary artery by pass grafting (CABG). However, a significant number of these patients are not candidates for coronary revascularization procedures or achieve incomplete revascularization with these procedures. Consequently, many of these patients have persistent symptoms of myocardial ischemia despite intensive medical therapy. Preliminary clinical experiences suggest that therapeutic angiogenesis may provide additional blood flow to incompletely revascularized areas. More recently, several studies suggest that implanted bone marrow cells may induce angiogenesis in ischemic myocardium.
     Currently there are 3 major approches for therupetic angiogenesis, that is gene therapy, protein therapy and cellbased transplation. Howerve, theses methods are not only expessive but also on the stduy phase, and can not be used in clinical.
     Endothelial dysfunction has been implicated in the pathogenesis of many diseases affecting the cardiovascular system. Experimental and clinical studies have shown that endothelial dysfunction may play a cusial role in the development and progression of vascular diseases, such as hypertension ro restenosis, as well as their complications, including myocardial infarction. Mature endothelial cells (ECs), however, have limited regenerative capacity. A growing body of evidence indicates that endothelial progenitor cells (EPCs) promote endothelial repair and contribute to ischemia-induced neovascularization. Increasing evidence suggests that circulating progenitor cells contribute to postnatal neovascularization except in embro. These cells are derived form bone-marrow, in some physiological and pathological status, they are released from bone-marrow into circulation, home to sites of ischemia, adopt an endothelial phenotype, and contribute to new blood vessel formation. Hence, the discovery of candidate molecules able to augment EC funtion to stimulate myocardial angiogenesis has stirred a growing interest in using these molecules for therapeutic application.
     Shuangshentongguan (SSTG) is made up of ginsenosides, salvianolic acids and corydalines. Our previous pharmacological studies showed that SSTG could relieve myocardial damage of dog and/or acute myocardial ischemia of rat, show protective effects on myocardium infartion. But, there is little information about its'effect on theraputic angiogenesis and its matierial basis.
     So, we designed the experiments to test SSTG effects on angiogenesis, it is realised by 3 models, they are as follows:chick embryo chorioallantoic membrane, endothelial progenitor cell and myocardial ischemia in rats induced by ligation of the left anterior descending (LAD) coronary artery.
     Chapter 1:Effects of SSTG on angiogenesis of the chick embryo chorioallantoic membrane
     Part 1:Effects of SSTG on angiogenesis of the chick embryo chorioallantoic membrane
     Objective:To investigate the effect of SSTG on angiogenesis of the chick embryo chorioallantoic membrane (CAM). Methods:Fifty 8-day-old fertilized eggs were obtained from a commercial source (Beijing Merial Vital Laboratory Animal Technology Co., Ltd). On day 9 of the incubation, the fertile eggs were randomly allocated into five groups. Fertilized eggs are first disinfected with 75%alcohol, a window opening is punctured at the blunt end of the egg facing upwards using sterilized forceps. The eggshell above the air cell was removed and the shell membrane attached to it, was cut off for further examination. Normal development was verified and embryos with malformations or dead embryos were excluded. CAMs (10 eggs per group) were treated as described as follows:1) overlaying them with 20-mm2 sterilized filter discs that had been loaded with 10μ1 of serum without any test materials (negative control),10μl of serum containing SSTG, ginsenosides, salvianolic acids and corydalines. The window was sealed with tape and the eggs were returned to the incubator. After incubation for an additional 72 hours, all samples were immediately fixed in methanol and acetone (1:1) for at least 15min, then they were photographed using a stereomicroscope equipped with a camera and image analysis system. The angiogenic response was evaluated by counting the vessel density converging toward the filter discs..Result:The angiogenesis area in SSTG, ginsenosides, salvianolic acids groups was obviously increased compared with control group (P<0.05, P<0.05, P<0.05). Conclusion:The result showed that SSTG, ginsenosides, salvianolic acids can obviously stimulate angiogenesis of the chick embryo CAM.
     Part 2:Effects of salvianolic acids, salvianolic acid A and salvianolic acid B on angiogenesis of the chick embryo chorioallantoic membrane
     Objective:To investigate the effect of salvianolic acids, salvianolic acid A and salvianolic acid B on angiogenesis of the chick embryo chorioallantoic membrane (CAM). Methods:the same as above-mentioned. Result:The angiogenesis area in salvianolic acids 100 mg/L (2.97±0.39)、300 mg/L (3.07±0.36) groups was obviously increased compared with control group (2.47±0.35) (P<0.05, P<0.05); the angiogenesis area in salvianolic acid A 5.56 mg/L (4.42±1.16)、16.67 mg/L (5.51±1.15)、50 mg/L (4.60±0.71) was obviously increased compared with control group (3.07±0.85) (P<0.05, P<0.001, P<0.01); the angiogenesis area in salvianolic acid B 50mg/L (2.18±0.31)、150 mg/L (2.43±0.32) was obviously increased compared with control group (1.86±0.30) (P<0.05, P<0.01). Conclusion:The result showed that salvianolic acids, salvianolic acid A and salvianolic acid B can obviously stimulate angiogenesis of the chick embryo CAM.
     Chapter 2:Effects of Salvianolic acids (SAs) and Salvianolic acid A on the numbers and function of endothelial progenitor cells
     Part 1:cultivation and identification of endothelial progenitor cells
     Objective:To investigate the methods of isolation, cultivation and identification of endothelial progenitor cells (EPCs) from rat spleen, as well as their ability of differentiating into endothelial cells. Methods:The mononuclear cells were isolated f rom SD rat spleen and were cultured in vitro via adhesion selection methods. The expression of CD34 and VEGFR-2 were assessed by immunocytochemistry after 9d cultivation. And the adherent cells were stained with DiI complexed acetylated low-density lipoprotein (DiI-acLDL) and fluorescein Ulex Europaeus agglutinin-1 (FITC-UEA-1), and then viewed by laser scanning confocal microscope (LSCM) to confirm EPCs lineage. EPCs phenotype was also tested by ultrastructural analyses. And EPCs were assessed by lightmicroscopy for their capacity of independent tubulogenesis. Results:The adherent cells stretched and exhibited the clone-like morphology in about 20d of cultivation. Immunocytochemistry stain showed that the adherent cells were positive for CD34 and VEGFR-2 from 9d after culture. The cells could take up DiI-acLDL, and bind to FITC-UEA-1, showed double positive fluorescence under LSCM. EPCs phenotype was also confirmed by the presence of Weibel-Palade body in cytoplasm by ultrastructural analyses. Branched interconnecting EC-specific tubules formed with EPCs. Conclusion:EPCs are enriched in rat spleen and may exhibited some of the characteristics of endothelial cells (ECs) after 9d inducing culture in vitro.
     Part 2:Effects of Salvianolic acids (SAs) on the numbers and function of endothelial progenitor cells in normal and H2O2 injured station
     Objective:Salvia miltiorrhiza (SM, also known as DanShen) is one of the well-known widely used Chinese herbal medicines in clinical. In this study we aimed to demonstrate the effects of Salvianolic acids (SAs), the main active components of aqueous extract of SM on the numbers and function of endothelial progenitor cells in normal and H2O2 injured station. Methods:To do this, new-born rat spleen mononuclear cells were isolated by density gradient and EPCs were expanded. EPCs proliferation, migration and in vitro vasculogenesis activity were assayed with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, transwell chamber assay, and in vitro vasculogenesis kit, respectively. EPCs adhesion assay was performed by replating those on fibronectin-coated dishes, and then counting adherent cells. Results:Incubation of EPCs with SAs increased the numbers of EPCs and promoted EPCs migratory, adhesive, and in vitro vasculogenesis capacity, could also augment function of EPCs injured by H2O2. Conclusion:The results of the present study suggest that SAs may be developed as a new therapeutic remedy for various ischemic diseases such as coronary artery disease.
     Part 3:Effects of Salvianolic acid A on the numbers and function of endothelial progenitor cells in normal and H2O2 injured station
     Objective:Salvianolic acid A (SA)is one of the well-known widely used Chinese herbal medicines in clinical. In this study we aimed to demonstrate the effects of SA on the numbers and function of endothelial progenitor cells in normal and H2O2 injured station. Methods:same as above-mentioned. Results:Incubation of EPCs with SA increased the numbers of EPCs and promoted EPCs migratory, adhesive, and in vitro vasculogenesis capacity. Besides, SA could augment function of EPCs injured by H2O2 Conclusion:The results of the present study suggest that SA may be developed as a new therapeutic remedy for various ischemic diseases such as coronary artery disease.
     Chapter 3:Effects of Salvianolic acid A on angiogenesis after myocardial ischemia in rats and underlying mechanism.
     Objective:To investigate the effects of SA on angiogenesis after myocardial ischemia in rats and underlying mechanism. Methods:myocardial ischemia was induced by occluding the left anterior descending (LAD) coronary artery of the hearts of wistar rats. After operation, they were randomly departed into 6 groups: vehicle-treated, SA 2.5、5、10mg/kg groups, positive group and sham-operated group. On 2 day of operation, ischemiac rats received tail intravenous injection once a day. At 7 day post ischemia, these experiments were done:1) to test of area of ischemiac myocardium (NBT staining); 2) to observe pathological chang in myocardium by HE staining; 3) to evaluate the localization and expression of VEGF and VEFGR-2 and CD34-labeled microvascular density (MVD) of the ischemic boundary zone by immunohistochemistry methods; 4) to test SDF-1 and MMP-9 expression in serum by ELISA. Results:compared to sham-operated rats CD34 positive cells(P<0.05), the expression of VEGF (P<0.001) and VEGFR-2 (P<0.001) significantly augmented, exposure to SA with 10、5mg/kg markedly promoted the expression of VEGF (P<0.001, P<0.05) and VEGFR-2 (P<0.001, P<0.001) and CD34-labeled MVD (P <0.001,P<0.001,P<0.001) of the ischemic boundary zone compared to vehicle-treated rats; compared to sham-operated rats, the expression of SDF-1 (P<0.05) and MMP-9 (P<0.05) significantly augmented, exposure to SA with 10、5、2.5mg/kg markedly promoted the expression of SDF-1 (P<0.01, P<0.05) and MMP-9 (P<0.001, P<0.001, P<0.05). Conclusion:the results demonstrated that SA could decrease size of infarciton in myocardial ischemic rats, the underlying mechanisms might be to promote angiogenesis mediated by upregulating expression of VEGF and VEGFR-2, and increasing of SDF-1 and MMP-9.
     Taken all together, Salvianolic acid A is one of the effectvie material basis of the promotion of angiogenesis by SSTG the underlying mechanisms might be to promote angiogenesis mediated by upregulating expression of VEGF and VEGFR-2, and increasing of SDF-1 and MMP-9.
引文
1. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000,6: 389-395
    2. Griendling KK, Alexander RW. Endothelial control of the cardiovascular system: recent advances. FASEB J.1996; 10:283-292
    3. Mukherjee D, Bhatt DL, Roe MT, et al. Direct myocardial revascularization and angiogenesis-how many patients might be eligble? Am J Cardiol 1999, 84(5):598-600, A8
    4. Gustafsson T. VEGF-A splice variants and related receptor expression in human skeletal muscle following submaximal exercise. J Appl Physiol 2005, 98(6):2137-46.
    5. Qun S, Rafii S, Hong-de WM, et al. Evidence for circulating bone marrow-derived endothelial cells. Blood 1998,82:362-367
    6. Fibbe WE, Pruijt J-FM, Kooyk Y, et al. The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Semin Hematol 2000,37:19-23
    7. Cleavero, Melton DA. Endothelial signaling during development. Nat Med.2003, 9:661-668
    8. Schwartz SM, Liaw. Growth control and morphogenesis in the development and
    pathology of arteries. J Cardiovasc Pharmacol.1993; 21(Suppl 1):S31-S39
    9. 金惠铭,李先涛.血管新生的调控.中国微循环2001,5(2)85-86
    10. Haggstrom S, T(?)rring N, Moller K, et al. Effects of finasteride on vascular endothelial growth factor. Scand J Urol Nephrol 2002,36(3):182-187.
    11. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science.1983, 219(4587):983-985.
    12. Leung DW, Cachianes Q Kuang WJ, et al. Vascular endothelial growth factor is a secreted angiogenic mitogen. Science.1989;246(4935):1306-1309.
    13. Tischer E, Gospodarowicz D, Mitchell R, et al. Vascular endothelial growth factor: a new member of the platelet-derived growth factor gene family. Biochem Biophys Res Commun.1989; 165(3):1198-206.
    14. Houck KA, Ferrara N, Winer J, et al. The vascular endothelial growth factor family:identification of a fourth molecular species and characterization of alternative splicing of RNA. Mol Endocrinol.1991;5(12):1806-1814.
    15. Banai S, Shweiki D, Pinson A, et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia:implications for coronary angiogenesis. Cardiovasc Res,1994,28:1176-1179
    16. Neufeld G, Cohen T, Gengrinovitch S, et al. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J.1999;13(1):9-22.
    17. Friesel R.E. AND Magciag T. Molecular mechanisms of angiogenesis:fibroblast growth factor signal transduction. FASEB J.1995; 9(10):919-925.
    18. O'Reilly MS, Holmgren L, Shing Y, et al. Angiostatin:a circulating endothelial cell inhibitor that suppresses angiogenesis and tumor growth. Cold Spring Harb Symp Quant Biol.1994,59:471-482.
    19. Vittte D, Prandini MH, Berthier T, et al. Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood,1996, 88:3424-3431
    20. Shintani S, Murohara T, Ueno T, et al. Local transplantation of autologuos bone marrow-derived mononucclear cells alugments collateral vessel formation in ischemic hind limb in rabbits. Circulation.1999; 100(Suppl I):I-406
    21. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation.2001; 103:634-637
    22. Schaper W. Quo vadis collateral blood flow? A commentary on a highly cited paper. Cardiovasc Res 2000,45:220-223
    23. Scheinowitz M, Abramov D, Eldar M. The role of insulin-like and basic fibroblast growth factors on ischemic and infarcted myocardium:a mini review. Int J Cardiol 1997;59:1-5, Syed IS, Sanborn TA, Rosengart TK. Therapeutic angiogenesis:a biologic bypass. Cardiology 2004;101:131-143
    24. Epstein SE,Fuchs S,Zhou YF, et al.Therapeutic interventions for enhancing collateral development by administration of growth factors:basic principles, early results and potential hazards.Cardiovasc Res 2001,49:532-542
    25. Henry TD, Annex BH, McKendall GR, et al. The VIVA trial:vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation.2003, 107:1359-1365
    26. Simons M, Annex BH, Laham RJ, et al. Pharmacological treatment of coronary artery disease with recombinant fibroblast growth factor02:double-bling, randomized, contrlled clinical trial. Circulation.2002,105:788-793
    27. Losordo DW, Vale PR, Symes JF, et al. Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation.1998,98:2800-2804
    28. Hedman M,Hartikainen J, Syvanne M, et al. Safety and feasibility of catheter-based local intracoronary vascular endothelia growth factor gene transfer in the prevention of postangioplasty and in-stent restenosis and in the treatment of chronic myocardial ischemia:phase Ⅱ results of the Kuopio Angiogenesis Trial(KAT). Circulation.2003,107:2677-2683
    29. Schumacher B, Pecher P, von Sp rech t BU, et al. Induction of neoangiogenesis in ischem ic myocardium by human grow th factors:first clinical results of a new treatment of co rongary, Heart disease. Circulation,1998,97 (7):6452650.
    30. Henry TD, Rocha SK, Isner JM, et al. Results of intraco ronary recombinant human vascular endo thelial grow th facto (rhV EGF) adm inistration trial. J Am Co 11 Cardiol,1998,31:65.
    31. Baumgartner I, Pieczek A, Manor O, et al. Resrlts of PhVEGF165 after intramuscular gene transfer P romo tes collateral vessel development in patientsw ith critcal limb ischem ia. Circulation,1998,97 (12):111421123.
    32. Henry TD, A nnex BH, A zrin MA, et al. Double Blind, P lacebo Contro lled T rial of Recombinant Human V ascular Endothelial Growth Factor The V iva T rial. J Am Co 11 Cardio l,1999,33:384A.
    33. Helisch, A& Schaper, W. Atreriogenesis:the development and growth of collateral arteries. Microcirculation 2003,10:83-97
    34. Simons, M& Ware JA. Therapeutic angiogenesis in cardiovascular disease. Nat Rev Drug Disco 2003,2:1-9
    1. Folkman J. Tumor angiogenesis:therapeutic implications. N Engl J Med 1971; 285:1182-1186
    2. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science,1997,275(5302):964-7
    3. Folkman J, Klagsbrun M. Angiogenic factors. Science,1987,235 (4787):442-447., Pu LQ, Sniderman AD, Brassard R, et al. Enhanced revascularization of the ischemic limb by angiogenic therapy. Circulation,1993,88 (1):208-215.
    4. Asahara T, Kawamoto A.Endothelial progenitor cells for postnatal vasculogenesis.Am J Physiol Cell Physiol.2004 Sep;287(3):C572-9
    5. Urbich C, Dimmeler S. Endothelial progenitor cells:characterization and role in vascular biology.Circ Res.2004 Aug 20;95(4):343-53
    6. angiogenesis-a new target for future therapy. Vascular pharmacology 44(2006) 265-274
    7. Caines AE, Massad MG, Kpodonu J, et al. Outcomes of coronary artery bypass grafting versus percutaneous coronary intervention and medical therapy for multi-vessel disease with and without left ventricular dysfunction. Cardiology 2004,101:21-28.
    8. Takeshita, S, Zheng LP, Brogi E, et al. Therapeutic angiogenesis:a single intra-arterial bolus of vascular endothelial growth factor augments revascularization in a rabbit ischemic hindlimb model. J. Clin. Invest.1994; 93(2):662-670.
    9.刘素云,李拥军,齐华阁,等.葛根素注射液对急性心肌梗死患者梗死面积及心功能的影响.中华心血管病杂志,2001,29(7):394
    10.关国跃,石耀辉,唐丕玉.葛根素改善缺血性心肌血流灌注的探讨.心血管康复医学杂志,2001,10(1):71
    11.刘启功,王琳,陆再英,等.葛根素抗心肌缺血及其机理的实验研究.临床心血管病杂志,1998;14(5):292-295
    12.李朝武,刘新泳,张蕊,等.川芎醇对血管内皮细胞增殖与损伤保护作用的研究.山东大学学报(医学版),2003,41(4):402-404
    13.唐刚华,姜国辉,王世真,等.川芎咔啉碱及其类似物的抗血小板与抗血栓作用.中国药理学与毒理学杂志,2001,15(4):317
    14.刘新泳,赵全芹,李朝武,等.川芎咔啉碱的合成及其对血管内皮细胞损伤的保护作用.山东大学学报(医学版),2003,41(5):485-487
    15.肖刚峰,张怀勤,黄晓燕,等.丹参的两种主要成分对培养内皮祖细胞药理作用研究.中医药学刊,2006,24(6):1035-1037
    16.肖刚峰,张怀勤,季亢挺,等.丹参素对体外培养内皮祖细胞数量和功能的影响.华西药学杂志,2006,21(3):232-234.
    17.刘启功,王琳,陆再英.丹参注射液对实验性心肌梗死犬冠状动脉侧枝循环的影响.中国中西医结合杂志,2000;7:5-6
    18.季亢挺,张怀勤,杨鹏麟,等.复方丹参注射液对内皮祖细胞数量和功能的影响[J].中国中药杂志,2006,31(3):246-249.
    19.张玉英,李剑,范维琥,等.红景天与绛香对心肌梗死大鼠血管抑素和内皮抑素表达的影响.中西医结合心脑血管病杂志,2005,12(3):10711
    20.李剑,范维琥,敖红,等.中药红景天对大鼠缺血心肌Flt-1、KDR及Tie-2表达的影响.中国中西医结合杂志,2005,25(5):4451
    21.张焱,胡光,洪思佳,等.黄芪提取物对人脐静脉内皮细胞的促血管新生作用.中药药理与临床,2007,23(2):341
    22.洪思佳,万建波,张庆文,等.三七总皂苷对人脐静脉内皮细胞的促血管新生作用.中药药理与临床,2007,23(2):281
    23.王兴祥,尚云鹏,陈君柱,等.银杏叶提取物对外周血内皮祖细胞数量和功能的影响[J].药学学报,2004,39(8):656-660
    24.雷燕,王军辉,陈可冀.黄芪、当归配伍后促鸡胚绒毛尿囊膜血管生成的药效比 较研究.中国中药杂志,2003,28(9):876
    25.汪姗姗,李勇,范维琥,等.麝香保心丸对鸡胚绒毛尿囊膜及培养的血管内皮细胞的促血管生成作用.中国中西医结合杂志,2003,23(2):128
    26.汪姗姗,李勇,范维琥,等.麝香保心丸对实验性心肌梗塞大鼠心脏的促血管生成作用.中成药,2002,24(6):446
    27.王大英,李勇,范维琉.麝香保心丸对心肌梗死大鼠梗死面积和血管新生的作用.中成药,2004,11(26):912
    28.张健元,张爱兵,董耀荣,等.双龙丸治疗冠心病血瘀证的临床研究.上海中医药杂志,1998,32(6):21
    29.张健元,王会玲,董耀荣,等.双龙丸抗动脉粥样硬化及血管内皮保护作用的临床研究.上海中医药杂志,2001,35(7):14
    30.杨祖福,胡婉英,秦志强,等.双龙丸对大鼠实验性心肌梗死血管新生的影响与分子学机制.中国康复理论与实践,2003,9(5):293
    31.安冬青,胡金霞,郑 静,等.天香丹对冠心病患者血管新生相关因子的影响.新疆医科大学学报,2007,30(5):437
    32.王文健,傅晓东,陈伟华,等.通心络促血管生成作用的实验研究.疑难病杂志,2003,2(1):2
    33.马芳,通心络促脑缺血后毛细血管新生的实验研究.卫生职业教育,2004,22(17):151
    34.梅爱农,王珏,湛彦强,等.通心络胶囊对脑梗死大鼠脑皮质血管新生和皮层神经元凋亡的影响.实用医学杂志,2006,22(3):267
    35.冯其茂,董耀荣,杨祖福.通心方干预冠心病支架术后心肌缺血效果观察.中国康复理论与实践,2006,12(2):152
    36.王建湘,王行宽,尹树忠.心痛治肝法“心痛灵Ⅱ号”对冠心病心绞痛患者血脂代谢及内皮功能的影响.中国中医急症,2003,12(5):392
    37.王文,王宗仁,张金洲,等.芪丹通脉片对大鼠缺血心肌的血管新生作用与机制研究.中国中医急症,2007,16(2):190
    38.丘瑞香,冯君,孟君.心脉通胶囊对急性心肌梗塞患者存活心肌保护作用的临床观察.中医杂志,2003,44(8):598
    39.邢之华,易亮,刘卫平,等.保心汤对稳定型心绞痛患者血管新生相关因子的影响.中国康复,2006,21(1):21
    40.金远林,王海燕,邱幸凡,等.祛瘀生新法对脑梗死大鼠治疗性血管新生作用及机制研究.中国中医急症,2006,15(6):632
    41.虢灿杰,唐涛,罗杰坤,等.益气活血法对脑出血大鼠脑组织促血管生成素-1及其受体表达的影响.中国中西医结合急救杂志,2007,14(3):1381
    42.刘小娟,唐涛,罗杰坤,等.补阳还五汤对脑出血大鼠血管内皮生长因子mRNA表达的影响.中药新药与临床药理,2007,18(2):109
    1. Folkman J. Angiogenic therapy of the human heart. Circulation 1998,97:807-811
    2. Staton CA, Reed MW, Brown NJ. A critical analysis of current in vitro and in vivo angiogenesis assays. Int J Exp Pathol.2009,90(3):195.
    3. Ribatti D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol.2008,270:181.
    4. Saw CL, Heng PW, Liew CV. Chick chorioallantoic membrane as an in situ biological membrane for pharmaceutical formulation development:a review. Drug Dev Ind Pharm.2008,34(11):1168.
    5. 李贻奎,宁可永,梁嵘等.大鼠冠状动脉结扎心肌缺血模型方法的改进.中国新药杂志,2005;14(4):427-428
    6. Kirchner LM, Schmidt SP, Gruber BS. Quantitation of angiogenesis in the chick chorioallantoic membrane model using fractal analysis. Microvas Res 1996,51(1): 2.
    7. Mukherjee D, Bhatt DL, Roe MT, et al. Direct myocardial revascularization and angiogenesis-how many patients might be eligble? Am J Cardiol,1999, 84(5):598-600,A8
    8. Dusseau JW, Hutchins PM, Malbasa DS, et al. Stimulation of angiogenesis by adenosine on the chick chorioallantoic membrane. Circ Res,1986,59(2):163.
    9.许扬,赵英凯,毕明刚Image-Pro Plus图像分析软件定量鸡胚尿囊膜血管新生面积的方法.中国比较医学杂志,2007,17(12):745.
    1.凌海燕,鲁学照,赵咏丽,等.丹参水溶性成份的研究概况.天然产物研究与开发,1999,11(1):75,杜冠华,张均田.丹参现代研究概况与进展.医药导报,2004,23(6):355
    2. 孙宇扬.双参宁心胶囊干预心肌缺血的分子机制研究.中国中医科学院,2003级博士研究生学位论文
    3. 张曼,周爱儒,汤健.血管发生和发展的分子机制.生理科学进展,1999,30(1):67.
    1. Celermajer DS. Endothelial dysfunction:does it matter? Is it reversible? J Am Coll Cardiol 1997;30:325-33.
    2. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-967.
    3. Isner JM, Asahara T. Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J Clin Invest.1999,103(9):1231-6.
    4. Asahara T, Masuda H, Takahashi T, et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res.1999,85(3):221-228.
    5. Edelberg JM, Tang L, Hattori K, et al. Young adult bone marrow-derived endothelial precursor cells restore aging-impaired cardiac angiogenic function. Circ Res.2002,90(10):E89-93.
    6. Zhang ZG, Zhang L, Jiang Q, et al. Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse. Circ Res.2002,90(3):284-8.
    7. Crosby JR, Kaminski WE, Schatteman Q et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res. 2000,87(9):728-30.
    8. Werner N, Junk S, Laufs U, et al. Intravenous transfusion of endothelial progenitor cells reduces neointima formation after vascular injury. Circ Res,2003, 93(2):e17-e24.
    9. Griese DP, Ehsan A, Meio LG, et al. Isolation and transplantation of autologous circulating endothelial cells into denuded vessels and prosthetic grafts: implications for cell-based vasculr therapy. Circulation,2003,108(21):2710-2715.
    10. Vasa M, Fichtlseherer S, Aicher A,et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease.Circ Res,2001; 89(1):E1-E7.
    11. Daniel P. Sieveking, Andrew Buckle, David S. Celermajer, et al. Strikingly Different Angiogenic Properties of Endothelial Progenitor Cell Subpopulations. Journal of the American College of Cardiology,2008,51(6):660-668
    12. AsaharaT, Masuda H, Tak ahashi T,et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization.Circ Res.1999,85(3):221
    13. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC133 by circulating human CD34 (+) cells identifies a population of functional endothelial precursors. Blood 2000;95:952-8.
    14. Loomans CJ, Wan H, de Crom R, et al. Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression. Arterioscler Thromb Vasc Biol 2006;26:1760-7.
    15. Rohde E, Malischnik C, Thaler D, et al. Blood monocytes mimic endothelial progenitor cells. Stem Cells 2006;24:357-67.
    16. Schmeisser A, Garlichs CD, Zhang H, et al. Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 2001;49:671-80.
    17. Zhang SJ, Zhang H, Wei YJ, et al. Adult endothelial progenitor cells from human peripheral blood maintain monocyte/macrophage function throughout in vitro culture. Cell Res 2006; 16:577-84.
    18. Lin Y, Weisdorf DJ, Solovey A, et al. Origins of circulating endothelial cells and endothelial outgrowth from blood. J Clin Invest 2000;105:71-7.
    19. Yoon CH, Hur J, Park KW, et al. Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells:the role of angiogenic cytokines and matrix metalloproteinases. Circulation 2005;112:1618-27.
    1. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-967.
    2. Werner N, Kosiol S, Schiegl T, et al. Circulating Endothelial Progenitor Cells and Cardiovascular Outcomes. N Engl J Med 2005;353:999-1007.
    3. 陈晓锋,唐礼江,朱敏.丹参酮ⅡA对外周血内皮祖细胞增殖、粘附和迁移功能的影响.中国药理学通报.2007,23(2):274-275
    4.杜冠华,张均田.丹参水溶性有效成分——丹酚酸研究进展.基础医学与临床.2000,20(5):394-398
    5. Walter DH, Rittig K, Bahlmann FH, et al. Statin therapy accelerate reendothelialization. Circulation,2002,105(25):3017-3024
    6. Wang X, Chen J, Tao Q, et al. Effects of ox-LDL on number and activity of circulating endothelial progenitor cells. Drug Chem Toxicol,2004,27(3):243-255
    7. Vasa M, Fichtlscherer S, Aicher A, et al. Number and migratory activity of circulating endothelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res,2001,89 (1):E1-7
    8. Peichev M, Naiyer AJ, Pereira D, et al. Expression of VEGFR-2 and AC 133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood,2000,95 (3):952-958.
    9. Murohara T, Tepper O, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization. Exp Hematol,2002,30 (8):967-972
    10. Suzuki T, Nishida M, Futami S, et al. Neoendothelialization after peripheral blood stem cell transplantation in humans. A case report of a Tokaimura nuclear accident victim.Cardiovasc Res,2003,58 (2):487-492.
    11. Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med,2003,348(7):593-600.
    12. Kalka C, Masuda H, Takahashi T, et al.Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci USA2000,97:3422-7.
    13. Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of ex vivo expanded endothelial progenitor cells for myocardial ischemia. Circulation 2001,103:634-7.
    14. Rafii S, Lyden D. Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 2003,9:702-12.
    15. Walter DH, Rittig K, Bahlmann FH, et al. Statin Therapy Accelerates Reendothelialization A Novel Effect Involving Mobilization and Incorporation of Bone Marrow-Derived Endothelial Progenitor Cells[J]. Circulation 2002, 105;3017
    16.韩景献,韩力.注射用丹参总酚酸治疗缺血性中风瘀血阻络证临床研究.天津中医药,2005,22(4):287-288
    17.徐杰,范维琥.丹参多酚酸盐对人血管内皮细胞迁移的影响.中西医结合学报,2003,1(3):211-214.
    18. Taniyama Y, Griendling KK. Reactive oxygen species in the vascularture: Molecular and mechanisms. Hypertension 2003;42:1075-1081
    19. Cai H, Harrison DG Endothelial dysfuntion in cardiovascular diseases:The role of oxydant stress. Circ Res 2000; 87:840-844
    20. Annuk M, Zilmer M, Fellstrom B. Endothelium dependent vasodilation and oxidative stress in chronic renal failure:impact on cardiovascular disease. Kidney Int Suppl.2003:S50-53.
    21. Sattler M, Winkler T, Verma S, et al. Hematopoietic growth factors signal through the formation of reactive oxygen species. Blood.1999,93:2928-2935.
    22. Droge W. Free radicals in the physiological control of cell function. Physiol Rev. 2002;82:47-95.
    23. Vafa O, Wade M, Kern S, et al. c-Myc can induce DNA damage, increase reactive oxygen species, and mitigate p53 function:a mechanism for oncogene-induced genetic instability. Mol Cell.2002;9:1031-1044.
    24. Dernbach E, Urbich C, Brandes RP, et al. Antioxidative stress-associated genes in circulating progenitor cells:evidence for enhanced resistance against oxidative stress. Blood,2004,104:3591-3597
    1 潘迎锋,张建兵,丁洁,等.丹酚酸A的药理研究进展.中国中医药科技.2008,15(4):294
    2 Lerman Amir. Restenosis:Another "dysfunction"of the endothelium. Circulation, 2005,111 (1):8-10., Ross R. Atherosclerosis:An inflammatory disease. N Engl J Med.1999,340:115-126.
    3 Werner N, Junk S, Laufs U, et al. Intravenous Transfusion of Endothelial Progenitor Cells Reduces Neointima Formation After Vascular Injury. Circ. Res. 2003,93(2):e17-24
    4 Balin AK, Fisher AJ, Anzelone M, et al. Effects of establishing cell cultures and cell culture conditions on the proliferative life span of human fibroblasts isolated from different tissues and donors of different ages. Exp Cell Res.2002; 274: 275-287.
    5 Ohshima M, Li TS, Kubo M, et al. Antioxidant Therapy Attenuates Diabetes-Related Impairment of Bone Marrow Stem Cells. Circ J.2009,73:162-166
    1.李贻奎,宁可永,梁嵘等.大鼠冠状动脉结扎心肌缺血模型方法的改进.中国新药杂志,2005,14(4):427-428
    2. Weidner N, Semple JP, Welch WR, et al. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N Engl J Med. 1991,324(1):1-8.
    3. Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 1997;275:964-967.
    4. Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A.2000,97(7):3422-3427.
    5. Hristov M, Erl W, Weber PC. Endothelial progenitor cells:mobilization, differentiation, and homing. Arterioscler Thromb Vasc Biol. 2003,23(7):1185-1189.
    6. Ingram DA, Mead LE, Moore DB, et al. Vessel wall-derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood.2005,105(7):2783-2786.
    7. Schaper W, Ito WD. Molecular mechanisms of coronary collateral vessel growth. Circ Res.1996,79(5):911-919.
    8. Silva BB, Lopes-Costa PV, dos Santos AR, et al. Comparison of three vascular endothelial markers in the evaluation of microvessel density in breast cancer. Eur J Gynaecol Oncol.2009,30(3):285-288.
    9. Papayannopoulou T. Current mechanistic scenarios in hematopoietic stem/progenitor cell mobilization. Blood.2004;103:1580-1585.
    10. Tashiro K, Tada H, Heilker R, et al. Signal sequence trap:a cloning strategy for secreted proteins and type I membrane proteins. Science,1993,261:600—603
    11. Murdoch C. CXCR4:chemokine receptor extraordinaire. Immunol Rev.2000, 177:175-84.
    12. Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost.2000;26(5):561-9.
    13. McQuibban GA, Butler GS, Gong JH, et al. J Biol Chem.2001,276(47):43503-8. Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1.
    14. Valenzuela-Fernandez A, Planchenault T, Baleux F, et al. Leukocyte elastase negatively regulates Stromal cell-derived factor-1 (SDF-1)/CXCR4 binding and functions by amino-terminal processing of SDF-1 and CXCR4. J Biol Chem. 2002,277(18):15677-89.
    15. Heissig B, Hattori K, Dias S, et al. Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell. 2002;109:625-637.
    16. Petit I, Szyper-Kravitz M, Nagler A, et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol. 2002,3(7):687-94
    17. Hattori K, Heissig B, Tashiro K, et al. Plasma elevation of stromal cell-derived factor-1 induces mobilization of mature and immature hematopoietic progenitor and stem cells. Blood.2001,97(11):3354-60.
    18. Hiasa K, Ishibashi M, Ohtani K, et al. Gene transfer of stromal cell-derived factor-1 alpha enhances ischemic vasculogenesis and angiogenesis via vascular endothelial growth factor/endothelial nitric oxide synthase-related pathway: next-generation chemokine therapy for therapeutic neovascularization. Circulation.2004,109(20):2454-61.
    19. Togel F, Isaac J, Hu Z, et al. Renal SDF-1 signals mobilization and homing of CXCR4-positive cells to the kidney after ischemic injury. Kidney Int.2005, 67(5):1772-84.
    20. De Falco E, Porcelli D, Torella AR, et al. SDF-1 involvement in endothelial phenotype and ischemia-induced recruitment of bone marrow progenitor cells. Blood.2004,;104(12):3472-82.
    21. Yamaguchi J, Kusano KF, Masuo O, et al. Stromal cell-derived factor-1 effects on ex vivo expanded endothelial progenitor cell recruitment for ischemic neovascularization. Circulation.2003,107(9):1322-8.
    22. Christopherson KW 2nd, Hangoc G, Mantel CR, Broxmeyer HE:Modulation of hematopoietic stem cell homing and engraftment by CD26. Science, 2004,305:1000-1003
    23. Takahashi T, Kalka C, Masuda H, et al. Ischemia and cytokine-induced mobilization of bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med.1999;5:434-438.
    24. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation. 2001;103:2776-2779.
    25. Young PP, Hofling AA, Sands MS. VEGF increases engraftment of bone marrow-derived endothelial progenitor cells (EPCs) into vasculature of newborn murine recipients. Proc Natl Acad Sci USA.2002;99:11951-11956.
    26. Kalka C, Masuda H, Takahashi T, et al. Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res.2000;86:1198-1202.
    27. Flamme I, Breier G, Risau W. Vascular endothelial growth factor (VEGF) and VEGF receptor 2 (flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol.1995;169:699-712.
    28. Rafii S, Heissig B, Hattori K. Efficient mobilization and recruitment of marrow-derived endothelial and hematopoietic stem cells by adenoviral vectors expressing angiogenic factors. Gene Ther.2002;9:631-641.
    29. Asahara T, Takahashi T, Masuda H, et al. VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J.1999; 18:3964-3972.
    30. Lee SH, Wolf PL, Escudero R, Deutsch R, Jamieson SW, Thistlethwaite PA. Early expression of angiogenesis factors in acute myocardial ischemia and infarction. N Engl J Med.2000;342:626-633.
    31. Pillarisetti K, Gupta SK. Cloning and relative expression analysis of rat stromal cell derived factor-1 (SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction. Inflammation.2001;25:293-300.
    32. Petit I, Jin D, Rafii S. The SDF-1-CXCR4 signaling pathway:a molecular hub modulating neo-angiogenesis. Trends Immunol 2007; 28:299-307.
    33. Chavakis E, Urbich C, Dimmeler S. Homing and engraftment of progenitor cells: a prerequisite for cell therapy. J Mol Cell Cardiol 2008; 45:514-22.
    34. Gill M, Dia S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR-2+AC133+endothelial precursor cells. Circ Res. 2001;88:167-174.
    35. Rafii S, Meeus S, Dias S, et al. Contribution of marrow-derived progenitors to vascular and cardiac regeneration. Semin Cell Dev Biol.2002; 13:61-67.
    36. Murayama T, Tepper OM, Silver M, et al. Determination of bone marrow-derived endothelial progenitor cell significance in angiogenic growth factor-induced neovascularization in vivo. Exp Hematol.2002; 30:967-972.
    37. Kollet O, Spiegel A, Peled A, et al. Rapid and efficient homing of human CD34(+)CD38(-/low)CXCR4(+) stem and progenitor cells to the bone marrow and spleen of NOD/SCID and NOD/SCID/B2m(null) mice. Blood.2001 May 15;97(10):3283-91.
    38. Askari AT, Unzek S, Popovic ZB, et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet. 2003;362:697-703
    39. Mohle R, Bautz F, Rafii S, et al. The chemokine receptor CXCR-4 is expressed on CD34+hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood. 1998;91:4523-4530.
    40. Kahn J, Byk T, Jansson-Sjostrand L, et al. Overexpression of CXCR4 on human CD34+progenitors increases their proliferation, migration, and NOD/SCID repopulation. Blood.2004,103(8):2942-9.
    41. Banai S, Shweiki D, Pinson A, et al. Upregulation of vascular endothelial growth factor expression induced by myocardial ischaemia:implicationsfor coronary angiogenesis. Cardiovasc Res,1994,28:1176-1179
    42. Waltenberger J, Kranz A, Beyer M. Neovascularization in the human heart is associated with expression of VEGF-A and its receptors Flt-1 (VEGFR-1) and KDR (VEGFR-2). Results from cardiomyopexy in ischemic cardiomyopathy. Angiogenesis.1999;3(4):345-51.
    1. Lenfant C. NHLBI at 50:reflections on a half-century of research on the heart, lungs, and blood. National Heart, Lung, and Blood Institute, Interview by Charles Marwick. JAMA.1998,280 (24):2062-064
    2. Murray CJ, Lopez AD. Alternative projections of mortality and disability by cause 199022020:Global Burden of Disease Study. Lancet.1997,349:1498-1504
    3. Gu DF,Wu XG, Xin X,et al. Prevalence of cardiovascular disease in China:The International Collaborative Study of Cardiovascular disease in ASIA (inter ASIA) [R].42nd Annual Conference on Cardiovascular Disease Epidemiology and Prevention. American Heart Association Fighting Heart Disease and Stroke April 2002 Hawall
    4. Bittl JA. Advances in coronary angioplasty. N Eng J Med.1996,335:1296-1299
    5. Losordo DW, Isner JM,et al. Gene therapy for myocardial angiogenesis. Am Heat J.1999,138:s132-s141
    6. Folkman J. angiogenic therapy of the human heart. Circulation,1998,97:807-811
    7. Luttun A,Carmeliet P. De novo vasculogenesis in the heart. Cardiovascular Research,2003,58:378-389
    8. Asahara T, Masuda H, Takahashi T,et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological and pathological neovascularization. Circ Res.1999,85:221-228
    9.汪姗姗,李勇,范维虎,等.麝香保心丸对实验性心肌梗塞大鼠心脏的促血管生成作用.中成药.2002,24(6):446-449
    10. Yanagisawa-Miwa A, Uchida Y, Nakamura F, et al. Salvage of infarcted myocardium by angiogenic action of basic fibroblast growth factor. Science.1992, 257(5075):1401-1403.
    11. Ribatti D. Chick embryo chorioallantoic membrane as a useful tool to study angiogenesis. Int Rev Cell Mol Biol.2008,270:181.
    12. Saw CL, Heng PW, Liew CV. Chick chorioallantoic membrane as an in situ biological membrane for pharmaceutical formulation development:a review. Drug Dev Ind Pharm.2008,34(11):1168.
    13.Vasa M, Fich tlscherer S, Aicher A, et al. Number and migratory activity of circulating endo-thelial progenitor cells inversely correlate with risk factors for coronary artery disease. Circ Res.2001,89:E1-E7.
    14. Hill GM, Zalos G, Halcos GPJ, et al. Halcox Circulating Endothelial P rogenitor Cells. Vascular Function and Cardiovascular R isk. N Engl J Med.2003,348: 593-600
    15. Shintani S, Murohara T, Ikeda H, et al. Mobilization of endothelial progenitor cells in patients with acute myocardial infarction. Circulation.2001,103: 2776-2779.
    16. Gill M, Dias S, Hattori K, et al. Vascular trauma induces rapid but transient mobilization of VEGFR2 (+)AC133 (+) endothelial precusor cells. Circ Res. 2001,88:167-174.
    17. Werner N, Priller J, Laufs U. Bone marrow-derived progenitor cells modulate vascular reendo-thelialization and neointimal formation:effect of 3-hydroxy-3-methylglutaryl coenzyme a reductase inhibition. Arterioscler Thromb Vasc Biol.2002,22:1567-1572.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700