用户名: 密码: 验证码:
紫外临边成像光谱仪的热控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在80年代,空间遥感技术得到了飞跃性的发展,出现了一种新型的遥感器
     成像光谱仪。它是一种既能够接收地物目标的影像又能够接收观测目标的光谱组成的遥感器,是一种性能完备、谱像合一的遥感器,本身获得的数据具有波段多、光谱分辨率高等特点。空间紫外光学遥感技术是除可见、近红外、热红外和微波遥感以外的一个具有突出优势的遥感领域。随着遥感技术的发展,大气遥感被广泛应用于气象卫星、空间实验室、飞机和地面气象观测。随着人类对大气遥感研究的深入,空间电离层高层大气对人类的意义越来越重要,高层大气遥感成为了地球空间科学所关注的重点。为此我们国家也开展了对这一技术的研究,开展了地球临边成像光谱仪这种新型的空间光学遥感仪器的科研工作。为了保证临边成像光谱仪在星载轨道上的正常运行,热控分系统的合理可靠和有效是整个工程设计的一个重要任务。在空间环境中,温度成为了影响光学系统成像质量的主要影响源,如何采取简单、有效的热控措施,保证光谱仪在空间热环境下具有可靠的光学性能和成像质量是首要任务。
     本文以正在研制的XX-X临边成像光谱仪为研究对象,开展热控技术研究工作,从系统工程观点出发,针对光谱仪系统整个应用生命周期,根据光谱仪的结构特点和飞行任务的要求,以及飞行环境的约束,提出了合理的热设计方案,提出针对紫外波段空间遥感器的热控需求。
     论文简要概述了成像光谱仪和紫外光学遥感器的发展现状及趋势,分析了紫外光学遥感器采用热控技术的必要性,结合国内外紫外光学遥感器热控技术,总结了紫外光学遥感器热控技术的特点。
     论文从临边光谱成像仪的结构特点、工作环境和温度场分布的影响因素入手,分析XX-X紫外临边成像光谱仪的热控需求,以及热控任务,总结了紫外临边成像光谱仪热控制技术的难点,提出了详细的热设计方案,包括前向光谱仪、环形成像仪、紫外电控箱等重要部件的热设计。
     论文建立了紫外临边成像光谱仪的有限元热模型,对热控系统进行了热分析。通过对光谱仪的分析计算结果,对光谱仪的热设计进行优化修改,最终确定紫外临边成像光谱仪在轻量化、小型化的工程设计特点下的热设计方案。
     论文根据成像光谱仪各个组成部分的热源分布情况以及所处环境条件,确定高低温极端工况,利用IDEAS有限元软件对高低温工况各个阶段进行了仿真计算,分析结果表明热控方案满足系统要求。
     论文对光谱仪进行热光学试验和热真空平衡试验,证明了理论分析的准确性和温控指标的合理性,并获得了稳定、清晰的高质量图像。试验结果表明,热控方案正确、有效,满足了热控指标。
     紫外临边成像光谱仪热控制技术的研究,为今后的紫外多波段空间光学遥感器的研究发展奠定了技术基础。
In the1980s, space remote sensing technology achieve great development, anew kind of remote sensor called imaging spectrometer was developed.Imagingspectrometer can receive the image of object target and receive the spectrum ofobservation targt,it is a perfect performance remote sensors. The data obtained havecharacteristics with band, high spectral resolution, etc. In addition to visible, nearinfrared, thermal infrared and microwave remote sensing, space ultraviolet remotesensing technology is one who has a prominent advantage of remote sensingfield.With the development of remote sensing technology, atmospheric remotesensing is widely used in meteorological satellite, aircraft and ground meteorologicalobservation, space laboratory. With the deepening of atmospheric remote sensingresearch, the meaning of ionosphere upper atmosphere is more and more importantfor human space, the upper atmosphere remote sensing becomes the focus by theearth's space science. In our country has carried out the study of this technology,carried out the earth limb imaging spectrometer the scientific work of this new typeof space optical remote sensing instruments. In order to ensure that the limb imagingspectrometer in the spaceborne orbit can normal operation, an important task of thewhole project design is the rationality, reliability and validity of thermal controlsubsystem. In the space environment, temperature is the major impact source of theimaging quality by optical system. The priority used simple and effective thermal control measures to ensure the spectrometer in space thermal environment hasreliable optical performance and image quality.
     This paper is being developed XX-X limb imaging spectrometer for the study,carried out thermal control technology research, from systems engineering point ofview, for the spectrometer system throughout the application lifecycle,according tothe requirement of the structural characteristics、mission and the flight conditions ofspectrometer, put forward a reasonable thermal design,and put forward thermalcontrol requirements for space ultraviolet remote sensor
     Paper provided a brief overview of development present situation and trend forimaging spectrometer and ultraviolet remote sensor. Analysis the necessity ofthermal control technology of the ultraviolet remote sensor, combined with thethermal control technology of ultraviolet optical remote sensor in domestic andoverseas, summarizes the characteristics of the ultraviolet remote sensing thermalcontrol technology.
     Papers from the structural characteristics of limb imaging spectrometer, theworking environment and factors influencing of temperature distribution, analyzesthermal control needs of XX-X ultraviolet limb imaging spectrometer and thermalcontrol task, summed up the ultraviolet imaging spectrometer which have thermalcontrol technology difficulties, propose a detailed thermal design, including theforward spectrometer, annular imager, UV-electric control boxes and other thermaldesign.
     Paper established a finite element thermal model of ultraviolet limb imagingspectrometer, make thermal analysis for thermal control system. Through theanalysis and calculation results of the spectrometer, optimize the thermal design ofthe spectrometer, eventually determine the engineering characteristics of lightweightminiaturization of thermal design scheme.for ultraviolet imaging spectrometer.
     Paper according to each component in the imaging spectrometer of heatdistribution and environment conditions, determine the extreme working condition of high and low temperature, low temperature working condition of each stage tomake use of finite element software IDEAS for the simulation calculation, theanalysis results show that thermal control scheme satisfies the requirement ofsystem.
     Papers do experiment of spectrometer, including thermal vacuum balance testand thermal optical test. Experiments prove the rationality of the theoretical analysisand the accuracy of temperature control index, and obtain high quality images. Thetest results show that the thermal control scheme is correct, effective and meet thethermal control indicators.
     The study of thermal design for limb imaging spectrometer in the future, laid asolid technical foundation for ultraviolet multichannel space optical remote sensorresearch and development.
引文
[1]吕达仁,陈泽宇,卞建春等.平流层-对流层相互作用的多尺度过程特征及其与天气气候关系研究进展[J],大气科学,2008,32(4):782-793.
    [2]都亨.空间环境科学进展[J].空间环境科学进展,2000,20(增刊):7-14.
    [3] Klecker. Energetic Partices Envienment Near-Earth Orbit [J]. Adv. Space.1996,17(2):37-50.
    [4] Meier R R. Ultraviolet spectroscopy and remote sensing of the upper atmosphere[J]. Space Sci. Rev,1990,91:1-185.
    [5] Flittner David E, Hilsenrath Ernest, Janz Scott J, et al. Retrievals from the LimbOzone Retrieval Experiment on STS107[J]. SPIE,2004,5542:215-226.
    [6] Joseph C L. Advances in Astronomical UV Image Sensors and AssociatedTechnologies [J].SPIE:(2999):244-258.
    [7] Caruthers G R, Seeley T D. Global Imaging Monitor of the Ionosphere (G IMI): aFar-Ultraviolet Imaging Experiment on ARGOS [J].SPIE:(2831):65-93
    [8]田剑华,范全福.高层大气及其预报研究对航天飞行的重要性[J].环境模技术,1999,58(1):39-46.
    [9]黄建国,陈东.不同接地方式的卫星介质深层充电研究[J].物理学报,2004,53(5):1611-1616.
    [10]建村,都亨.美国空间探测研究中的军事应用目的初探[C].2000年航天高技术学术研讨会论文集,2000:15-20.
    [11]于磊.空间电离层高层大气遥感天底临边成像光谱仪研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2012
    [12]李天宏,杨海宏,赵永平成像光谱仪遥感现状与展望[J].《遥感技术与应用》,1997,8(6):45-49
    [13]郭亮.基于灵敏度分析的空间高光谱成像仪热控制技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2013
    [14]李幼平,禹秉熙,韩昌元,等.成像光谱仪工程权衡优化设计的光学结构[J].光学精密工程,z006,14(6):974979.
    [15]冯玉涛,向阳.谱线弯曲对成像光谱仪辐射信号采集的影响[J].光学精密工程,2009,17(1):20-25.
    [16]郑兰芬,王晋年.成像光谱遥感技术及其图像光谱信息提取的分析研究[J].环境遥感,1992,7(1):49~59.
    [17]徐冠华,田国良,王超,等.遥感信息科学的进展和展望[J].地理学报,1996,51(5):385~397.
    [18]李旭文.光谱遥感数据波形分析法的应用[J].环境遥感,1992,7(3):216~225
    [19]Kruse F A,Lefkoff A B, Boardman J W, et al. The Spectral Image ProcessingSystem (SIPS) Interactive Visulization and Analysis of Imaging Spectrometer Data [J].Remote sens Environ,1993,44,145~163.
    [20]Vane G, Goetz A HF. Terrestial Imaging Spectrometer-Current Status, FutureTrends[J]. Remote Sens Environ,1993,44,117~126.
    [21]郑跃鹏,曾新平,蔡劲宏.近年遥感技术新进展及几点思考[J].矿产与地质:2004,8(1):7~12
    [22]张晶,王淑荣,黄煜,薛庆生,李博.临边成像光谱仪的发展现状与进展[J].中国光学:2013,6(5):32-37
    [23]薛庆生.用于空间大气遥感的临边成像光谱仪研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2010.
    [24]Goetz A H F. Terrestial Imaging Spectromeer: Current Status, Future Trends[J].Remote Sens Environ:1993,44,117~126
    [25]Elvidge CD, Chen Z, Groeneveld D P. Detection of Trace Quantities of GreenVegetation in1990AVIRIS Data [J]. Remote Sens Environ:1993,44,271~279.
    [26]Michio Shibaryama, Tsuyoshi Akiyama. Estimating Grain Yield of MaturingRice Canopies Using High Spectral Resolution Reflectance Measurement [J]. RemoteSens Environ,1991,36:45~53.
    [27]Hamilton M K, Davis C O, Rhea W J, et al. Estimating Chlorophyll Contentand Bathymetry of Lake Tahoe Using AVIRIS Data. Remote Senser Environ,1993,44:217~230.
    [28]Carrere V,Conel J E. Recovery of Atomospheric Water Vapor Total ColumnAbundance from Imaging Spectrometer Data Around940nm-Sensitivity Analysisand Application to Airborne Visible Infrared Imaging Spectrometer(AVRIS) Data[J].Remote Senser Environ,1993,44:179~204
    [29]DAVIDE,ERNESTH,SCOTTJJ,et al.Etrievals from the limbo zone retrievalexperiment onSTS107[J]. SPIE,2004,5542:215-226.
    [30]FLITTNERDE,HILSENRATHE,JANZSJ,et al.Retrievals from the limbozone retrieval experiment onSTS107[J].SPIE,2004,5542:215-226.
    [31]MCLINDENCA, HALEYCS. Odin/OSIRIS observations of stratosphericthrough sunrise and sunset[J]. Atoms.Chem.Phys.Discuss:2008,8:5901-5917.
    [32]BOVENSMANNH, BUCHWITZM, FRERICKJ, et al. SCIAMACHY onENVISAT: n-flight optical performance and firstresults [J]. SPIE,2004,5235:160-173.
    [33]LIEWELLYNEJ, LILOYDND, DEGENSTEINDA, et al. The OSIRISinsrument on the Odin spacecraft[J]. Can.J.Phys:2004,82:411-422.
    [34]张宗贵.基于谱学的成像光谱遥感技术发展与应用[J].国土资源遥:2000,7(10)
    [35]孙林.航空成像光谱仪的发展和在侦察中的应用[J].遥感信息:2010,6:45-49
    [36]刘玉娟.凸面光栅成像光谱仪的研制与应用[J].光学精密工程:2012,32(1):
    [37]郑玉权.小型光谱成像系统的设计[J].光学精密工程:Z005,13(6):650-657.
    [38]冯玉涛,向阳.谱线弯曲对成像光谱仪辐射信号采集的影响[J].光学精密工程:2009,17(1):20-25.20-25.
    [39]蒋青松.成像光谱仪的光谱分辨率技术[J].红外激光工程:2001,3(10):55-62
    [40]齐向东.凸面光栅成像光谱仪的光谱定标[J].光学精密工程:2011,31(12):60-66
    [41]崔继承.成像光谱仪一体化设计[J].光谱学与光谱分析:2012,3:33-40
    [42]李泽学.高分辨率超光谱成像仪热控关键技术研究[D]:[博士学位论文].长春:中国科学院长春光学精密机械与物理研究所,2008.
    [43]唐义.极远紫外临边成像光谱仪在空间科学中的应用与展望[J].航天返回与遥感2011,45(5):66-70
    [44]Larruquert JI, Keski-Kuha RAM. Multilayer Coatings with High Reflectance inthe Extreme-Ultraviolet Spectral Range of50to121.6nm[J].Applied Optic:1999,387:1231-1236
    [45]阮宁娟,苏云.国外紫外空间探测器发展综述[J].航天返回与遥感,2008,29(3):71-78
    [46]CHEN SH B.A new technique for atmospheric chemistry observations[J].SPIE:2006.6031R-1-6031-7
    [47]朱敏波.星载大型可展开天线热分析技术研究[D]:[博士论文].西安:西安电子科技大学,2007
    [48]陈恩涛,卢锷.空间光学遥感器的热控制技术[J].光机电信息,2000,17(12):12-16.
    [49]贾震江.卫星热分析建模方法研究[D]:[硕士论文].南京:南京理工大学2004
    [50]杨品.星载天线扫描机构热控分析及优化研究出处[D]:[硕士论文].重庆:重庆大学,2012
    [51]侯增祺胡金刚.航天器热控制技术-原理及其应用[M]
    [52]盛磊.空间光学遥感器发展对新材料的需求[J].新材料产业:2011,10:56-62
    [53]王栋,杨洪波,陈长征.光学表面面形的计算机仿真[J].计算机仿真:2007,4(2):298-301.
    [54]罗传伟,焦明印.光学系统折射率温度效应的模拟计算[J].应用光学:2008,29(2):234-239.
    [55]吴清彬.空间光学遥感器光机系统结构设计若干关键技术的研究[D]:[硕士论文].哈尔滨:哈尔滨工业大学,2003
    [56]孙德伟.空间红外遥感器机械系统及其关键技术研究[D]:[硕士论文]》哈尔滨:哈尔滨工业大学,2011
    [57]罗志涛,徐抒岩,陈立恒.大功率焦平面器件的热控制[J].光学精密工程:2008,16(11):2188-2192.
    [58]陈恩涛,卢锷.空间遥感器CCD组件热设计[J].光学精密工程:2000,8(6):522-525.
    [59]李国强,贾宏. CCD组件的热分析和热试验[J].航天返回与遥感:2003,24(3):15-18.
    [60]郭亮,吴清文,颜昌翔,等.光谱成像仪CCD组件的稳态/瞬态热分析与验证[J].光学精密工程:2010,18(11):2375-2383.
    [61]陈江平.阿波罗登月飞行器热控系统方案概述[J].载人航天:2012,15(3):44-47
    [62]赵立新,邵英.空间望远镜的热设计和热光学分析综述[J].航天返回与遥感:2001,21(1):22-26
    [63]J.M. Defise1.Lessons learned from the thermal design of an instrument (EIT, theExtreme-UV Imaging Telescope) onboard SOHO.University of Liège27thInternational Conference on Environmental Systems; Lake Tahoe, Nevada, July1997.22(2):13-19.
    [64]J.-P. DELABOUDINII~RE, G. E. ARTZNER, J. BRUNAUD, A. H. GABRIEL, J.F. HOCHEDEZ, F. MILLIER, X. Y. SONG. EIT: EXTREME-ULTRAVIOLETIMAGING TELESCOPE FOR THE SOHO MISSION[C]. Proc. SPIE:2002,291-312.
    [65]J. F. Carbary, E. H. Darlington, T. J. Harris, P. J. McEvaddy, M. J. Mayr,K.Peacock,C.Meng. Ultraviolet and visible imagingand spectrographic imaginginstrument[J]. APPLIED OPTICS:1994,33(19):4201-4213.
    [66]L. J. Paxton, A. B. Christensen, D. Morrison, B. Wolven, H. Kil, Y. Zhang, B.S.Ogorzalek. GUVI: A Hyperspectral Imager for Geospace[C]. SPIE, Bellingham,WA:2004,228-240.
    [67]T Jagemann, N Rando, D Doyle, et al. Results of the ESA internal assessmentstudy of the European contribution to SPICA [C]. Proc. SPIE:2008,7082,70820Z:1-11
    [68]M.W.Werner, T.L.Roellig,F.J. Low, et al. The Spitzer space telescope mission[J].The Astrophysical Journal Supplement Series:2004,154:1-9.
    [69]Herschel observers’ manual [M]. HERSCHEL-HSC-DOC-0876, version4.1.4(End of Cold Mission version),2013:14-19.
    [70]李蓉.空间太阳望远镜主光学望远镜热效应分析.航天返回与遥感:2001,31(12):32-39
    [71]向艳超.嫦娥一号卫星热控系统及其特点[J].航天器工程:2008,5:14-19
    [72]郭义琪,刘小宝.“探测一号”卫星在轨运行及问题分析[J].航天返回与遥感:2010,42(9):98-103
    [73]闵桂荣等.卫星热控制技术[M].第1版.北京:宇航出版社.1991.
    [74]罗彪,温志渝,温中泉,曾甜玲.面向微小型紫外光谱仪的凹面光栅模拟与设计[J].光谱学与光谱分析:2012,32(6):1717-1721.
    [75]D.S.Theodore, C.B.Gajanana. NASA thermal control technologies for roboticspacecraft [J]. Applied Thermal Engineering,:2003,23:1055-1065.
    [76]P.Giesen,E.Folgering. Design guidelines for thermal stability in opto-mechanicalinstruments [C]. SPIE:2003,5176:126-134.
    [77]S. Yoshiki, N. Shinichi, H. Kenji, et al. Structure and thermal control of panelextension satellite [J]. Acta Astronautica,2009,65:958-966.
    [78]XIN G M, N. CHEN Y, CHENG L, et al. Simulation of a LHP-basedthermal control system under orbital environment [J].Applied ThermalEngineering:2009,29:2726-2730.
    [79]王领华.高分辨率可见光航空相机的热设计及热分析[J].红外与激光工程:2012,15:55-63
    [80]巩岩.空间极紫外成像望远镜及其检测技术[J].中国光学:2011,28(7):347-352.
    [81]陈立恒.基于热光学技术的空间光学系统热设计[J].中国光学与应用光学:2010,33(10):55-61
    [82]章俞之,曹韫真,吴岭南,宋力昕,陈杰锋.几种热控涂层的真空-紫外辐照试[J].航天器环境工程:2011,28(2):126-131.
    [83]杨明.控涂层参数对卫星辐射特性的影响[J].航天电子对抗:2010,22(10):24-28.
    [84]耿麒先.空间光学遥感器动力学环境CAE研究[J].软件导刊:2011,10:41-46.
    [85]刘宇明.空间紫外辐射环境及效应研究[J].航天器环境工程:2007,24(6):359-366.
    [86]沈中,葛之江,张连台.航天超光谱成像仪技术原理及其发展现状[J].航天器工程,2001,10(4):45-52.
    [87]李聪,王咏梅.紫外光谱辐射定标中的漫反射板反射特性研究[J].光谱学与光谱分析:2008,28(4);865-869
    [88]王英鉴.空间环境对漫反射板的影响[J].空间科学学报:2002,22(1):51-57.
    [89]单宝忠,陈恩涛,卢愕,武克用.空间光仪光机热集成分析方法[J].光学精密工程:2001,9(4),376-381.
    [90]杨明.空间多层隔热组件表面红外辐射分析[J].红外与激光工程:2009,12(5):14-19
    [91].红外光学系统的热特性分析[D]:[硕士论文]》哈尔滨:哈尔滨工业大学,2009
    [92]陈长征.空间光学镜头可适应边界温度的CAE计算方法[J].光学精密工程:2007,24(5):45-49
    [93]王栋,杨洪波,陈长征.光学表面面形的计算机仿真[J].计算机仿真:2007,24(2):298-301.
    [94]罗传伟,焦明印.光学系统折射率温度效应的模拟计算[J].应用光学:2008,29(2):234-239.
    [95]杨文刚,余雷,陈荣利,李英才.高分辨率空间相机精密热控设计及验证[J].光子学报:2009,38(9):2363-2367.
    [96]黄本诚.本诚文集[M].北京:中央编译出版社,2007.
    [97]张蕾,陈荣敏,何炼.真空一紫外线对空间材料降解的研究进展[Z].材料导报:2004,18(9):18一26
    [98]邢慧颖.空间充气展开太阳电池阵的热分析[D]:[硕士论文]》哈尔滨:哈尔滨工业大学,2007
    [99]赵秋艳.几种新型的星载多光谱和成像光谱仪[J].航天返回与遥感:2002,23(1):36-41.
    [100]张军强,颜昌翔,蔺超.温度对星载成像光谱仪谱线漂移的影响[J].光学学报:2012,32(5):1-7.
    [101]胡金刚.中国航天器热控制技术进展.航天器工程:2001:12(2):43-50
    [102]江帆.低轨道轻质星载一体化空间光学遥感器的热设计[J].中国光学:2013,32(11):45-53
    [103]訾克明.某空间光学遥感器的热分析和热设计[J].光学技术:2008,16(5):18-24
    [104]陈立恒.空间摄像机热控系统设计[J].光学精密工程:2012,20(3):556-562
    [105]刘巨.太阳同步圆轨道空间相机瞬态外热流计算[J].中国光学:2012,24(2):42-51
    [106]张汉勋.HXMT天文卫星初步热设计神舟飞船窗口热控方案计算分析[J].中国科学院空间科学与应用研究中心:2004,5:19-25
    [107] Chen Y F, Bagnall D M, Koh HJ, et al. Plasma assisted molecular beamepitaxy of ZnO on c-plane sapphire: Growth and characterization [J]. Journal ofApplied Physics,1998,84(7):39123918.
    [108] Bagnall D M, Chen Y F, Zju Z. Optically pumped lasing of ZnO at roomtemperature[J]. Appl Phys Lett,1997,70(17),28:22302232
    [109] Bethke S, Pan H, Wessels B W. Luminescence of heteroepitaxialzinc oxide[J].Applied Physics Letters,1988,52(2):138140.
    [110] Zu P, Tang Z K, Wong G K L, et al. Ultraviolet spontaneous and stimulatedemissions from ZnO microcrystallite thin films at room temperature[J]. Solid StateCommunications,1997,103(8):459463.
    [111] Bagnall D M, Chen Y F, Zju Z. Optically pumped lasing of ZnO at roomtemperature[J]. Appl Phys Lett,1997,70(17),28:22302232
    [112] Cao H, Zhao Y G, Ong HC, et al. Ultraviolet lasing in resonators formed byscattering in semiconductor polycrystalline films[J]. Applied Physics letters,1998,73(25):36563658.
    [113] Tang Z K, Wong G K L, Yu P. Appl. Phys. Lett.1998,72:3270.
    [114] Wang J Z, Du G T, Zhang Y T et al. J. Cryst. Growth.2004,(263):269.
    [115] Guo X L, Tabata H, Kawai T. J.Cryst. Growth.2001,(122):213.
    [116] Lee J H, Ko K H, Park B O. J.Cryst. Growth.2003,(122):247.
    [117] Jin B J, Bae S H, Lee SY, et al. Effects of native defects on optical andelectrical properties of ZnO prepared by pulsed laser depositions [J]. Mater Sci Eng.2000, B(71):301.
    [118] Chopra K L, Major S, Pandya D K. Transpaparent conductorsastatusreview[J]. Thin Solid Films,1983,102:146.
    [119]杨艳妮.星载天线在轨热稳定性影响因素分析[D]:[硕士学位论文].西安:西安电子科技大学,2007.
    [120]陈波,何飞.月基地球等离子体层极紫外成像仪的光学设计[J].光学精密工程:2011,19(9):55-61.
    [121]马伟,宣益民,韩玉阁.临近空间飞行器热管理及热设计方法[J].宇航学报:2009,30(5):2092-2018.
    [122]刘巨,薛军,任建岳.空间相机光机热集成设计分析[J].字航学报:2009,30(2):422-428.红外与毫米波学报:2008,27(5):346-353.
    [123]韩冬,吴清文,陈立恒.多姿态空间相机的热控系统设计与仿真[J].仿真技术:2009,25(8):143-146.
    [124]訾克明,吴清文,李泽学,刘兴德.空间光学遥感器的热设计实例及其仿真分析,2008,25(12):77-80.
    [125]丁延卫.空间光学遥感器热设计中的计算机数值模拟[J].光学技术:2002,14(5):24-31
    [126]顾元宪,李海梅.基于材料边界概念的相变热传导变分原理及其数值计算[J].固体力学学报.2000,21(3):261-266.
    [127]薛军,孙宝玉.空间相机CCD电箱热分析计算[J].长春工业大学学报(自然科学版):2008,29(2):212-216.
    [128] GU Y X, CHEN B S, ZHANG H W, et al.A ensitivity analysismethod for linear and nonlinear transientheat conduction with precise timeintegration [J]. Struct Multidisc Optim,2002,24:23-37.
    [129]于承训.工程传热学[M].西南交通大学出版社,1996.
    [130]钱工章.传热分析与计算[M].北京:高等教育出版社,1987.
    [131]孔向谦,王传复.有限单元法在热学中的应用[M].北京:科学出版社,1991.
    [132]姚中鹏,王瑞君.传热学[M].北京:北京理工大学出版社.2003.9.
    [133]陶文铨.传热学[M].西安:西北工业大学出版社,2006,12
    [134]秦文波.对接机构真空热试验外热流模拟方案研究[J].上海航天:2008
    [135]林群.微分方程数值解法基础教程(第二版)[M].北京:科学出版社,2003.
    [136]叶宏,焦东生,等.I-DEAS热分析实用教程[M].合肥:中国科学技术大学出版社,2003.
    [137]廖日东.I-DEAS实例教程:有限元分析[M].北京:北京理工大学出版社,2003.
    [138]李景湧.有限元法[M].北京:北京邮电大学出版社,1999.
    [139]张布卿,马建设,潘龙法,等.用有限元和灵敏度分析法改善光学头力矩器高频动态特性[J].光学精密工程.2007,15(7):1002-1008.
    [140]阂桂荣,潘增富,胡金刚.卫星热平衡试验不稳定法研究[J].空间科学学报:2004,20(3):1-9
    [141]胡金刚,潘增富,阂桂荣.具有周期热源变化的卫星不稳定热平衡试验方法的研究[J].宇航学学报:1984,3(7):8-13.
    [142]钟杨帆,朱敏波,魏锋. I-DEAS在航天器热分析中的应用[J].计算机工程与设计:2006,27(12):2306-2309.
    [143]翁建华,潘增富,闵桂荣.航天器热平衡试验中平衡温度的预测[J].中国空间科学技术:1997,6:1-7.
    [144]马有礼.航天器热平衡试验中的热流测量技术[J].航天器环境工程:2001,67(2):8-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700