用户名: 密码: 验证码:
全天空大气重力波成像仪研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气重力波是临近空间大气中的基本波动形式之一,在能量和动量传输过程中起到非常重要的作用。全天空大气重力波成像仪是一种以大气气辉辐射为示踪物,能有效对大气重力波成像的仪器。其优点在于:大视场成像;时间分辨率高;空间水平分辨率高;成本低。发展全天空大气重力波成像技术,对于研究大气重力波活动以及大气动力学,提高我国在大气领域的探测能力和相关研究水平具有重要的意义。
     本文系统研究了全天空大气重力波成像仪基本原理,硬件和软件研制方法,数据预处理方法,应用分析方法。主要内容包括如下几个方面:
     (1)概要介绍大气重力波与气辉辐射基本理论。在介绍大气结构的基础上侧重介绍大气重力波与气辉辐射基本理论。依据大气重力波线性理论分析了大气重力波对气辉辐射的影响,结果验证了气辉辐射有利于大气重力波观测。
     (2)详细研究了CSSAR全天空大气重力波成像仪的硬件和软件研制方法。研究了成像仪的基本原理、重点指标计算方法。完成了CSSAR全天空大气重力波成像仪的硬件研制、软件开发。另外总结了软件设计部分关键技术:时间控制和FITS文件存储实现。
     (3)系统研究了全天空大气重力波成像数据预处理过程。主要包括:去除本底,平场校正、方位校正、畸变校正和星星滤除等。结合CSSAR全天空大气重力波成像仪特征,在畸变校正过程中提出了鱼眼镜头校正环节和方法。
     (4)中国首次中层顶大气重力波成像观测实验及其数据初步分析结果。实验数据结果显示,当日03:00到05:00点之间,观测到了丰富的、明显的准单色大气重力波水平二维活动。初步分析了3个大气重力波个例,得到它们的水平波长、观测水平相速度、水平传播方位角和观测周期分别约为(12.3 km, 41 m/s, 327°, 5 min), (25 km, 35 m/s, 68°, 12 min)和(10 km, 48 m/s, 341°,3.5 min)。i
     (5)对一次典型的大气重力波事件开展了综合观测分析。该次事件分析结合使用了中频雷达和TIMED/SABER探测器数据。结果表明,该次事件很可能是由于温度波导导致产生。该次事件中,水平波长随时间递减,递减率约为15.6km/h;传播方位角存在周期性振荡变化,振幅2.5°,振荡周期55分钟,传播方位角振荡平衡位置约为155°。
     (6) CSSAR全天空大气重力波成像仪观测数据非模糊功率谱和角度谱分析方法研究,并利用该方法对CSSAR全天空大气重力波成像仪2009年1月5日晚观测数据进行了谱分析。谱分析结果清晰地展现该晚观测时间段内所有重力波活动的主要特性:波长下限较短,西向分量明显大于东向分量等。
Tracing the airglow emission, all-sky gravity wave imagers are widely used for imaging the atmospheric gravity waves. The characters of the imager are: wide field of view, fast, high resolution, low cost. Until this work, there has never been report researching on this technique in China. Developing the airglow gravity wave imaging technique is significant to the scientific community and prospective to the applied researches in our country.
     The fundamental principle, the developing technique, the preprocessing procedure, and the analytical method for application of the imager are studied. The main contents can be list as follow:
     1. The basic theory of the gravity wave and airglow is introduced. Besides the background of the atmosphere, the gravity wave, airglow and their relation are emphasized.
     2. The developing technique of the hardware and software in the CSSAR gravity wave imager is researched. The basic principle and key parameters are studied, and some key techniques of the hardware and software are concluded.
     3. The preprocessing method is researched, including the bias correction, flat-field correction, direction correction, distortion correction and star filtering.
     4. The first imaging observation experiment of the atmospheric gravity waves in the mesopause region in China and the preliminary result are studied. Case studies show that the horizontal wavelengths, observed horizontal phase velocities, horizontal propagation azimuth angles and observed periods of three QMGW examples are about (12.3 km, 41 m/s, 327°, 5 min), (25 km, 35 m/s, 68°, 12 min) and (10 km,48 m/s,341°,3.5 min), respectively.
     5. A typical gravity wave-event was observed during the CSSAR all-sky gravity wave imager daily observation. The data of the MF radar and TIMED/SABER is co-analyzed and shows that there may be a thermal duct. The wavelength decease at 15.6km/h, and the wave front oscillates around 155°with an amplitude of 2.5°and a period of 55 min.
     6. The unambiguous power spectrum and angular spectrum are studied, and used for analysis the spectral characters of the gravity waves on Jan. 5th, 2009. The spectral result shows that the low limit of the wavelength is short, and the gravity waves transmit in all directions but more westly than eastly.
引文
Alexander, M. J. and T. J. Dunkerton (1999). "A Spectral Parameterization of Mean-Flow Forcing due to Breaking Gravity Waves." Journal of the Atmospheric Sciences 56(24): 4167-4182.
    Alvarez, L., L. Gómez, et al. (2009). "An Algebraic Approach to Lens Distortion by Line Rectification." Journal of Mathematical Imaging and Vision 35(1): 36-50.
    Antonita, T. M., G. Ramkumar, et al. (2008). "Meteor wind radar observations of gravity wave momentum fluxes and their forcing toward the Mesospheric Semiannual Oscillation." J. Geophys. Res. 113(D10): D10115.
    Arora, R. K. (1976). "Charge coupled devices--Basic operation and principles." Microelectronics Reliability 15(5): 475-483.
    Bacmeister, J. T., S. D. Eckermann, et al. (1996). "Stratospheric horizontal wavenumber spectra of winds, potential temperature, and atmospheric tracers observed by high-altitude aircraft." J. Geophys. Res. 101(D5): 9441-9470.
    Bageston, J. V., C. M. Wrasse, et al. (2011). "Case study of a mesospheric wall event over Ferraz station, Antarctica (62° S)." Ann. Geophys. 29(1): 209-219.
    Broadfoot, A. L. and K. R. Kendall (1968). "The Airglow Spectrum, 3100-10,000 A." J. Geophys. Res. 73(1): 426-428.
    Brown, D. C. (1966). "Decentering distortion of lenses." Photogrammetric Engineering 32.
    Campbell, I. M. and C. N. Gray (1973). "Rate constants for O(3P) recombination and association with N(4S)." Chemical Physics Letters 18(4): 607-609.
    Chamberlain, J. W. (1961). Physics of the aurora and airglow, Academic Press.
    Chatha, J. P. S., P. K. Arora, et al. (1979). "Collisional deactivation of O2(1Σg+) " International Journal of Chemical Kinetics 11(2): 175-185.
    Chimonas, G. a. H., C. O. (1986). "Doppler Ducting of Atmospheric Gravity-Waves." J. Geophys. Res. 91.
    Coble M R, P. G. C., Gardner C S. (1998). "Computing two-dimensional unambiguous horizontal wave number spectra from OH airglow images." IEEE Trans Geosci Remote Sens 36.
    Collet, M. and L. Esser (1973). Charge transfer devices. Festk?rperprobleme 13. H. Queisser, Springer Berlin / Heidelberg. 13: 337-358.
    D?rnbrack, A., T. Birner, et al. (2002). "Evidence for inertia gravity waves forming polar stratospheric clouds over Scandinavia." J. Geophys. Res. 107(D20): 8287.
    Dong, Z. S. and Y. Fan (1999). "A numerical study of nonlinear propagation of a gravity-wave-packet in compressible atmosphere." Journal of Geophysical Research 104.
    Dou, X., T. Li, et al. (2010). "Variability of gravity wave occurrence frequency and propagation direction in the upper mesosphere observed by the OH imager in Northern Colorado." Journal of Atmospheric and Solar-Terrestrial Physics 72(5-6): 457-462.
    Espy, P. J., R. E. Hibbins, et al. (2006). "Regional variations of mesospheric gravity-wave momentum flux over Antarctica." Ann. Geophys. 24(1): 81-88.
    Fechine, J., C. M. Wrasse, et al. (2009). "First observation of an undular mesospheric bore in a Doppler duct." Ann. Geophys. 27(4): 1399-1406.
    Flanders, T. C. V. and K. F. Pulkkinen (1979). "Low precision formulae for planetary positions." The Astrophysical Journal-Supplement Series 41: 391-411.
    Fritts, D. C. and M. J. Alexander (2003). "Gravity wave dynamics and effects in the middle atmosphere." Rev. Geophys. 41(1): 1003.
    Fritts, D. C. and L. Yuan (1989). "An Analysis of Gravity Wave Ducting in the Atmosphere: Eckart's Resonances in Thermal and Doppler Ducts." J. Geophys. Res. 94(D15): 18455-18466.
    Gardner, C. S., K. Gulati, et al. (1999). "Measuring gravity wave momentum fluxes with airglow imagers." J. Geophys. Res. 104(D10): 11903-11915.
    Gavrilov, N. M., S. Fukao, et al. (1997). "Statistical analysis of gravity waves observed with the middle and upper atmosphere radar in the middle atmosphere 2. Waves propagated in different directions." J. Geophys. Res. 102(D12): 13433-13440.
    Goldberg, R. A., G. A. Lehmacher, et al. (1997). "Equatorial dynamics observed by rocket, radar, and satellite during the CADRE/MALTED campaign 1. Programmatics and small-scale fluctuations." J. Geophys. Res. 102(D22): 26179-26190.
    Gonzalez, R. C., R. E. Woods, et al. (2003). Digital Image Processing Using MATLAB, Prentice Hall
    Hanisch, R. J., A. Farris, et al. (2001). "Definition of the Flexible Image Transport System (FITS)." ASTRONOMY AND ASTROPHYSICS. SUPP. SER. 376.
    Hays, P. B., J. F. Kafkalidis, et al. (2003). "A global view of the molecular oxygen night airglow." J. Geophys. Res. 108(D20): 4646.
    Hecht, J. H., S. Kovalam, et al. (2004). "Airglow imager observations of atmospheric gravity waves at Alice Springs and Adelaide, Australia during the Darwin Area Wave Experiment (DAWEX)." J. Geophys. Res. 109(D20): D20S05.
    Hines, C. O. (1961). "Internal atmospheric gravity waves at ionospheric heights." Canadian Journal of Physics 38: 1441.
    Hines, C. O. (1997). "Doppler-spread parameterization of gravity-wave momentum deposition in the middle atmosphere. Part 1: Basic formulation." Journal of Atmospheric and Solar-Terrestrial Physics 59(4): 371-386.
    Hines, C. O. and D. W. Tarasick (1987). "On the detection and utilization of gravity waves in airglow studies." Planetary and Space Science 35(7): 851-866.
    Holdsworth, D. A. and I. M. Reid (1997). "An investigation of biases in the full correlation analysis technique." Advances in Space Research 20(6): 1269-1272.
    Holton, J. R. (1972). An introduction to dynamic meteorology, Academic Press.
    Hu, X., A. Z. Liu, et al. (2002). "Characteristics of quasi-monochromatic gravity waves observed with Na lidar in the mesopause region at Starfire Optical Range, NM." Geophys. Res.Lett. 29(24): 2169.
    Hu, X., Z. Yan, et al. (2011). "Sodium fluorescence Doppler lidar to measure atmospheric temperature in the mesopause region." Chinese Science Bulletin 56(4): 417-423.
    Hughes, C., M. Glavin, et al. (2008). "Wide-angle camera technology for automotive applications: a review." IET Intelligent Transport Systems 3(1).
    Isler, J. R., M. J. Taylor, et al. (1997). "Observational evidence of wave ducting and evanescence in the mesosphere." J. Geophys. Res. 102(D22): 26301-26313.
    Janesick, J. R. (2001). Scientific Charge-Coupled Devices, SPIE Press.
    Ji Wu, C. W., Quanlin Fan (2006). "Introduction to Meridian Space Weather Monitoring Project." Chin. J. Space Sci 26(Supp).
    Jones, A. V. (1973). "The infrared spectrum of the airglow." Space Science Reviews 15(2): 355-400.
    Kivelson, M. G., Russell, C.T. (1995). Introduction to Space Physics, Cambridge University Press.
    Krassovsky, V. I. (1972). "Infrasonic variations of OH emission in the upper atmosphere (OH emission band, studying effect of adiabatic infrasonic oscillations on upper atmospheric temperature and intensity)." Annales de Geophysique 28.
    Krebsbach, M. and P. Preusse (2007). "Spectral analysis of gravity wave activity in SABER temperature data." Geophys. Res. Lett. 34(3): L03814.
    Lane, T. P., M. J. Reeder, et al. (2001). "Numerical Modeling of Gravity Wave Generation by Deep Tropical Convection." American Meteorological Society 58(10): 1249-1274
    Li, F., A. Z. Liu, et al. (2005). "Observations of gravity wave breakdown into ripples associated with dynamical instabilities." J. Geophys. Res. 110(D9): D09S11.
    Li, F., G. R. Swenson, et al. (2007). "Investigation of a "wall" wave event." J. Geophys. Res. 112(D4): D04104.
    Lin, C. L. and M. T. Leu (1982). "Temperature and third-body dependence of the rate constant for the reaction O + O2 + M→O3 + M." International Journal of Chemical Kinetics 14(4): 417-434.
    Liu, A. Z. and G. R. Swenson (2003). "A modeling study of O2 and OH airglow perturbations induced by atmospheric gravity waves." J. Geophys. Res. 108(D4): 4151.
    Mackay, C. D. (1986). "Charge-Coupled Devices in Astronomy." Annual Review of Astronomy and Astrophysics 24: 255-283.
    Maekawa, Y., S. Fukao, et al. (1987). "Vertical propagation characteristics of internal gravity waves around the mesopause observed by the Arecibo UHF radar." Journal of Atmospheric and Terrestrial Physics 49(1): 73-80.
    Makhlouf, U. B., R. H. Picard, et al. (1995). "Photochemical-dynamical modeling of the measured response of airglow to gravity waves 1. Basic model for OH airglow." J. Geophys. Res. 100(D6): 11289-11311.
    Mallon, J. and P. F. Whelan (2004). Precise radial un-distortion of images. Proceedings of the 17th International Conference on Pattern Recognition (ICPR’04)
    Marsh, A. K. P., N. J. Mitchell, et al. (1991). "Lidar studies of stratospheric gravity-wave spectra." Planetary and Space Science 39(11): 1541-1548.
    Marsh, D. R., A. K. Smith, et al. (2006). "SABER observations of the OH Meinel airglow variability near the mesopause." J. Geophys. Res. 111(A10): A10S05.
    Marvin A. Geller, H. L., Jadwiga H. Richter, Dong Wu, and Fuqing Zhang (2006). "Gravity Waves in Weather, Climate, and Atmospheric Chemistry: Issues and Challenges for the Community." June 2006 Gravity Wave Retreat hosted by The Institute for Integrative and Multidisciplinary Earth Studies (TIIMES) at the National Center for Atmospheric Research (NCAR).
    Mathews, J. D. (1998). "Sporadic E: current views and recent progress." Journal of Atmospheric and Solar-Terrestrial Physics 60(4): 413-435.
    McDade, I. C., E. J. Llewellyn, et al. (1987). "ETON 6: A rocket measurement of the O2 Infrared Atmospheric (0-0) band in the nightglow." Planetary and Space Science 35(12): 1541-1552.
    McDade, I. C., E. J. Llewellyn, et al. (1987). "Eton 5: Simultaneous rocket measurements of the OH meinel [Delta][upsilon] = 2 sequence and (8,3) band emission profiles in the nightglow." Planetary and Space Science 35(9): 1137-1147.
    Meinel, A. B. (1951). "The spectrum of the airglow and the aurora." Reports on Progress in Physics 14(1): 121.
    Mende, S. B., R. H. Eather, et al. (1977). "Instrument for the monochromatic observation of all sky auroral images." Appl. Opt. 16(6): 1691-1700.
    Mitra, S. K. (2001). Digital Signal Processing, A Computer-Based Approach Second Edition, McGraw-Hill.
    Moreels, G. and M. Herse (1977). "Photographic evidence of waves around the 85 km level." Planetary and Space Science 25(3): 265-273.
    Mukherjee, G. K., L. Carlo, et al. (1998). "First results of all-sky imaging from India." Earth Planets Space 50: 119-127.
    Munro, G. H. (1958). "Travelling ionospheric disturbances in the F-region." Aust. J. Phys. 11: 91-112.
    Nishida, T. T. M. (2000). " A global morphology of gravity wave activity in the stratosphere revealed by the GPS occultation data (GPS/MET)." JOURNAL OF GEOPHYSICAL RESEARCH, 105(D6).
    Noxon, J. F. (1968). "Day Airglow." Space Science Reviews 8(1).
    Nuttall, A. H. (1981). "Some Windows with Very Good Sidelobe Behavior." IEEE Transactions on Acoustics, Speech, and Signal Processing ASSP-29.
    Orfanidis, S. J. (1996). Introduction to Signal Processing, Prentice Hall.
    Pautet, P.-D. S., J. ; Wrasse, C. M. ; Nielsen, K. ; Takahashi, H. ; Taylor, M. J. ; Hoppel, K. W. ;
    Eckermann, S. D. (2010). "Analysis of Gravity Waves Structures Visible in Noctilucent Cloud Images." JournalofAtmosphericandSolar–TerrestrialPhysics.
    Peterson, A. W. (1979). "Airglow events visible to the naked eye." Appl. Opt. 18(20): 3390-3393.
    Peterson, A. W. and G. W. Adams (1983). "OH airglow phenomena during the 5-6 July 1982 total lunar eclipse." Appl. Opt. 22(17): 2682-2685.
    Peterson, A. W. and L. M. Kieffaber (1973). "Infrared Photography of OH Airglow Structures." Nature 242(5396): 321-322.
    Phillips, N. A. (1956). "The general circulation of the atmosphere: A numerical experiment." Quarterly Journal of the Royal Meteorological Society 82(352): 123-164.
    Piani, C., D. Durran, et al. (2000). "A Numerical Study of Three-Dimensional Gravity Waves Triggered by Deep Tropical Convection and Their Role in the Dynamics of the QBO." American Meteorological Society 57(22): 3689-3702.
    Picone, J. M., A. E. Hedin, et al. (2002). "NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues." J. Geophys. Res. 107(A12): 1468.
    R(?)ttger, J. (2000). "ST radar observations of atmospheric waves over mountainous areas: a review." Annales Geophysicae 18(7): 750-765.
    Ray, S. F. (2002). Applied photographic optics, Focal Press
    Reisin, E. R. and J. Scheer (1996). "Characteristics of atmospheric waves in the tidal periodrange derived from zenith observations of O2 (0-1) Atmospheric and OH(6-2) airglow at lower midlatitudes." J Geophys Res 101.
    Remsberg, E., G. Lingenfelser, et al. (2003). "On the verification of the quality of SABER temperature, geopotential height, and wind fields by comparison with Met Office assimilated analyses." J. Geophys. Res. 108(D20): 4628.
    Schwalb, E. M. (2003). iTV handbook: technologies and standards, Prentice Hall PTR.
    Seidelmann, P. K. (1992). Explanatory Supplement to the Astronomical Almanac, University Science Book.
    Seyler, C. E. (2005). "Internal waves and undular bores in mesospheric inversion layers." J. Geophys. Res. 110(D9): D09S05.
    She, C. Y., T. Li, et al. (2004). "Concurrent OH imager and sodium temperature/wind lidar observation of a mesopause region undular bore event over Fort Collins/Platteville, Colorado." J. Geophys. Res. 109(D22): D22107.
    Shepherd, G. G., Y.-M. Cho, et al. (2006). "Airglow variability in the context of the global mesospheric circulation." Journal of Atmospheric and Solar-Terrestrial Physics 68(17): 2000-2011.
    Slama, C. C. (1980). Manual of photogrammetry, American Society of Photogrammetry.
    Slanger, T. G. and R. A. Copeland (2003). "Energetic oxygen in the upper atmosphere and the laboratory." Chemical Reviews 103(12): 4731-4766.Smith, S. M., J. Friedman, et al. (2005). "Evidence of mesospheric bore formation from a breaking gravity wave event: simultaneous imaging and lidar measurements." Journal of Atmospheric and Solar-Terrestrial Physics 67(4): 345-356.
    Smith, S. M., M. J. Taylor, et al. (2003). "A multidiagnostic investigation of the mesospheric bore phenomenon." J. Geophys. Res. 108(A2): 1083.
    Snively, J. B., V. P. Pasko, et al. (2007). "Doppler ducting of short-period gravity waves by midlatitude tidal wind structure." J. Geophys. Res. 112(A3): A03304.
    States, R. J. and C. S. Gardner (2000). "Thermal Structure of the Mesopause Region (80–105 km) at 40°N Latitude. Part I: Seasonal Variations." Journal of the Atmospheric Sciences 57(1): 66-77.
    Stockwell, R. G., L. Mansinha, et al. (1996). "Localization of the Complex Spectrum: The S Transform." IEEE TRANSACTIONS ON SIGNAL PROCESSING 44(4): 998-1001.
    Stockwell, R. G., M. J. Taylor, et al. (2006). "A novel joint space-wavenumber analysis of an unusual Antarctic gravity wave event." Geophys. Res. Lett. 33(8): L08805.
    Suzuki, S., K. Shiokawa, et al. (2007). "Gravity wave momentum flux in the upper mesosphere derived from OH airglow imaging measurements." Earth Planets Space 59: 421-428.
    Taguchi, M., M. Ejiri, et al. (2004). "A new all-sky optics for aurora and airglow imaging." Adv. Polar Upper Atmos. Res. 18: 140-148.
    Tang, J. (2003). "Point-Souce Suppression for atmospheric Wave Extraction from Airglow Imaging Measurements." IEEE Trans Geosci Remote Sens 41(1): 146-152.
    Tang, J., A. Z. Liu, et al. (2002). "High frequency gravity waves observed in OH airglow at Starfire Optical Range, NM: Seasonal variations in momentum flux." Geophys. Res. Lett. 29(20): 1966.
    Taylor, M. (2005). Optical Instrumentation. PARS summer school Aug. 14-24, 2005.
    Taylor, M. J. (1997). "A review of advances in imaging techniques for measuring short period gravity waves in the mesosphere and lower thermosphere." Advances in Space Research 19(4): 667-676.
    Taylor, M. J., W. R. P. Jr., et al. (2007). "Recent progress in mesospheric gravity wave studies using nigthglow imaging systems " Revista Brasileira de Geof′?sica 25(Supl 2) 49-58.
    Taylor, M. J., D. N. Turnbull, et al. (1995). "Spectrometric and imaging measurements of a spectacular gravity wave event observed during the ALOHA‐93 Campaign." Geophys. Res. Lett. 22(20): 2849-2852.
    Vargas, F., D. Gobbi, et al. (2009). "Gravity wave amplitudes and momentum fluxes inferred from OH airglow intensities and meteor radar winds during SpreadFEx." Ann. Geophys. 27(6): 2361-2369.
    Vincent, R. A. (2009). "Gravity wave coupling from below: A review." Climate andWeather of the Sun-EarthSystem(CAWSES):SelectedPapers from the2007KyotoSymposium.
    Waldock, J. A. and T. B. Jones (1987). "Source regions of medium scale travelling ionospheric disturbances observed at mid-latitudes." Journal of Atmospheric and Terrestrial Physics 49(2): 105-114.
    Walterscheid, R. L., G. Schubert, et al. (1987). "A Dynamical-Chemical Model of Wave-Driven Fluctuations in the OH Nightglow." J. Geophys. Res. 92(A2): 1241-1254.
    Wang, D. Y., W. E. Ward, et al. (2001). "Airglow intensity variations induced by gravity waves. Part 1: generalization of the Hines-Tarasick's theory." Journal of Atmospheric and Solar-Terrestrial Physics 63(1): 35-46.
    Wang Y. M., Xu J. Y., Wang Y. J., et al. Fluctuation of the OH airglow profile induced by gravity wave. Chinese J . Geophys. (in Chinese) , 2004 ,47 (1) :6~9
    Wells, D. C., E. W. Greisen, et al. (1981). "FITS - a Flexible Image Transport System." ASTRONOMY AND ASTROPHYSICS. SUPP. SER. 44: 363.
    Whiteway, J. A. and T. J. Duck (1996). "Evidence for critical level filtering of atmospheric gravity waves." Geophys. Res. Lett. 23(2): 145-148.
    Wilson, R., M. L. Chanin, et al. (1991). "GRAVITY WAVES IN THE MIDDLE ATMOSPHERE OBSERVED BY RAYLEIGH LIDAR 2. CLIMATOLOGY." J. Geophys. Res. 96(D3): 5169-5183.
    Winick, J. R., P. P. Wintersteiner, et al. (2007). Winter Upper Mesosphere Interannual Variability Determined from TIMED/SABER Measurements. American Geophysical Union, Fall Meeting 2007.
    Worthington, R. M. and L. Thomas (1997). "Long-period unstable gravity-waves and associated VHF radar echoes." Annales Geophysicae 15(6): 813-822.
    Wrasse, C. M., T. Nakamura, et al. (2006). "Mesospheric gravity waves observed nearequatorial and low–middle latitude stations: wave characteristics and reverse ray tracing results." Ann. Geophys. 24(12): 3229-3240.
    Wu, S. and Y. Fan (2002). "A numerical simulation of nonlinear propagation of gravity wave packet in three-dimension compressible atmosphere." Science in China Series E: Technological Sciences 45(3): 306-313.
    Xiao, C. and X. Hu (2010). "Analysis on the global morphology of stratospheric gravity wave activity deduced from the COSMIC GPS occultation profiles." GPS Solutions 14(1): 65-74.
    Xiong, H., X.-j. Zhang, et al. (1999). "Simultaneous observations with a sodium lidar and an MF radar during PREASA-2 campaign." Earth Planets Space 51(7/8): 741-743.
    Xu, J., R. Ma, et al. (2002). "The study and applications of photochemical-dynamical gravity wave model II." Science in China Series A: Mathematics 45(0): 175-182.
    Yan, Z., X. Hu, et al. (2009). Long-term laser frequency stabilization for application in sodium resonance fluorescence Doppler lidar (Proceedings Paper). International Symposium on Photoelectronic Detection and Imaging 2009: Laser Sensing and Imaging, SPIE.
    Yi, F., J. Klostermeyer, et al. (1991). "VHF radar observation of gravity wave critical layers in the mid-latitude summer mesopause region." Geophys. Res. Lett. 18(4): 697-700.
    Yu, Y. and M. P. Hickey (2007). "Simulated ducting of high-frequency atmospheric gravity waves in the presence of background winds." Geophys. Res. Lett. 34(11): L11103.
    Zhang, S. D., F. Yi, et al. (2000). "The nonlinear effects on the characteristics of gravity wave packets: dispersion and polarization relations." Annales Geophysicae 18(10): 1316-1324.
    Zhang, S. P., R. N. Peterson, et al. (1993). "Gravity waves from O2 nightglow during the AIDA '89 campaign I: emission rate/temperature observations." Journal of Atmospheric and Terrestrial Physics 55(3): 355-375.
    王咏梅,王英鉴(1997). "利用光谱拟合法反演中间层顶大气温度."空间科学学报17(4): 348-352.
    朱岗崑(2008). "北京近郊夜空气辉的观测和分析——中国第一批气辉观测数据(1986—1989)."地球物理学进展23: 319.
    李俊,张绍东, et al. (2007). "重力波包在中层大气温度波导中传播的数值模拟."地球物理学报50(4): 1030-1039.
    肖存英,胡雄, et al. (2008). "利用卫星温度资料计算风场的方法分析与比较."地球物理学报51(2): 325-336.
    房建成,宁晓琳(2006).天文导航原理及应用,北京航空航天大学出版社.
    柯熙政(1994). "高层大气中的气辉扰动."陕西气象(2): 29-31.
    胡雄(2009). "临近空间大气探测与应用研究."气象水文装备3.
    胡雄,张训械, et al. (2005). "重力波对中间层和低热层大气环流的影响."空间科学学报25(2): 111-117.
    徐寄遥,马瑞平(2001). "重力波对中层顶区O3及OH分布的影响."科学通报46(6): 514-517.
    徐丽,胡雄, et al. (2010). "钠多普勒激光雷达回波光子数仿真及大气参数反演."地球物理学报53(7): 1520-1528.
    柴立群,徐建程, et al. (2005). "加窗后波前功率谱密度的计算值修正."强激光与离子束17(12): 1835-1838.
    袁韦华,徐寄遥, et al. (2009). "北京上空对流层和下平流层重力波谱统计特性."中国科学D辑:地球科学39(11): 1505-1514.
    盛裴轩,毛节泰, et al. (2003).大气物理学,北京大学出版社.
    彭青松,李有兵(2008). "在Windows/VC++环境下编程实现FITS图像的显示."天文研究与技术5(4): 392-397.
    菲什科瓦,戈赫博格, et al. (1987). "夜间气晖与地震活动之间的关系."国际地震动态(03): 33-36.
    熊年禄,唐存琛, et al. (1997).电离层物理概论,武汉大学出版社.
    薛景瑄 (2009). "面向对象程序设计――C++."中国科学院研究生院课程.
    刘振兴等(2005).太空物理学,哈尔滨工业大学出版社.
    吴光节(1993). "CCD光谱的IRAF和FITS格式转换."云南天文台台刊4: 53-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700