用户名: 密码: 验证码:
某箱式多管火箭炮快速装填与高精度自动操瞄系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为适应多管火箭炮的发展和现代战争的要求,本论文以提高多管火箭炮机动性能、精确打击能力为出发点,以多管火箭炮快速装填和高精度自动操瞄为研究对象,运用系统设计、理论分析、计算机仿真以及实验研究等手段,分别将现代电液比例控制技术与非线性滑模变结构控制理论应用于箱式多管火箭炮快速装填与高精度自动操瞄系统,有效地提高了多管火箭炮的自动装填速度与精度,满足了多管火箭炮位置伺服系统在强干扰、参数大范围变化等情况下的调炮精度与跟踪精度。
     针对多管火箭炮装填速度与装填可靠性之间的矛盾和难题,提出了采用箱式发射技术实现多管火箭炮整箱装填的设计方案,较全面地研究了该装填系统涉及到的技术难点,通过基于PLC控制的电液比例技术解决了液压缸快速运行与高精度定位之间的矛盾,采用气动系统实现了装填各过程之间运发箱的可靠换接与锁紧,利用触摸屏技术实现了装填过程运发箱的程序化动作与系统运行的可视化。
     详细地分析了多管火箭炮位置伺服系统负载特性,对其参数变化规律与负载力矩作用规律进行了定性分析与定量计算。在此基础上对整个多管火箭炮系统驱动控制部分进行了设计,提出了多管火箭炮交流位置伺服控制方案,并推导了其数学模型。
     提出了多管火箭炮交流位置系统速度位置统一滑模控制策略,将带积分项的最优化滑模变结构控制策略应用于多管火箭炮高精度自动操瞄系统并进行了应用设计,通过理论分析证明了该控制策略可以有效提高多管火箭炮在参数变化与干扰作用下的控制精度,并通过计算机仿真证实了该方法的鲁棒性。考虑到变结构控制的切换控制特性及控制滞后,抖振的存在将严重影响系统的实际应用,论文通过设计干扰观测器并对电流输入进行前馈补偿来消弱切换控制的幅值,从而有效消弱滑模变结构控制的抖振,通过计算机仿真证实了该方法的有效性。解决了多管火箭炮位置伺服系统参数大范围变化、存在强干扰力矩与高精度调炮之间的矛盾。
     提出了多管火箭炮交流位置系统串级复合控制策略,将电流控制、速度控制和位置控制分开进行并组成三环串级控制结构,通过PI控制、前馈控制、滑模控制的有效组合系统而详细地研究了四种串级复合控制结构,以前馈控制来消除动态跟踪的位置误差,以滑模控制的运用来提高系统在参数摄动与干扰作用下系统动态跟踪的鲁棒性能。针对串级滑模控制的抖振现象,通过积分环节以及复合控制有效消弱了串级滑模控制的抖振,并最终通过计算机仿真得到了有效验证。解决了多管火箭炮位置伺服系统参数大范围变化、存在强干扰力矩与高精度动态跟踪目标的难题。
     最后对全系统进行了样机实验研究,对快速装填装置进行了装填速度、装填时间以及各种装填方式运行平稳性与可靠性实验,实验结果表明该快速装填系统不仅有效的实现了设计指标,且其装填可靠性较高。对自动操瞄系统进行了经典控制、复合前馈控制、以及复合滑模控制实验,通过实验研究不仅有效证实了系统设计指标的实现,同时证实了系统设计方案的正确性以及控制算法的有效性,为系统的进一步样机制作提供了可借鉴的理论指导。
To cater for the development of multiple rocket launcher (MRL) and the demand ofmodern warfare, the present dissertation starts from the endeavor to meliorate themaneuverability and the precision strike capability of MRL and tackles the problems of itsrapid loading and its highly precise automatic operating & aiming system. By means ofsystem design, theoretical analysis, computer simulation and experimental research, etc.,the dissertation applies the contemporary electro-hydraulic proportion control technologyand non-linear sliding mode variable structure control(VSC) theory to the rapid loader andthe high precision automatic operating & aiming system of a certain container rocketlauncher. This results in an improvement of the loading speed and accuracy of MRL by abig margin and makes it possible to ensure the positioning and tracking accuracy when theMRL positioning servo-system is under such circumstances of strong disturbance and widerange of parametric variation.
     The dissertation sets forth the design scenario of holistic container loading usingcontainer fire technology against the contradiction between the MRL loading speed andreliability; and carries out a three-dimensional study of the tough points that the loadingsystem covers; nullifies the contradiction between the fast movement of the hydro-cylinderand the highly accurate positioning by way of the PLC-based electro-hydraulic proportioncontrol technology; realizes the reliable shift and locking of the container usingpneumatic system; and realizes the programmed actions of the container and thevisualization of the system operation in the loading process using the touch-screentechnology.
     In the dissertation, the author conducts a detailed analysis of the load characteristics ofthe MRL positioning servo-system and a qualitative analysis and a quantitative computationof the laws of its parametric change and load moment actuation; and designs on this basisthe drive controller of the MRL system and puts forward the control scheme of the MRLAC positioning servo-system.
     The dissertation puts forward the unified slide mode control scheme of the velocityloop and position loop in the MRL AC position servo-system and applies the optimal slidemode VSC with integral to the effort of the applied design of MRL high precisionautomatic operating & aiming system; testifies by theoretical analysis that the controlscheme may well enhance the control accuracy of MRL in the circumstances of theparametric change and disturbance; and validates the robustness of the method viacomputer simulation. In the view of switch control characteristic of VSC and control retardation, the existence of chattering inflicts a notable adverse effect upon the systemactual application. The dissertation designs the disturbance observation and conductsfeed-forward compensation to weaken the switch control amplitude and thus weakens thechattering of the slide mode VSC; and verifies its validity via the computer simulation. As aresult, the contradiction is nullified between the MRL positioning servo-system's widerange of parametric variation, the existence of strong disturbance moment and the highlyprecise gun positioning.
     The dissertation puts forward the cascade compound control scheme of velocity loop andposition loop for the MRL AC positioning servo-system. This scheme makes it possible toactuates the current control, velocity control and position control separately and toconstitute a three-loop cascade control structure; studies systematically in detail the fourtypes of the cascade compound control structure via the valid combinations of the PIcontrol, feed forward control and slide mode control; zeros the positioning error in dynamictracking by the feed forward control; and levels up the robustness of the system in dynamictracking in the circumstances of the parametric variations and disturbance by way of theslide mode control. Against the chattering of the cascade slide mode control, thedissertation weakens effectively it via the integral and compound control, whose validity istestified finally via computer simulation; and thus solves the problems of the MRLpositioning servo-system wide range of parametric variation, the existence ofstrong-disturbance moment and the highly accurate dynamic tracking of the target.
     Finally, the dissertation conducts a model machine experimental research on the entiresystem and an experimentation on the loading speed, the loading time span, the operationalstability and reliability of the varied loading modes. The results of the experimentationshows that this loading system has not only realized the designed objective, but alsoachieved high reliability of loading; an experimentation of the automatic operating &aiming system in terms of classical control, compound feed forward control and compoundslide mode control. The experimental research proves effectively that the designed indexesof the system are reached and at the same time correctness of the system design scheme andthe effectiveness of the control arithmetic. In result, the instructive theoretical directions aremade possible for the further manufacturing of the system model machine.
引文
[1] 程刚,姜义峰,赵金靖.火箭炮与导弹系统.外军炮兵防空兵研究.2005(2):36~42
    [2] 高伟,张世英.两栖作战中的海上火力支援.舰载武器.2002(4):1~3
    [3] 许全均译.远距离火力支援问题.舰载武器.1993(10):1~3
    [4] 李明让.未来城市防空应把握的几个问题.国防,2002(3)
    [5] 童林旭.论我国人民防空建设的发展战略.地下空间,1999,19(1)
    [6] 高炮射击理论.中国人民解放军炮兵技术研究所.1976
    [7] 李振吉,季向东.便携式防空导弹拦截巡航导弹可行性研究.军械工程学院学报,1999,11(4):33~35
    [8] 王锋,马大为等.弹箭结合武器系统作战效能评估的排队网络方法.弹箭与制导学报.2005,25(3):275-277
    [9] 浦发.外弹道学.北京:国防工业出版社,1980
    [10] 张学锋,马大为.某型火箭拦截巡航导弹命中概率分析.弹箭与制导学报.Vol.25.No.2.2005(2):75~79
    [11] 张学锋,吴萍,乐贵高,丁铸,潘书山.火箭武器对巡航导弹的毁伤效能研究.系统仿真学报.Vol.18.No.3.2006(3):535~560
    [12] 张学锋.火箭武器防空反导效能研究与系统仿真.南京理工大学博士学位论文.2006.3
    [13] 潘书山.弹箭结合防空武器系统作战有效性分析.南京理工大学博士学位论文.2005.10
    [14] 朱玉川,马大为等.防空多管火箭炮交流位置伺服系统的控制策略.兵工自动化.2006..Vol.25.No.4:5~6
    [15] 朱玉川,马大为等.防空多管火箭炮位置伺服系统负载特性分析.弹箭与制导学报.2005.Vol.25 No.4:66~67
    [16] 赵承庆,姜毅编著.火箭导弹武器系统概论.北京:北京理工大学出版社,1996
    [17] Christopher F. Foss. More reach for artillery. Jane' s Defense' 96: 115~119
    [18] Christopher F. Foss. SP artillery needs greater capability. International Defense Riview, 1995(12): 35~43
    [19] Lawrence D. Bacon, Asher H. Sharoni. Crusader is not only option for US Army howitzer. International Defense Review, 1995(12): 45~50
    [20] Asher H. Sharoni, Lawrence D. Bacon. Ammunition loading systems for future tanks. Armor, 1995(3): 16~20
    [21] Brigitte Sauerwein. Panzerhaubitze 2000 Germany stays on course. International Defense Review, 1991(3): 245~247
    [22] Konstruktive losungsmoglichkeiten. Das automatische laden der panzerkanone. Soldat und Technik, 1983(10): 540~545
    [23] G W Berrigan RHA. AS90 troop trial. Journal of the Arillery, 1994(9): 21~25
    [24] Rupert Pengelley, Murray Hammick, Mark Hewish. New Sp artillery developments. International Defense Review, 1991(9): 929~930
    [25] John Boatman. AFAS addresses deficiencies in US artillery. International Defense Review, 1992(6): 577~579
    [26] Chistopher F Foss. Mobility for the big guns. Jane' s Defense Weekly, 1991(13): 64~69
    [27] Rupert Pengelley. Rheinmetall' s Langesrohr "pentalateral" 155mm artillery ordnance for the 1990s. International Defense Review, 1989(5): 653~655
    [28] 陈明俊.ITAE最优数字伺服系统,控制理论与应用.1993,19(2):66~70
    [29] T. H. S. Li, et al., Fuzzy logic control of gun turret system, Proceedings of the 1992 American Control Conference, Vol. 1, 440~444, 1992
    [30] J. Huang, et al., A nonlinear controller for the gun turret system, Proceedings of the 1992 American Control Conference, Vol.1, 424~428, 1992
    [31] M. Mattice, et al., Robust weapon control systems design, Proceedings of the 1992 American Control Conference, Vol. 1, 429~433, 1992
    [32] W. Chai, et al., Robust digital control of gun turret systems, Proceedings of the 1992 American Control Conference, Vol.1,434~439, 1992
    [33] Y. L. Gu, et al., control of weapon pointing systems based on robotic formulation, Proceedings of the 1992 American Control Conference, Vol. 1,413~418, 1992
    [34] 刘胜,彭侠夫,叶瑰昀编著.现代伺服系统设计.哈尔滨:哈尔滨工程大学出版社.2001.8
    [35] 郭庆鼎.交流伺服系统.北京:机械工业出版社.1994
    [36] 秦忆.现代交流伺服系统.武汉:华中理工大学出版社.1995
    [37] Utkin V I. Variable structure systems with sliding modes. IEEE Transctions Automatic Control, 1977, 22(2): 212~222
    [38] Young K D, Utkin V I, Ozguner U. A Control Engieeer' s Guide to Sliding Mode Control. IEEE Transcactions on Control Systems Technology, 1999, 7(3): 328~342
    [39] 史维祥.近代机电控制工程.北京:机械工业出版社.1998.7
    [40] Huang, Ying Jeh. Design of sliding surfaces in variable structure control via a direct pole assignment scheme. International Journal of Systems Science, v 32, n 8, August 2002, 2001, p 963-969
    [41] Lu, Yu-Sheng. Pole-placement design with adjustable robustness using sliding-mode technique. JSME International Journal, Series C, v 41, n 2, Jun, 1998, p 248-254
    [42] Urkin V I. Variable structure systems with sliding modes. IEEE Trans. Automat.Contr. 1977, AC(22)
    [43] EI-Ghezawi O M E, Zinober A S I, Billings S A. Analysis systems using a geometric approach. Int. J. Contr. and design of 1983, 38(3) variable structure: 657—671
    [44] Tokat, Sezai, Eksin, Ibrahim, Guzelkaya. Turkish Journal of Electrical Engineering and Computer Sciences, v11, n1, 2003, p 45-54
    [45] Tokat, Sezai; Eksin, Ibrahim; Guzelkaya, Mujde; Soylemez, M. Design of a sliding mode controller with a nonlinear time-varying sliding surface: Transactions of the Institute of Measurement and Control, v25, n2, 2003, p 145-162
    [46] Eker, Ilyas. Sliding mode control with PID sliding surface and experimental application to an electro-mechanical plant. ISA Transactions, v 45, n1, January, 2006, p 109-118
    [47] Zhang, Xiaoyu; Su, Hongye; Xiao, Lingfei; Chu, Jian. Robust sliding mode control based on integral sliding surfaces.Proceedings of the American Control Conference,v6, Proceedings of the 2005 American Control Conference, ACC, 2005, p 4074-4077
    [48] Yagiz, Nurkan; Hacioglu, Yuksel. Fuzzy sliding modes with moving surface for the robust control of a planar robot. : JVC/Journal of Vibration and Control, v 11, n 7, July, 2005, p 903-922
    [49] Jang, Seung Ho; Kim, Sang Woo. A new sliding surface design method of linear systems with mismatched uncertainties. IEEE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, v E88-A, n 1, January, 2005, p 387-391
    [50] 林定笑,郑耀林.DC—DC变换器双滑模面变结构控制.华侨大学学报(自然科学版).Vol.27.No.3.2006:292~295
    [51] 杨盐生,贾欣乐.不确定线性系统的鲁棒切换函数变结构控制.控制理论与应用.Vol.18.No.2.2001:289~292
    [52] 吴梅,胡云安等.多输入多输出非线性系统的多面滑模控制.系统工程与电子技术.Vol.27.No.7.2002:87~90
    [53] 张克勤,苏宏业等.二阶不确定离散系统的时变滑模面变结构控制.浙江大学学报.Vol.36.No.4.2002:416~420
    [54] 贾志勇,林廷圻等.一种基于频域整形的滑模变结构控制器设计.工业仪表与自动化装置.1999(1):3~5
    [55] Slotine J J, Sastry S S. Tracking control of nonlinear systems using sliding surfaces with application to robot manipulator. International Journal of Control, 1983, 38(2): 465~492
    [56] Chung S C Y, Lin C L. A transformed Lure problem for sliding mode control and chattering reduction. IEEE Transactions on, Automatic Control, 1999, 44(3): 563~568
    [57] Xu J X, Lee T H,Pan Y J. On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics. Mechatronics, 2003, 13: 755~770
    [58] Erbatur K, Kawamura A. Chattering elimination via fuzzy boundary layer tuning. IECON 02[Industrial Electronics Society, IEEE 2002 28th Annual Conference of the], 2002, 3: 2131~2136
    [59] Chen M S, Hwang Y R, Tomizuka M. A state-dependent boundary layer design for sliding mode control. IEEE Transactions on, Automatic Control, 2002, 47(10): 1677~1681
    [60] Vicente P V, Gerd H. Chattering-free slidng mode control for a class of nonlinear mechanical systems. International Journal of Robust and Nonlinear Control, 2001, 11: 1161~1178
    [61] Yanada H, Ohnishi H. Frequency-shaped sliding mode control of an electrohydraulic servomoto. Journal of systems and Control and dynamics, 1999, 213(1): 441~448
    [62] Kawamura A, Itoh H, Sakamoto K. Chattering reduction of disturbance observer based sliding mode control. IEEE Transactions on Industry Applications, 1994, 30(2): 456~461
    [63] Bartolini G, Ferrara A, Usani E. Chattering avoidance by second-order slidng mode control. IEEE Transactions on Automatic Control, 1998, 43(2): 241~246
    [64] Bartolini G, Ferrara A, Usani E. Utkin V I. On muti-input chattering-free second-order sliding mode control. IEEE Transactions on Automatic Control, 2000, 1711~1717
    [65] Bartolini G, Punta E. Chattering elimination with second-order slidng modes robust to coulomb friction. Journal of Dynamic Systems, Measurement and control, 2000, 122: 679~686
    [66] Bartolini G, Pisano A, Punta E, Usai E. A Survey of applications of second-order slidng mode control to mechanical systems. International Journal of Control, 2003, 76(9): 875~892
    [67] Hamerlain m, Youssef T, Belhocine M. Switching on the derivative of control to reduce chatter. IEEE Proceedings on Control Theory and Applications, 2001, 148(1):88~96
    [68] Q. P. Ha, Q. H. Nguyen, D. C. Rye, H. F. Durrant-Whyte, Fuzzy sliding-mode controllers with applications, IEEE Transactions on Industrial Electronics,2001,48(1): 38~41
    [69] Huang S J, Huang K S, Chiou K C. Development and application of a novel radial basis function sliding mode controller. Mechatronics, 2003, 13: 313~329
    [70] Ng K C, Li Y, Murray-Smith D J, Sharman K C. Genetic algorithms applied to fuzzy sliding mode controller design. Genetic Algorithms in Engineering Systems: Innovations and Applications, 1995, First International Conference on, 12-14 Sep 1995, 220~225
    [71] 高为炳.变结构控制的理论及设计方法.北京:科学出版社,1996
    [72] 李娟,高秀生等.利用模糊决策实现变结构控制系统中的平滑过渡.工业仪表与自动化装置.2005(6):21~23
    [73] 杨文强,蔡旭,姜建国.矢量控制系统的积分型滑模变结构速度控制.上海交通大学学报.Vol.39.No.3.2005:426~432
    [74] 罗宁苏,冯纯伯.消除变结构控制中高频颤振的一种方法.全国控制理论与应用年会,西安, 1998,132~139
    [75] 孙宜标,郭庆鼎.交流永磁直线伺服系统的神经网络—滑模双自由度控制.电气传动,2002,32(1):19~23.
    [76] Perruquetti W, Barbot J P. Sliding mode control in engineering. Marcel Dekker Inc. New York, 2002
    [77] Utkin A, Guldner J, Shi J X. Sliding mode control in Electromechanical Systems. Taylor&Francis, 1999
    [78] Yu X H, Xu J X.. Advances in Varible Structure Systems. World Scientific Publishing, Singapore, 2000
    [79] Edwards C, Spurgeon S K. Sliding Mode Control, Theory and Applications. Taylor&Francis, 1998
    [80] Zhou D, Mu C D,Xu W L. Adaptive sliding mode guidance of a homing missile. Journal of guidance, control and dynamics, 1999,22(4): 589~592
    [81] Liaw D C, Liang Y W, Cheng C C. Nonlinear Control for Missile Terminal Guidance. Journal of Dynamic Systems, Measurement, and Control, 2000, 122: 663~668
    [82] Yeh F K, Chien H H, Fu L C. Design of optimal midcourse guidance sliding-mode control for missiles with TVC. Aerospace and Electronic Systems, IEEE Transactions on, 2003, 39(3): 824~837
    [83] 孙常胜,陈杰等.基于最优化的坦克稳定器滑动模态变结构控制.兵工学报.2001(2):15-18
    [84] 孙常胜,刘妃等.坦克稳定器滑动模态变结构控制.计算机仿真.Vol.21.No.1.2004:22-25
    [85] 韩崇伟,林廷析.带观测器的最优滑动模态变结构控制在火炮直流伺服系统中的应用研究.机械工程学报.2002(10):135-138
    [86] 韩崇伟,林廷圻.基于H_∞控制的PWM直流伺服系统设计.自动控制技术.Vol.21.No.2.2002:19-22
    [87] 韩崇伟.火炮位置伺服系统的鲁棒控制与应用研究.西安:西安交通大学博士论文.2002
    [88] 赵金.高性能交流伺服系统的研究与开发.华中理工大学博士论文.1994.5
    [89] 赵金,万淑云.交流伺服系统基于滑模变结构控制理论的控制方案综述.电气传动.1996:1-6
    [90] 赵金,王离九等.交流伺服系统的高精度滑模控制.基础自动化.1994(12):16-20
    [91] 赵金,万淑云.交流伺服系统的串级滑模控制.电工技术学报.Vol.11.No.3.1996:32-36
    [92] 赵金,万淑芸.交流伺服系统的模糊滑模PD型位置控制器.微电机.Vol.37.No.1.2004:37-40
    [93] 杨璐,赵金,万淑芸.交流伺服系统的一种新型控制策略.兵工自动化.Vol.20.No.3.2001:32-34
    [94] 赵金,万淑芸.交流伺服系统的一种新型位置控制器.电气传动.2004(1):11-14
    [95] 赵金.高性能交流伺服系统研究与开发.华中理工大学博士学位论文.1994
    [96] 杨辉,万淑芸,赵金等.交流伺服系统鲁棒控制策略研究.华中理工大学学报.Vol.24No.8.1996(8):55-57
    [97] 赵金,万淑芸.模糊滑模控制交流调速系统.华中科技大学学报(自然科学版).Vol.32.No.4.2004:64-67
    [98] 吴东苏,闵松,赵金等.基于滑模变结构控制的高精度交流伺服系统的设计与仿真.计算技术与自动化.Vol.20.No3.2001:23-26
    [99] 赵金,万淑云等.交流调速系统含负载扰动变化率的滑模控制.基础自动化.1996(2):34-37
    [100] 王延龙,孙廷玉.分阶段模糊滑模控制在交流伺服系统中的应用.沈阳工业大学学报.Vol.27.No.3.2005:291-294
    [101] 杨璐,赵金等.交流伺服系统的一种新型控制策略.自动控制技术.Vol.20.No.3.2001:32-34
    [102] 吴东苏,闵松等.基于滑模变结构控制的高精度交流伺服系统的设计与仿真.计算技术与自动化.Vol.20.No.3.2001:23-26
    [103] 史晓娟.基于复合滑模变结构控制的位置伺服系统的研究.电工技术学报.Vol.18.No.3.2003:64-67
    [104]谢 成详,曾庆军.交流伺服系统的串级滑模变结构控制仿真研究.华东船舶工学院.Vol.15.No.1.2001:43-47
    [105] 谢成详,曾庆军.交流伺服系统模糊滑模控制器设计.控制与决策.2003:113-115
    [106] 张健成,吕小勇.一类位置伺服系统控制器设计的工程方法.控制与决策.Vol.16.No.1.2001:104-106
    [107] 杨延西,刘丁.基于模糊趋近律控制的全数字交流位置伺服系统.第三界智能控制与自动化国际会议.2000
    [108] 李军红,陈潮填.交流永磁同步电机伺服系统的变结构控制.中小型电机.Vol.32.No.3.2005:18-21
    [109] J. Jantzen.Tuning-rules for fuzzy controllers.International Workshop on Intelligent Motion Control. 1990: 83-86
    [110] Y. S. Lu, J. S. Chen. A Self Organizing Fuzzy Sliding Mode Controller Design for A Class of Nonlinear Servo-system.Industrial Electronics.Vol. 41, No 5.1994:492-502
    [111] Se-Kyo Chung. Integral variable structure controller for current control of PWM inverter-fed ac motor. Electric Machine and Power systems.Vol. 27.No. 5.1999: 753-769
    [112] M. Ghribi. Adaptive position control of a permanent-magnet synchronous motor drive.Conference Record of IEEE IASAmrual Meeting.1990
    [113] F. J. Lin. Adaptive fuzzy sliding mode control for PM synchronous motor.IEEE Proceeding Control Theory and Application. Vol. 145, No. 1. 1998
    [114] P. Caravni, S. Di Gennaro. Robust control of synchronous motors with non-linearitis and parameter uncertainfes. Automatica.Vol.34,No.4.1998:445-450
    [115] EJ. Lin, S. L. Chiu. Adaptive fuzzy sliding mode control for PM synchronous servomotor drives.IEEE, Pro. Control Theory and Appli..Vol.145,No.1.1998
    [116]F.J.Lin, S.Chiu.Robust PMSM servo drive with variable structure model output following control.IEEE Proc Electric.Power APPL.Vol.144.No.5.1997: 317-323
    [117]M.H.Park.Chattering reduction in the position control of PMSM using sliding mode.lEEE Trans. 1998: 317-325
    [118]Edward.Y. Y. Ho and Paresh C.Sen. Control Dynamics of Speed Drive Systems Using Sliding Mode Controllers with Integral Compensation. IEEE.Transactions on Industry Application, Vol.27,No. 5, Sep/Oct, 1991.
    [119]Yasutaka Fujimoto and Atsuo Kawamura. Robust Servo-System Based on Two-Degree-of Freedom Control with Sliding Mode.IEEE.Transactions on Industrial Electronics, Vol.42, No.3, june, 1995.
    [120]C.Namuduri and P.C.Sen. A Servo-Control System Using a Self-controlled Synchronous Motor (SCSM) with Sliding Mode Controller. IEEE. Transactions on Industry Application. 23 (1987).
    [121]Takaji Umeno and Yoichi Hori.Robust Speeed Control of DC Servomotors Using Modern Two-Degree-of Freedom Controller Design. IEEE.Transactions on Industrial Electronics, Vol.38,No.5,Oct,1991.
    [122]Xu J X, Lee T H,Pan Y J.On the sliding mode control for DC servo mechanisms in the presence of unmodeled dynamics. Mechatronics,2003,13:755—770
    [123]Seshagiri S, Khalil H K. On introducing integral action in sliding mode control. Decision and Control, Proceedings of the 41st IEEE Conference on, 2002:1473—1478
    [124]Kim Y S, Han Y S, You W S. Disturbance observer with binary control theory. Power Electronics Specialists Conference, 1996,2:1229—1234
    [125]Liu J K, Er L J. Sliding Mode Controller Design for Position and Speed Control of Flight Simulator Servo-system with Large Friction. Systems Engineering and Electronics(China), 2003,14(3):59~62
    [126]Bartonlini G, Pisano A, Punta E. Usai E. A survey of applications of second-order sliding mode control to mechanical systems, International Journal of Control, 2003, 76(9):875—892
    [127]Guchuan Zhu, Speed Tracking Control of a PM Synchronous Motor with State and Load Torque observer, IEEE TANSACTIONS ON INDUSTRIAL ELCTRONICS, VOL.47.NO.2.APRIL 2000.
    [128]Wang Chengyuan, Xu Zhan. Fuzzy and VSC Control AC Servo Driving System Based on the Torque Observer. Elec. Trans. 1998.(1):17—20.
    [129]G.D.Andreescu. Nonlinear Observer for Position and Speed Sensorless Control of Permanent Magnet Synchronous Motor Drives. Optimization of Electrical and Electronic Equipments, Proceedings of the 6th International Conference on OPTIM, 1998, (2): 473—478
    [130]Kyeong-Hwa Kim and Myung-Joong Youn, A nonlinear speed control for PM Synchronous Motor using a simple disturbance estimation technique, IEEE, Transactions on industrial electronics, Vol.49, No.3, pp.524-535, June, 2002
    [131]P.Caravani and S.Di Gennaro, Robust control of synchronous motors with nonlinearities and parameter uncertainties, Automatica, Vol.34, No.4,445-450, 1998
    [132]Rong-Jong Wai, Total sliding-mode controller for PM synchronous servo motor drive using recurrent fuzzy neural network, IEEE Transactions on Industrial Electronics, Vol.48, No.5, pp.926 -944, 2001
    [133]Kuo-Kai Shyu, Chiu-Keng Lai, Yao-Wen Tsai, and Ding-I Yang, A Newly Robust Control Design for the Position Control of Permanent-Magnet Synchronous Motor, IEEE Trans.ON IE, 2002, Vol. 49(30): 558-565
    
    [134]Kuan-Teck Chang, Teck-Seng Low, and Tong-Heng Lee, An Optimal Speed controller Permanent- Magnet Synchronous Motor Drives, IEEE Trans.on IE, 1994, Vol.41(5):503-510
    [135]Jongsun Ko, Sungkoo youn, Youngil Kim, A Robust Adaptive Precision Position Contr PMSM, IEEE2002 37th IAS Annual Meeting Vol. 1, Pittsburgh Pennsylvania, USA: 120-125
    [136]Manuele Bertoluzzo, Giuseppe Buja, Enzo Stampacchia, Performance analysis of a servo-system with high-bandwidth torque disturbance observer, IEEE Proceedings of AMC, 2002, Maribor, Slovenia: 110-115
    [137]Byoung-Kuk Lee and Mehrdad Ehsani, A Simplified Functional Simulation Model for Three-Phase Voltage-Source Inverter Using Switching Function Concept, IEEE Trans, on IE, 2001, (48) 2: 309-321
    [138]Christors Mademlis, Vassilios GAgelidis, A high-performance vector controlled interior PM synchronous motor drive with extended speed range capability, IECON'01, The 27th Annual Conference of the IEEE Industrial Electrical Electronics Society, 2001: 1467-1482
    [139]Hla Nu Phyu, M.A.Jabbar, Liu Zhejie and Bi Chao, Modeling and simulation of brushless permanent magnet DC motor in dynamic conditions by time stepping technique, International Electric Machines & Drives Conference, 2003,Madison, WI, USA: 376-381
    [140]Cui Bowen, Zhou Jihua, Ren Zhang, Modeling and simulation of permanent magnet synchronous motor drives, ICEMS 2001.Proceedings of the Fifth International Conference on Electrical Machines and Systems, Shenyang, China: 905-908
    [141]Chin, Y.K., Soulard J, A permanent magnet synchronous motor for traction applications of electric vehicles, Electric Machines and Drives Conference, 2003. IEMDC'03. IEEE International: 1035-1041
    
    [142]Eskola, M., Tuusa, H., Comparison of MRAS and novel simple method for position estimation in PMSM drives, Power Electronics Specialist, 2003. PESC '03. IEEE 34th Annual Conference on, June 2003, Vol.2, pp. 550-555
    [143] Jorge Solsona, Maria I. Valla, and Carlos Muravchik, Nonlinear Control of a Permanent Magnet Synchronous Motor with Disturbance Torque Estimation. IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 15, NO. 2, JUNE 2000
    [144] Atsuo Kawamura, Hiroshi Itoh, and Kiyoshi Sakamoto. Chattering Reduction of Disturbance Observer Based Sliding Mode Control IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS. VOL. 30, NO. 2, MARCWAPRIL 1994
    [145] V. I. Utkin. Sliding mode control design principles and application to electric drives.Transaction on Industrial Electronics. Vol. 40, No. 1.1993
    [146] Sabanovic.A. Sliding mode control of AC drives.Transactions on Industrial Application. Vol. 25. No. 3. 1989:70-75
    [147] 张福祥.火箭燃气射流动力学.北京:国防工业出版社.1988.12
    [148] 路甬祥主编,液压气动手册.北京:机械工业出版社.2005.8
    [149] 廖常初,S7-300/400PLC应用技术.北京:机械工业出版社,2005.1
    [150] 张建国.某实验台自动控制系统设计和研究.南京理工大学硕士学位论文.2005.7
    [151] 史晓娟.虚拟轴机床滑模变结构位置控制的研究.西安交通大学博士学位论文.2002.11
    [152] 贺北斗,林永明,曹听荣.火箭发射装置设计.北京:国防工业出版社.1988.7
    [153] 姚昌仁,张波.火箭导弹发射装置设计.北京:北京理工大学出版社.1998
    [154] 高明坤,宋廷伦编著.火箭导弹发射装置构造.北京:北京理工大学出版社,1996
    [155] 段广仁.线性系统理论.哈尔滨:哈尔滨工业大学出版社.1998
    [156] 舒志兵.交流伺服运动控制系统.北京:清华大学出版社.2006.3
    [157] 华东工程学院104教研室,随动系统原理与设计(下).1974
    [158] 田宏奇.滑模控制理论及其应用.武汉:武汉出版社.1995.6
    [159] 姚琼荟,黄继起,吴汉松编著.变结构控制系统.重庆:重庆大学出版社.1997.1
    [160] 张兴君.火炮伺服系统模拟负载系统的研究.南京理工大学硕士学位论文.2004.2
    [161] 魏熙乐.永磁同步电动机鲁棒平滑跟踪控制.天津大学硕士学位论文.2004.1
    [162] 高元楼.火炮机电伺服系统定位精度的研究.西安交通大学博士学位论文.2001.10
    [163] 刘金琨.滑模变结构控制MATLAB仿真.北京:清华大学出版社.2005.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700