用户名: 密码: 验证码:
基于匹配滤波的光纤Bragg光栅解调系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤Bragg光栅在光纤传感及光纤通信等光电子领域有着广泛应用。光纤传感以其众多优势,已经成为传感技术发展的主流方向之一,并在近20多年的时间里得到了迅速的发展。光纤光栅将被感测信息的变化转变为反射波长的移动,利用高精度光谱分析仪可实现反射波长微小位移的精确检测。但是,由于光谱仪体积庞大,价格昂贵,很难用于实际工程中。因此,开展较高精度、低成本的光纤光栅解调方法的研究,是传感器产业化的关键问题之一。
     本文在分析国内外研究现状的基础上,设计了一种基于匹配光栅法的透射式解调系统。该系统利用单片机控制精密电动位移台,驱动悬臂梁对匹配光栅施加压力或拉力,使之与测量光栅相匹配,实现对温度、应变等传感信号的解调。以单片机AT89C52为核心设计制作了解调装置的下位机系统,采用Keil C语言编写程序,实现了电移台的控制,以及串行通信等功能。设计制作了光电转换、信号放大电路,采用多通道数据采集卡实现了对光电信号的采集。根据光栅在矩形梁和等强度梁不同位置的应变特性分析,选择等强度梁作为调谐光栅的悬臂梁。上位机程序采用VC++编写,通过串口对下位机发送命令,实现对电动位移台的运行方向、移动距离和细分的控制;根据实时采集的数据绘制光电信号曲线,并对图像和数据进行保存;通过全局扫描和实时跟踪相结合的方法,实现了对缓变传感信号的实时检测。
Fiber Bragg Grating (FBG) has wide application in the fiber sensing, optical fiber communication and other photonics field. Because Fiber Sensing has many advantages, it has become the mainstream direction of the development of sensing technology and developed rapidly in the past 20 years. Reflecting wavelength can be converted to sensing information by FBG, high-precision Optical Spectrum Analyzer (OSA) can be used to achieve reflecting wavelength of precision small displacement detection. However, OSA which in huge size and expensive is difficult for the actual project. So a high precision and low-cost FBG demodulator is one of the key issues for the industrialization of FBG sensor.
     This paper presents a Bragg demodulation device based on matching fiber grating of transmitting style with the analysis on the literature at home and abroad. A high precision displacement set controlled by the microcontroller was used to move the free end of the cantilever beam to stretch or compress, which implemented the measurement of matched grating and the purpose of temperature or strain signal demodulation. MCU AT89C52 was adopted as the core of under-machine system of the demodulation device, Keil C language was used to program, which completed functions of control high precision displacement set and serial communication. The photoelectric conversion, amplifier and control circuit was design and produced, a multi-channel data acquisition card was used to acquire photoelectric signal. Upper computer programme is written with VC++. The function it achieves are as follows: achieving the running direction, distance, and the subdivision control by serial port; accomplishing data acquisition and real-time rendering of the photoelectric signal acquisition by the curves, as well as the preservation of images and data; realizing the purpose of demodulation of slow sensing signal with the whole scanning method and the method of combining three points.
引文
[1] 饶云江,王义平,朱涛.光纤光栅原理及应用.北京:科学出版社,2006.
    [2] Hill K O, Fujii Y, Johnson D C et al. Photosensitivity in optical fiber waveguide: application to reflection filter fabrication. Appl. Phys. Lett, 1978,32(10):647-649.
    [3] Meltz G, Morey W W, Glenn W H. Formation of Bragg gratings in optical fibers by transverse holographic method. Opt Lett, 1989,14(15):823-825.
    [4] Hill K O. Bragg gratins fabricated in monomode photosensitive optical fiber by UV expose through a phase mask. Appl. Phys. Lett, 1993,62(10): 1035-1037.
    [5] 廖延彪.光纤传感技术对工业发展的促进作用.物理学和高新技术,2003,32(9):604-608.
    [6] 张伟刚,涂勤昌,孙磊等.光纤光栅传感器的理论、设计及应用的最新进展.物理学进展,2004,24(4):398-423.
    [7] 胡勇勤.光纤光栅传感器的解调方法的研究.自动化与仪器仪表,2004,(5):11-14.
    [8] 廖延彪.光纤光学.北京:清华大学出版社,2000.
    [9] Morey W W, Meltz G, Glenn W H. Fibre optic Bragg grating sensors. Proc SPIE 1989,1169: 98-107.
    [10] Rap Y J. Recent progress in applications of in-fiber Bragg grating sensors. Optics and Lasers in Engineering, 1999,31:297-324.
    [11] Fribele P et al. Fiber Bragg Gragting strain sensor: present and future applications in smart structures. Optics and photonics news, 1998,9:33-37.
    [12] 欧进萍,周智,武湛君等.黑龙江呼兰河大桥的光纤光栅智能检测技术.土木工程学报,2004,37(1):45-49.
    [13] 周次明,廖楚柯等.光纤光栅传感技术的工程应用及市场前景.新材料产业,2006,(4):22-25.
    [14] 姜德生,何伟.光纤光栅传感器的应用概况.光电子.激光,2002,13(4):420-430.
    [15] Hjelme D R, Bjerkan L, Neegard S et al. Application of Bragg grating sensors in the characterization of scaled marine vehicle modes. Appl Opt, 1997,36:328-336.
    [16] Hammon T E et al. Optical fiber Bragg grating temperature sensor measurements in an electrical power transformer using a temperature compensated fiber Bragg grating as a reference. Proc. of the 11th International Conf. on Optical Fiber Sensors, Sapporo, JAPAN, 1996,566-569.
    [17] Internet reference:oil-offshore, com/companies/optoplan.html.
    [18] 欧进萍.重大工程结构智能传感网络与健康监测系统的研究与应用.中国科学基金,2005,(1):8-12.
    [19] Spirin V V, Shlyagin M G, Miridonov S V et al. Fiber Bragg grating sensor for petroleum hydrocarbon leak detection. Optics and Lasers in Engineering, 2000,32:497-503.
    [20] Kersey A D, Berkoff T A, Morie W. High resolution fiber-grating based strain sensor with interferometric wavelength-shift detection. Electron. Lett, 1992,28(3): 236-238.
    [21] Rao Y J, Jackson D A. Dual-cavity interferometric wavelength-shift detection for in-fiber Bragg grating sensors. Optics Letters, 1996,21(19):1556.
    [22] 余有龙,谭华耀,锺永康.基于干涉解调技术的光纤光栅传感系统.光学学报,2001,21(8):987-989.
    [23] Yu Y L, Zhao H X.A novel demodulation scheme for fiber bragg grating sensor system. IEEE Photonics Technology Letters, 2005,17(1):166-168.
    [24] Kersey A D, Berkoff T A, Morie W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber F-P wavelength filter. Opt Lett, 1993,18(16):1370-1372.
    [25] 罗铁亮,高雪清,熊浩宇等.基于DSP系统的光纤Bragg光栅解调系统的研究.信号与系统,2005,(2):40-42.
    [26] Jackson D A, Ribeiro A B L, Reekie L et al. Simple multiplexing scheme for a fiber-optic grating sensor network. Opt. Lett, 1993,18(14):1192-1194.
    [27] Ferreira L A, Santos J L. Pseudoheterodyne demodulation technique for fiber Bragg grating sensors using tow matched gratings. IEEE Photonics Technology Letters, 1997, 9(4):487-489.
    [28] Davis M A. Matched filter interrogation technique for fiber Bragg grating array. Electronics Letter, 1995,31(10):822-823.
    [29] Seok H Y, Richardson D J et al. Interrogation of fiber grating sensor arrays with a wavelength-swept fiber laser. Optics Letters, 1998,23(11): 843-845.
    [30] Wang Y P, Cui Y P, Yun B F. A fiber Bragggrating sensor system for simultaneously static and dynamic measurements with a wavelength-swept fiber laser. IEEE Photonics Technology Letters, 2006,18(14):1539-1541.
    [31] Serge M M, Kexing L, Raymond M M. A passive wavelength demodulation systemfor guided wave Bragg grating sensors. IEEE Photo. Tech. Lett, 1992,4(5):516-518.
    [32] Geiger H et al. Electronic tracking system for multiplexed fibre grating sensors. Electronics Letters, 1995,31(12): 1006-1007.
    [33] Sungchul K. Fiber Bragg grating strain sensor demodulation using a chirped fiber grating. IEEE Photon. Technol. Lett, 2001,13(8):839-841.
    [34] Anatoli A. Chtcherbakov, Pieter L S. Chirped Fiber-Optic Bragg Grating Interrogator in a Multiplexed Bragg Grating Sensor Configuration. Journal of lightwave technology, 2004,22(6):1543-1547.
    [35] 刘波,童峥嵘,曾剑等.一种利用啁啾光栅反射滤波的光纤光栅传感解调方法.光子学报,2004,33(1):57-60.
    [36] Chan C C, Jin W et al. Improvement of measurement accuracy of fiber Bragg grating sensor systems by use of gas absorption lines as multi-wavelength references. Electronics Letters, 2001,37:742-743.
    [37] 张键,刘波,开桂云等.高精度、高稳定性的工程化光纤光栅解调系统的研究.光子技术,2006,(2):88-91.
    [38] 刘钦朋,乔学光,贾振安等.一种耐高压光纤布拉格光栅压力传感器.激光与红外,2006,36(3):495-497.
    [39] 余有龙.光纤光栅及其在传感领域中应用的研究:(博士学位论文).天津:南开大学,1999.
    [40] Hill K O, Malo B et al. Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl Phys Lett, 1993,62(10): 1035-1037.
    [41] Hand D P, Russell P S J. Photo induced refractive-index changes in germanosilicate fibers. Opt Lett, 1990,15:102-104.
    [42] Atkins R M, Mizrahi V, Erdogan T. 248nm induced vacuum UV spectral changes in optical fibre perform cores: support for a color centre model of photo sensitivity. Electron Lett, 1993,29:385-387.
    [43] Poumellec B, Guenot P, Riant I et al. UV induced densification during Bragg grating inscription in Ge: SiO_2 preforms. Optical Materials, 1995,4(4):441-449.
    [44] Digonnet M J. A Kromers-Kroning analysis of the absorption change in fiber gratings. Proc SPIE, 1996,2841: 109-120.
    [45] 龚岩栋,简水生.新型增强光敏性特种光纤的研究.光电子.激光,2000,11(4):335-338.
    [46] 江俊峰,张以谟,刘铁根.掺锗光纤的光敏机理及增敏方法的研究现状与发展.光学技术,2003,29(2):131-135.
    [47] Lemaire P J, Atkins R M, Miarahi V et al. High pressure H_2 loading as technique for achieving ultrahigh UV photosensitivity and thermal doped optical fibres. Electron Lett, 1993,29(13): 1191-1193.
    [48] Ertan Salik. Photosensitivity of germanium-doped optical fibers and its enhancement by strain:(dissertation).USA:The university of southern California, 2001.
    [49] Qin Z X, Zeng Q k, Xiang Y et al. Bidirection Grating Wavelength Shifter with a Broad-Range Tunability by Using a Beam of Uniform Strength. IEEE photonics technology letters, 2001, 13(4): 326-328.
    [50] Iocco A, Linberger H G, Salathe R P. Bragg Grating fast tunable filter. Electron letter, 1997,33(25):2147-2148.
    [51] 闾晓琴,李振华,王海林等.光纤光栅调谐特性的实验研究和分析.压电与声光,2005,25(4):274-276.
    [52] 刘志国,张艺兵,开桂云等.新型光纤光栅线形解调方法.光学学报,1998,18(2):1731-1734.
    [53] 关柏鸥,刘志国,开桂云等.基于悬臂梁结构的光纤光栅位移传感研究.光子学报,1999,20(11):983-985.
    [54] 王守新.工程力学.北京:化学工业出版社,1998.
    [55] 关柏鸥,刘志国,开桂云.光子学报,1999,28(11):983-984.
    [56] 秦子雄,曾庆科,项阳等.光学学报,2001,21(12):1421-1425.
    [57] 王跃,张伟刚,杨翔鹏等.光纤布拉格光栅的半金属管封装及绕度试验研究.传感技术学报,2002,(9):203-207.
    [58] 周智,赵雪峰,武堪军等.光纤光栅毛细钢管封装工艺及其传感特性的研究.中国激光,2002,29(12):1089-1092.
    [59] 范典.光纤光栅金属化封装及传感特性试验研究.传感技术学报,2006,19(4):1234-1237.
    [60] 宋路发,张华,谢剑峰等.光纤Bragg光栅传感器化学镀研究.研究与开发,2006,(8):6-8.
    [61] 李小甫,姜德生,余湖海等.石英光纤表面化学镀镍磷合金工艺.化工学报,2005,56(1):126-129.
    [62] 旷戈,张济宇,钟赞辉等.光纤表面金属化工艺的研究.Electroplating & Pollution Control,2004,24(2):32-34.
    [63] 余秀娟,余有龙,张敏.钛合金片封装光纤光栅传感器的应变和温度传感特性研究.光电子.激光,2006,15(7):564-567.
    [64] 马忠梅,刘滨,戚军等.单片机C语言Windows环境编程宝典.北京:北京航空航天大学出版社,2003.
    [65] 康兵.Protel DXP 2004应用与实例.北京:国防工业出版社,2005.
    [66] 郝文化.Protel DXP电路原理图与PCB设计.北京:机械工业出版社,2004.
    [67] 安毓英,刘继芳,李庆辉等.光电子技术.北京:电子工业出版社,2002.
    [68] 张君,赵杰.仪表放大器AD623的性能与应用.仪表技术,2002,(5):45-46.
    [69] David J,Kruglinski.Visual C++技术内幕.潘爱民,王国印译.北京:清华大学出版社,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700