用户名: 密码: 验证码:
松辽盆地北部宋芳屯地区葡萄花油层高分辨率层序地层学及砂体定量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以高分辨层序地层学理论、储层定量描述理论为指导,综合利用岩芯资料、测井资料和地震资料以及室内化验分析资料,以计算机为手段,对宋芳屯地区葡萄花油层进行层序地层学及砂体展布定量研究。首先在总结多种地层划分对比方法的基础上,充分借鉴前人研究成果,确定适用于研究区自身地质特点的层序划分对比方法。然后,进行跨区域过油田最密井网区主干大剖面的高分辨率层序地层划分对比工作,了解宋芳屯地区葡萄花油层地层发育特点及总体沉积特征,为全区高分辨层序地层划分对比打下坚实基础。进而以多条贯穿研究区的南北向和东西向骨架剖面的精细层序地层划分对比为依托,建立宋芳屯油田葡萄花油层的高分辨率层序地层格架,同时通过对跨大庆长垣与宋芳屯地区密集骨架大剖面的精细层序地层划分对比工作,建立了宋芳屯地区葡萄花油层与大庆长垣对于地层的联系。在等时精细地层格架的基础上,通过对邻区杏13高密度井网区的精细解剖得到葡萄花油层砂体发育的一系列几何参数及展布特征,指导宋芳屯油田低密度井网区葡萄花油层砂体定量及砂体展布特征的研究工作。
     研究区目的层对应于长垣白垩系葡萄花油层的PI1~PI3砂层组,可以划分为一个长期基准面半旋回、2个中期基准面旋回和12个短期基准面旋回。对研究区可能存在的4种地层模式分别加以论证,最终确定顺源逐层上超为宋芳屯地区葡萄花油层的地层沉积模式。详细研究了地层展布特征,北厚南薄,下部的3个短期基准面旋回p1900、p1800、p1700依次向南尖灭减薄。
     在层序格架内,对密集井网区进行单砂体成因解剖,进行沉积微相研究,确定研究区为河控浅水三角洲沉积。其具有建设性三角洲沉积特征,岩性主要以细砂岩、粉砂岩、泥质粉砂岩及薄层泥岩为主,岩性较粗,粒度概率曲线多为反映牵引流沉积的两段式。沉积构造上冲刷界面极为发育,水道多且规模小,反映深水沉积或海相的古生物化石少见。单井大多数下部为进积准层序组,上部为退积准层序组,具有典型的两端对称的“菱形”垂向沉积序列。三角洲的三层结构不发育,三角洲相带分异明显,各亚相带发育齐备,且三角洲前缘亚相带十分宽广。砂体一般顺物源分布,具有明显的方向性,并且河口坝砂体不发育。研究区主要微相类型为河控浅水三角洲分流平原亚相的分流河道、道间砂、道间泥微相;内前缘亚相的水下分流河道、水下道间砂、水下道间泥微相;外前缘亚相的残留水下分流河道、席状砂、远砂坝微相和前三角洲泥微相。沉积微相及其垂向演化受控于地层基准面变化。葡萄花油层沉积早期,地层基准面下降,沉积相向湖中央迁移,自下而上依次形成前三角洲、外前缘、内前缘、分流平原,构成水体向上变浅的沉积序列;葡萄花油层沉积晚期,地层基准面上升,沉积相向陆迁移,自下而上依次形成分流平原、内前缘、外前缘,构成水体向上变深的沉积序列。
     采用类别方法和储层定量描述技术开展砂体展布定量研究。首先确定定量研究的对象为分流河道砂、废弃河道砂、道间砂、水下分流河道砂、水下道间砂、残留水下分流河道、席状砂、远砂坝内坝砂、中坝砂和外坝砂。然后确定定量研究的指标,最终选择了砂体平均厚度、厚度标准差、厚度偏度、厚度峰度、砂体宽度、宽厚比、砂体长度、长厚比、河道分叉范围角α、河道分叉范围法线角β共10个定量研究指标。各类砂体其定量研究指标有着各自的特点,定量反映出各种不同类型砂体各自的沉积特征及分布特点。研究表明,宋芳屯地区葡萄花油层河道砂体自北向南分叉延伸,其中分流河道砂体厚度最大(平均值为4.07m),砂体厚度离散程度最大,厚度频率曲线十分平缓;平面上分流河道砂体在河道砂体中也最宽(158m~986m),延伸很远(延伸长度大于1500m),宽厚比与长厚比也比较大;废弃河道砂体厚度居中(平均值为2.89m),厚度标准差较大,厚度频率直方图上各厚度区间所占频率差异较大,呈连续变化形态,表明废弃河道砂体厚度变化较为剧烈,主要由突然废弃和逐渐废弃两种不同的废弃方式造成;平面上废弃河道砂体呈弯曲状,规模较小(83m~144m),延伸长度较短(139m~690m),砂体大多成弯曲状分布,连续性较差;水下分流河道砂体同前两种河道砂体比较砂体厚度较小(平均值为2.28),厚度标准差也较小,为1.26,表明砂体厚度离散程度较小,砂体厚度较为集中;平面上水下分流河道砂体规模也很大,宽度分布范围较广(70m~537m),既有较为宽阔的砂体,也有比较窄小的砂体,延伸长度也较远(466m~1683m)。统计表明,宋芳屯油田葡萄花油层分流河道方位角范围角α为117°,河道分叉法线角β为30°,类似现代沉积,表明次一级分流河道大致分布在主干河道的两侧,偏离不大,砂体主要受河流控制,波浪和沿岸流作用较小。
     道间砂和水下分流河道道间砂平均厚度、厚度标准差、厚度偏度、厚度峰度都相差不大;但二者的平面分布有所差异,道间砂宽度范围与延伸长度范围同水下分流河道道间砂相比都要小,表明尽管同样是河道之间的砂体沉积,但是前者河水严格受河道限制,而后者河道限制大大减弱,因此,水下分流河道道间砂的发育程度要比分流河道道间砂的发育程度要好,延伸要远,范围更大。
The quantitative study of sequence stratigraphy and distribution of sandbody has been done on Putaohua reservoir in Songfangtun area, using the data of core, laboratory analysis, well logging and seismic, realized by computer, under the direction of high resolution sequence stratigraphy theory and reservoir quantitative description theory. After comparing the advantages and disadvantages among different methods of stratigraphic classification and correlation, the method available to the study area is found on the base of the former researches by others. And then the high resolution sequence stratigraphic classification and correlation of bone sections is started, which are interregional and cross the densest well network, and the knowledge of the characteristics of strata and the general deposition of Putaohua reservoir in Songfangtun area applies strong bases for this work.
     The plan for stratigraphic classification, which is suitable for the study area, has been established, after summing up the former achievements by others about the classification of Cretaceous in Songliao basin. On this base, the high resolution formation skeleton of Putaohua reservoir in Songfangtun area is built up, dependent on the stratigraphic classification of several north-south and east-west bone sectons through the whole area. moreover, the relationship between Putaohua reservoir in Songfangtun area and the one of placanticline in Daqing oilfield has been founded through the classification and correlation of bone sections in both areas.
     The target stratum of the study area are equivalent to PI1~PI3 of Putaohua reservoir of placanticline, and it can be divided into one symmetric long-basal level-hemicycle, two medium-basal level-cycles, and twelve short-basal level-cycles. And four potential stratigraphic models are discussed separately, and then the stratigraphic model is found that the strata were onlap zone by zone with the source. Through the detailed study, it is concluded that the horizones in the north were thick, while the ones in the south were thin, and that the strata of the lower three short-basal level-cycles p1900, p1800 and p1700 ordinally became thinner, and ultimately died out southtowards.
     This paper does genetic anatomy to single sandbody in the densest well network beside the formation skeleton, and analyses the microfacies. It confirms that it was fluvial dominated shallow delta, and then generalized its characteristics. The main microfacies are distributary channel, intrachannel sand and intrachannel mud microfacies in delta plain subfacies; and underwater distributary channel, underwater intrachannel sand and underwater intrachannel mud microfacies in inner front subfacies; and relic underwater distributary channel, sand sheet and distal bar microfacies in outer front subfacies; and prodelta mud microfacies, and so on. The vertical evolution suggested the control of basal-level to microfacies: the basal-level descent in the early stage of Putaohua Formation, and sediments migrated towards lake, and formed a shallowing-upward sequence that it was prodelta, outer front, inner front and delta plain ordinally from bottom to top; while in the late period, the basal-level ascent, and sediments migrated towards land, which formed a deeping-upward sequence that it was delta plain, inner front and outer front ordinally from bottom to top.
     Lastly, this paper studies the distribution of sandbody quantitatively. Firstly, it defines the objects, such as the sandbody of distributary channel, abandoned channel, intrachannel, underwater distributary channel, underwater intrachannel, relic underwater distributary channel, sand sheet, and the inner, middle and outer of distal bar. Secondly, it gets the index for quantitative study, and selects ten parameters such as average value, standard difference, bias angle, peakedness of sandbody thickness, width, width to-thickness ratio, length, length to-thickness ratio, channel offset amplitude angleα, and channel offset amplitude normal angleβ, and so on. Different index has different characteristics and they can reflect the individual sedimentary characteristics and the distribution of sandbody of different type.
引文
[1] Vail P R, Mitchum R M Jr, Thomposons S. Global-cycles of relative changes of sea level [J]. AAPG Memoir, 1977, 26:83-97.
    [2] Vail P R. Sequence stratigraphy workbook, fundamentals of sequence stratigraphy[A]. In: Bally A W. AAPG annual convention short course: sequence stratigraphy interpretation of seismic stratigraphy interpretation procedure[C]. AAPG Atlas of seismic stratigraphy, 1988.
    [3] Vail P R, AudeIIlard F, BowmanSA, et al. The stratigraphic signatures of tectonics, eustasy and sedimentology: an overview [A]. In:Einsele G, RickenW, Seilacher A. Cycles and events instratigraphy[C]. Berlin: Springer-Verlag, 1991. 617-659.
    [4] Van Wagoner J C, Mitchum R M, Campion K M, et a1.Siliciclastic sequence stratigraphy in well logs, cores and outcrops[J].AAPG Methods in Exploration Series,1990,7:1-8.
    [5] Van Wagoner JC. Overview of sequence stratigraphy of forelandbasin deposits: terminology, summary of papers, and glossary of sequence stratigraphy [J]. AAPG Memoir, 1995, 64:400-490.
    [6] Posamientier H W, Jervey M T, Vail P R. Eustatic controls on clastic deposition I-conceptual framework [A]. In: Wilgus C K, Hastings B S, Kendall C G St C, et al. Sea-level changes: an integrated approach[C]. SEPM Special Publication,1988,42:69-125.
    [7] Haq B U, Hardenbol J, Vail P R. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present)[J]. Science, 1987, 235:1156-1167.
    [8] Jervey M T. Quantitative geological modeling expression[A]. In: Wilgus C K, Hastings B S, Kendall C G St C, et al. Sea-level changes: an integrated approach[C]. SEPM Special Publication, 1988, 42:47-70.
    [9]刘招君,董清水,王嗣敏,等.陆相层序地层学导论与应用.北京:石油工业出版社, 2002.
    [10]姜在兴,李华启,等.层序地层学原理及应用.北京:石油工业出版社, 1995.
    [11]顾家裕,张兴阳.陆相层序地层学进展与在油气勘探开发中的应用[J].石油与天然气地质, 2004, 25(5):484-485.
    [12]李思田等.大型陆相盆地层序地层学研究[J].地学前缘, 1995, 2(3-4):133-136.
    [13] Cross T A, Homewood P W. Amanz Gressly’s role in founding modem stratigmphy[J]. Geological Society of American Bulletin, 1997, 109:1617-1630.
    [14] Cross T A. Controls on coal distribution in trensgressive-regresive cycles,Upper Cretaceous, Westermn Interior, USA[A]. In: Wilgus C K, Hastings B S, Kendall C G St C, et al. Sea-levelchanges: an integrated approach[C]. SEPM Special Publication, 1988, 42:293-308.
    [15] Cross T A, Lessenger M A. Correlaion strategies for clastic wedges[A]. In: Coalson E B, Osmend J C, Williams E T. Innovative applications of petroleum technology in the Rocky Mountain[C]. Denver: Area-Rocky Mountain Association of Geologists, 1997,183-203.
    [16] Cross T A, Lessenger M A. Construction and application of a stratigraphic inverse model[A]. In: Harbaugh J W, Watney W L, Rankey EC, et al. Numerical experiments in stratigraphy: recent advances in stratigraphic and sedimentologic computer simulations[C]. SEPM Special Publication, 1999, 62:69-83.
    [17] Cross, T.A., Baker, M.R., Chapin, M.A., Clark, M.S., Gardner, M.H., Hanson, M.S., Lessenger, M.A., Little, L.D., McDonough, K.J., Sonnenfeld, M.D., Valasek, D.W., Williams, M.R., and Witter, D.N., 1993, Applications of high-resolution sequence stratigraphy to reservoir analysis, in R. Eschard and B. Doligez, eds., Reservoir Characterization from Outcrop Investigations: Proceedings of the 7thExploration and Production Research Conference, Paris, Technip, p. 11-33.
    [18]邓宏文.美国层序地层研究中的新学派—高分辨率层序地层学[J].石油与天然气地质,1995,16(2):89-97.
    [19]邓宏文,王洪亮,李熙.层序地层基准面的识别、对比技术及应用[J].石油与天然气地质,1996,17(3):177-18.
    [20] Miall A D. Architectural-Element Analysis: A new Method of Facies Analysis Applied to Fluvial Deposits[J]. Earth Science Revieews. 1985, 22:261-308.
    [21] Miall A D . Architectural Elements and Bounding Surfaces in Fluvial Deposits: Anatomy of the Kayenta Formation (Lower Jurassic), Southwest Colorado[J]. Sedimentary Geology. 1988,155:233-262.
    [22] Miall A D. The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis and Petroleum Geology[M]. Berlin, Heidelberg. New York: Spinger-Verlag. 1996:57-98.
    [23] Miall A D. hierarchies of architectural units in clastic rocks, and their relationship to sedimentation rate[J]. In: Miall A D, Tyler N. The three dimensional facies architecture of terrigenous clastic sediments, and its implications for hydrocarbon discovery and recovery[C]. Soc Eco Paleontol Mineral Conc Sedimentol Paleontol, 1991,3:6-12.
    [24]马立祥.砂岩油气储层构型分析及其在国内的应用前景[J].天然气地球科学,1992,3(2):11-16.
    [25]马立祥.油田内5级界面层序沉积相制图的意义及其实践途径[J].石油实验地质,1997,19(3):267-273.
    [26]马世忠.松辽盆地河流—三角洲休系高分辨率层序地层学、储层构形及非均质模型研究:[博士学位论文],中国科学院,北京:2003.
    [27]渠永宏.高分辨率层序地层学在大庆油田开发储层非均质表征中的应用:[中国石油勘探开发研究院博士后研究工作报告],中国石油勘探开发研究院大庆油田博士后科研工作站,大庆:2003.
    [28]穆龙新,贾爱林.扇三角洲沉积储层模式及预测方法研究.北京:石油工业出版社, 2003.
    [29]李思田,林畅松,解习农,等.大型陆相盆地层序地层学研究—以鄂尔多斯中生代盆地为例[J].地学前缘(中国地质大学,北京),1995,2(3-4):133-136,148.
    [30]李凤杰,王多云,宋广涛,等陕甘宁盆地坳陷型湖盆缓坡带三角洲前缘短期基准面旋回与储层成因分析[J].沉积学报,2004,22(01):73-78.
    [31] Plint, A.G., P.J. McCarthy, U.F.Faccini. Nonmarine Sequence Stratigraphy: Updip Expression of Sequence Boundaries and Systems Tracts in a High-Resolution Framework, Cenomanian Dunvegan Formation, Alberta Foreland Basin, Canada. AAPG Bulletin,2001,85(11):1967-2001.
    [32]付志国,郑荣才,赵翰卿,等.体系分配原理在河流三角洲储层分析中的应用—以大庆长垣萨葡油藏为例[J].成都理工学院学报(自然科学版),2006,33(5):504-508.
    [33]施和生,李文湘,邹晓萍,等.层序地层学在珠江口盆地(东部)油田开发中的应用[J].中国海上油气地质,2000,14(1):15-20.
    [34]尹太举,张昌民,汤军,等.马厂油田储层层次结构分析[J].江汉石油学院学报, 2001, 23(4):19-22.
    [35]尹太举,张昌民,樊中海,等.地下储层建筑结构预测模型的建立[J].西安石油学院学报(自然科学版), 2002, 17(3):7-10.
    [36]赵翰卿.储层非均质体系、砂体内部建筑结构和流动单元研究思路探讨[J].大庆石油地质与开发, 2002, 21(6):16-18.
    [37] Allen JRL. Studies in fluviatile sedimentation: bars, bar complexes and sandstone sheets(lower-sinuosity braided streams) in the Brownstones(L.Devonian),Welsh Borders[J]. Sediment Geol. 1983,33:237-293.
    [38]雷卞军,林克湘,张昌民,等.柴达木盆地油砂山湖盆网状河三角洲沉积模式[J].石油与天然气地质,1997,18(1):70-75.
    [39]解习农,李思田,高东升,等.江西丰城矿区障壁坝砂体内部构成及沉积模式[J].岩相古地理, 1994, 14(4):1-9.
    [40] Ravenne C, Eschard R, Galli A, et al. Heterogeneity and geometry of sedimentary bodies in fluvial-deltaic reservoir [J]. SPE, 1989, 4:239-246.
    [41] Robinson J W, Mccabe P J. Sandstone-body and shale-body dimensions in a braided fluvial system: salt wash sandstone member(Morrison Formation), Garfield County, Utan [J].AAPG Bulletin, 1997, 81(8):1267-1289.
    [42]裘怿楠,贾爱林.储层地质模型10年[J].石油学报, 2007, 21(4):101-104.
    [43]陈波,赵海涛.储层精细表征的研究方法体系与思路探讨[J].河南石油, 2006, 20(1):21-24.
    [44]冯建伟,戴俊生,冀国胜,等.测井资料定量识别河流储层建筑结构要素[J],中国石油大学学报, 2007, 31(5):21-26.
    [45]雷卞军,张昌民,林克湘,等.定量储层沉积学是获取储层建模地质信息的重要途径—以青海省油砂山露头研究为例.石油实验地质, 1998, 20(1):62-67.
    [46]金振奎,张响响,邹元荣,等.青海砂西油田古近系下干柴沟组下部沉积相定量研究[J].古地理学报, 2002, 4(4):99-107.
    [47]姚光庆,李联武,孙尚如.砂岩储层构成定量化分析研究思路与方法[J].地质科技情报, 2001, 20(1):35-38.
    [48]刘吉余,云金表,吕靖.储层参数定量预测方法探讨,吉林地质, 2001, 20(1):70-75.
    [49]魏魁生,徐怀大,叶淑芬,等.松辽盆地白垩系高分辨率层序地层格架.石油与天然气地质, 1997, 18(1):7-14.
    [50] van Wagoner J C, Mitchum R M, Campian K M, et al. Siliciclastic sequence stratigraphy in well logs, cores, and outcrops: Concepts for high-resolution correlation of time and facies. AAPG Methods in Exploration Series, 1990.(7):1-52.
    [51]郭少斌,孙少波.松辽盆地层序地层学研究新认识.岩相古地理, 1998, 18(1):54-60.
    [52]郭巍,刘招君,董惠民等.松辽盆地层序地层特征及油气聚集规律.吉林大学学报(地球科学版), 2004, 34(2):216-221.
    [53]朱建伟,刘招君,董清水,等.松辽盆地层序地层格架及油气聚集规律,石油地球物理勘探, 2001, 36(3):339-344.
    [54]郑荣才,彭军,吴朝荣.陆相盆地基准面旋回的级次划分和研究意义.沉积学报, 2001, 19(2), 249-255.
    [55]林春明,冯志强,张顺等.松辽盆地北部白垩纪超层序特征,古地理学报, 2007, 9(6):619-634.
    [56]陈立官.油气田地下地质学.北京:地质出版社, 1998
    [57]刘泽容,信荃麟,王伟锋,等.油藏描述原理与技术方法.北京:石油工业出版社, 1995.
    [58]陈波等.油田开发阶段砂岩储集层横向对比及预测方法.石油勘探与开发, 2000, 27(1)95-97.
    [59]刘波等.储集层的两种精细对比方法讨论.石油勘探与开发.2001,28(6),94-96.
    [60]朱强,毕彩芹.陆相地层精细对比方法及应注意的问题,油气地质与采收率, 2002, 9(3):27-31 .
    [61]塞拉O著.测井资料地质解释,石油科学进展15B.肖义越译.北京:石油工业出版社, 1992.
    [62] Bob A, Hardage R A, Levey Vetal. 3-DSeismic imaging and interpretation of fluvially deposited thin bed reservoirs. AAPG Studies in Geology, (42):27-33.
    [63]邓宏文.高分辨率层序地层学—原理及应用[M].北京:地质出版社, 2002.
    [64]郑荣才等.陕北志丹三角洲长6油层组高分辨率层序分析与等时对比.沉积学报, 2002, 20(1),92-100.
    [65]邓宏文等.沉积体积分配原理—高分辨率层序地层学的理论基础.地学前缘, 2000, 7(4):305-313.
    [66]林畅松等.高精度层序地层学和储层预测.地学前缘, 2000, 7(3):111-117.
    [67]张尚峰等.应用高分辨率层序地层学对储层流动单元层次性进行分析.成都理工学院学报. 2002, 29(2):147-151.
    [68]王允诚.油气储层评价[M].北京:石油工业出版社, 19991.
    [69]沈平平.现代油藏描述新方法[M].北京:石油工业出版社, 2003.
    [70]尹太举,张昌民等.依据高分辨率层序地层学进行剩余油分布预测.石油勘探与开发, 2001, 28(4):79-82.
    [71]郑荣才,吴朝容,叶茂才.浅谈陆相盆地高分辨率层序地层研究思路[J].成都理工学院学报, 2000, 27(3):241-244.
    [72]郑荣才,吴朝容.西部凹陷深层沙河街组生储盖组合的层序分析[J].成都理工学院学报, 1999, 26(4):348-356.
    [73]郑荣才,柯光明,文华国等.高分辨率层序分析在河流相砂体等时对比中的应用[J].成都理工大学学报, 2004, 31(6):641-647.
    [74]赵翰卿.高分辨率层序地层对比与我国的小层对比.大庆石油地质与开发, 2005,24(1):5-12.
    [75]孟万斌,张锦泉.陕甘宁盆地中部马五.潮缘碳酸盐岩沉积旋回及其成因探讨[J].沉积学报, 2000, 18(3):419-423.
    [76]周丽清,邵德艳,刘玉刚等.洪泛面、异旋回、自旋回及油藏范围内小层对比[J].石油勘探与开发, 1999, 26(6):75-7.
    [77]黄彦庆,张昌民,汤军.高分辨层序地层学中自旋回作用的探讨.石油天然气学报(江汉石油学院学报), 2006, 28(2):6-8.
    [78]郑荣才.高分辨率层序分析在油藏开发工程中的应用—以白色盆地仑35块那二段油藏为例[J].沉积学报, 2003,21(4):654-661.
    [79]郑荣才.基准面旋回与叠加样式的沉积学动力学分析[J].沉积学报, 2000,18(3):370-375.
    [80]游俊,郑浚茂,王德发.陆相层序地层学应用中几个问题的讨论.石油实验地质, 1999, 21(2):104-109.
    [81]樊太亮,李卫东.层序地层应用于陆相油藏预测的成功实例[J].石油学报, 1999(2):12-17.
    [82]顾家裕.陆相层序地层学格架概念及模式.石油勘探与开发[J], 1995,22(4):7-10.
    [83]纪友亮.陆相断陷湖盆层序地层学.北京:石油工业出版社, 1996.
    [84]李思田,解习农.陆相盆地层序地层学研究特点[J].地质科技情报, 1993,12(1):22-26
    [85]解习农,程守田,陆永潮.陆相盆地幕式构造旋回与层序构成[J].地球科学—中国地质大学学报,1996(1):28-33.
    [86]薛良清.层序地层学在湖相盆地中的应用探讨[J].石油勘探与开发,1990 ,17(6):29-34.
    [87]胡斌,张利伟,齐永安.国内陆相层序地层学研究进展[J],焦作工学院学报, 2004,23(3):176-182.
    [88]朱筱敏.含油气断陷湖盆盆地分析.北京:石油工业出版社,1995.
    [89]朱筱敏.层序地层学原理及应用.北京:石油工业出版社,1998.
    [90]朱筱敏,康安,王贵文.陆相坳陷型和断陷型湖盆层序地层样式探讨[J].沉积学报, 2003(2):283-287.
    [91]中国石油学会石油地质委员会编.碎屑岩沉积相研究,北京:石油工业出版社, 1988, 65-78.
    [92]隋军,吕晓光等.大庆油田河流—三角洲相储层研究.北京:石油工业出版社, 2000, 36-46.
    [93]方度,王冰洁,倪军娥.鄂尔多斯盆地麻黄山西块延长组浅水三角洲沉积特征.南方油气, 2006, 19(4):23-26.
    [94]代黎明,李建平,周心怀,等.渤海海域新近系浅水三角洲沉积体系分析,岩性油气藏.2007,19(4),75-81.
    [95]吕晓光,李长山,蔡希源,等.松辽盆地大型浅水湖盆三角洲沉积特征及前缘相储层结构模型.沉积学报, 1999, 17(4):572-576.
    [96]王建功,王天琦,卫平生,等.大型坳陷湖盆浅水三角洲沉积模式—以松辽盆地北部葡萄花油层为例.岩性油气藏, 2007, 29(2):29-34.
    [97]楼章华,卢庆梅,蔡希源,等.湖平面升降对浅水三角洲前缘砂体形态的影响.沉积学报, 1998, 16(4):27-31.
    [98]吕晓光,赵淑荣,高宏燕.三角洲平原相低弯度分流河道砂体微相及水淹变化特征.新疆石油地质, 1999, 20(2):130-133.
    [99]刘波,赵翰卿,王良书,等.古河流废弃河道微相的精细描述,沉积学报, 2001, 19(3):394-398.
    [100]王元英.曲流河废弃河道的识别方法及其应用.大庆石油学院学报, 2007, 31(5):65-67.
    [101]蔡东升,罗毓辉,武文来,等.渤海浅层构造变形特征、成因机理与渤中凹陷及其周围油气富集的关系.中国海上油气地质, 2001, 15(1):35-43.
    [102] Cornel Olariu,Janok P. Bhattacharya Terminal Distributary Channels and Delta Front Architecture of River-dominated Delta Systems, Journal of Sedimentary Research, 2006, 76:212-233

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700