用户名: 密码: 验证码:
高稳定K波段锁相频率合成器关键技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以微波锁相频率合成器及其呼吸心跳测试多普勒雷达应用为背景,开展了高稳定度K波段锁相频率合成器的关键技术研究与实现和呼吸心跳测试多普勒雷达的实验工作。
     微波锁相频率合成器是雷达、通信、电子对抗和测试测量等微波系统广泛应用的关键部件。为了实现K波段振荡源的小型化和高稳定度两个目标,本文采取单环路锁相环频率合成工作方式。
     频率源的相位噪声是一项非常重要的性能指标,它对电子设备和电子系统的性能影响显著。基于吞脉冲可变分频器架构,本文分析了锁相环频率合成器基本工作原理,给出了相位噪声模型,同时分析了锁相环路各个组成部件的相位噪声贡献。为了优化相位噪声性能,采用软件建模仿真优化的方式指导具体的原理图设计与电路调试。
     在电路相位噪声模型仿真的基础上,采用单反馈环路设计高稳定度K波段24.128GHz微波振荡源。该设计中采用电荷泵鉴频鉴相器、无源滤波、四阶锁相环路拓扑结构,具备小型化、低相位噪声、高可靠性等特点,总体尺寸仅2cm×3.5cm×4cm,输出功率为7.9dBm,在偏离中心频率1kHz处的相位噪声为-67dBm/Hz。采用失锁检测电路,实时检测电路的工作状态,失锁复位保证环路的可靠工作。该小型高稳定度数字频率锁相源设计实现了K波段微波振荡源的小型化、低相位噪声、高稳定度、高可靠性。
     提出了K波段连续波调频(FMCW)雷达振荡源的新颖解决方案。采用快速小数频率合成芯片ADF4193单锁相环路合成K波段步进三角波调频信号,用于克服K波段FMCW雷达中调频三角波的非线性问题。同时,采用内置双频率合成器的芯片,采用单参考振荡器供给两路锁相环,设计并实现了两路(305MHz、1795.5MHz)锁相频率合成信号,用于某型号超外差接收机的两路本振信号。
     结合K波段锁相频率合成器在呼吸心跳信号检测多普勒雷达上的应用,本文介绍了多普勒效应及其应用背景,给出了多普勒雷达呼吸心跳信号测试原理,并具体分析了多普勒微弱振动信号基带信号特性。呼吸心跳信号测试多普勒雷达融合射频微波技术、雷达技术、生物医学工程技术于一体,可穿透非金属物质,不需要任何电极或传感器接触生命体,可在较远的距离内探测到呼吸心跳信号。本文采用简单的直接下变频多普勒雷达系统结构并合理设计呼吸心跳信号带通滤波电路,给出了多种测试环境下的人体呼吸心跳信号测试结果,并对测试结果做了理论解释。
     实验结果与人体呼吸心跳信号的一致性表明,采用高稳定K波段微波锁相频率合成器作为呼吸心跳测试多普勒雷达系统的本振信号是有效的。本文提出了雷达系统结构以及各模块性能的改进方向,该多普勒雷达可实现人体呼吸心跳等生命体征信号的有效探测。
With the background of microwave phase locked loop (PLL) frequency synthesizerand its application on microwave Doppler radar for respiration and heartbeat vital signsdetection, this thesis launches the research on high stability K band PLL frequencysynthesizer key technique and takes experiments of the Doppler radar for vital signsdetection.
     Microwave PLL frequency synthesizer is the critical components of the radar,communications, electronic countermeasures, and microwave test and measurementsystems. To achieve the twin goals of miniaturization and high stability of the K bandsignal generator, the thesis adopted a single loop PLL frequency synthesizer method.
     The phase noise performance is a significant indicator of its electronic equipmentsand electronic systems performance. Based on the dual-modulus prescaler architecture,this thesis analyses the principal theory of the PLL. To optimize phase noise performance,this thesis adopts the method of modeling and simulating with ADS software to guide theschematic design and circuit debug.
     Based on the simulation of the phase noise behavioral model, high stability K-band24.128GHz microwave signal synthesizer was realized with a single feedback loop. Thesynthesizer contains the phase and frequency detector (PFD) charge pump device, thepassive filter, and adopts fourth-order feedback topology. With the small overallsize 2cm×3.5cm×4cm, the high performance as well as output power of 7.9dBm, phasenoise of -67dBm/Hz deviating 1 kHz from the center frequency was realized. To enhancethe stability performance, lock detect circuit was adopted. The miniaturized PLL microwave signal source solved the problems such as small volume, low phase noise,high stability and high reliability.
     This thesis presents a novel solution of the frequency modulated triangular wavesignal by step synthesis adopting a fast-lock fractional ADF4193 single chip PLLfrequency synthesizer to overcome the problem of nonlinear triangle wave in FMCWradar. Meanwhile, this thesis designed and realized the two-way (305MHz, 1795.5MHz)PLL frequency synthesizer for the application of one certain type super heterodynereceiver oscillator signals.
     Combining K band PLL frequency synthesizer in the application of vital signsdetection by Doppler radar, this thesis introduces the Doppler Effect and its application,presents the principle of vital signs detection by Doppler radar, and specific analysis ofbase band signal characteristics of the Doppler micro vibration signal. Vital Signs signaldetection involves RF microwave technology, radar technology, biomedical engineeringtechnology, and it is able to penetrate non-metallic substances, no need of any sensor orelectrode for life and physical contact at a distance of physiological signals. In this thesis,the simple direct-conversion Doppler radar system architecture was adopted and theband-pass filter was designed for physiological signals. Finally, the thesis gives thehuman heartbeat signal test results and the theory explanation of the results as well.
     The consistency of the experimental results with the human physiological signalsindicates that high stability K band PLL frequency synthesizer used as oscillator signal ina microwave Doppler radar system for vital signs detection is effective. The thesispresents the direction of improvement of radar system structure and performancepolishing of the modules, the Doppler radar can be used for respiration and heartbeatvital signs detection of human life.
引文
[1] 路过华,王健琦,杨国胜,荆西京,”生物雷达技术的研究现状,”国外医学生物医学工程分册,2004(vol.27):368-370.
    [2] 白居宪,低噪声频率合成,第一版.西安:西安交通大学出版社,45-52.
    [3] 庄卉,黄苏华,袁国春,锁相与频率合成技术,第一版.北京:气象出版社,24-25.
    [4] E.F. Greneker, "Radar sensing of heartbeat and respiration at a distance with applications of the technology," 1997.
    [5] 甘体国,“低相噪毫米波锁相源及其应用,”电讯技术,1997.
    [6] 刘松德,“航天测量雷达中锁相稳频源的设计,”微电子学,1998.
    [7] 刘湘,张春江,廖晓东,封烨年,谢寰彤,戴道宣,”锁相检测X波段电子自旋共振仪的研制,”物理实验,1999.
    [8] H.T. Ahn and D. J. Allstot, "A low-jitter 1.9-V CMOS PLL for UltraSPARC microprocessor applications," IEEE Journal of Solid-State Circuits, 2000(vol. 35):450-454.
    [9] N.S. Bayindir, O. Kukrer, and M. Yakup, "DSP-based PLL-controlled 50-100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications," Iee Proceedings-Electric Power Applications, 2003(vol. 150): 365-371.
    [10] Y. M. Greshishchev and P. Schvan, "SiGe clock and data recovery IC with linear-type PLL for 10-Gb/s SONET application," IEEE Journal of Solid-State Circuits, 2000(vol. 35):1353-1359.
    [11] C. M. Ren, C. M. Jing, X. Y. Shen, and X. W. Sun, "Novel nonlinear PLL model and its application in 8mm integrated automobile anti-collision radar," Journal of Infrared and Millimeter Waves, 2004(vol. 23):16-20.
    [12] P. Sevalia, "The PLL-based clock generator: a look at its many uses," Electronic Engineering, 1998(vol. 70): 29-30.
    [13] G.Y. Tak, S. B. Hyun, T. Y. Kang, B. G. Choi, and S. S. Park, "A 6.3-9-GHz CMOS fast settling PLL for MB-OFDM UWB applications," IEEE Journal of Solid-State Circuits, 2005(vol. 40): 1671-1679.
    [14] C. D. Hedayat, A. Hachem, Y. Leduc, and G. Benbassat, "Modeling and characterization of the 3(rd) order Charge-Pump PLL: a fully event-driven approach," Analog Integrated Circuits and Signal Processing, 1999(vol. 19):25-45.
    [15] C.L. Hsu and W. H. Lu, "Design of high-performance charge-pump circuit for PLL applications," Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2003(vol. E86A):3211-3213.
    [16] P. Larsson, "A simulator core for charge-pump PLL's," IEEE Transactions on Circuits and Systems Ii-Analog and Digital Signal Processing,1998(vol.45):1323-1326.
    [17] 费元春,微波固态频率源——理论设计应用,第一版.北京:国防工业出版社.
    [18] C.J.Grebenkemper,和新阳,”本振相位噪声及其对接受机性能的影响”空间电子技术,vol.2003(1).
    [19] 高树廷,刘洪升,“相位噪声分析及其对电路系统的影响,”火控雷达技术,2003(vol.32).
    [20] W. Huang, I. Andonovic, and M. Nakagawa, "PLL performance of DS-CDMA systems in the presence of phase noise, multiuser interference, and additive Gaussian noise," IEEE Transactions on Communications, 1998(vol. 46): 1507-1515.
    [21] O. Boric-Lubecke, G. Awater, and V. M. Lubecke, "Wireless LAN PC card sensing of vital signs," 2003.
    [22] A. Droitcour, V. Lubecke, L. Jenshan, and O. Boric-Lubecke, "A microwave radio for Doppler radar sensing of vital signs," 2001.
    [23] J. Geisheimer, "RVSM [Radar Vital Signs Monitor]," Potentials, IEEE, 1998(vol. 17):21-24.
    [24] C. Li, Y. Xiao, and J. Lin, "Experiment and Spectral Analysis of a Low-Power Ka-Band Heartbeat Detector Measuring From Four Sides of a Human Body," Microwave Theory and Techniques, IEEE Transactions on, 2006(vol. 54): 4464-4471.
    [25] B. Lohman, O. Boric-Lubecke, V. M. Lubecke, P. W. Ong, and M. M. Sondhi, "A digital signal processor for Doppler radar sensing of vital signs," 2001.
    [26] O. B. Lubecke, P. W. Ong, and V. M. Lubecke, "10 GHz Doppler radar sensing of respiration and heart movement," 2002.
    [27] J.M. Park, D. H. Choi, and S. O. Park, "Wireless vital signal detection systems and its applications at 1.9GHz and 10GHz [biomedical applications]," 2003.
    [28] J. C. Lin, "Non-invasive microwave measurement of respiration," Proc. of IEEE, 1975(vol. 63):1530.
    [29] X. Yanming, L. Jenshan, O. Boric-Lubecke, and V. M. Lubecke, "A Ka-Band Low Power Doppler Radar System for Remote Detection of Cardiopulmonary Motion," 2005.
    [30] X. Yanming, J. Lin, O. Boric-Lubecke, and M. Lubecke, "Frequency-tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in the ka-band," Microwave Theory and Yechniques, IEEE Transactions on, 2006(vol. 54):2023-2032.
    [31] 王健琪,董秀珍,王海滨,”基于毫米波的呼吸、心率非接触检测实验研究,”第四军医大学学报,2001(vol.22):46-48.
    [32] R. Nonis, N. Da Dalt, P. Palestri, and L. Selmi, "Modeling, design and characterization of a new low-jitter analog dual tuning LC-VCO PLL architecture," IEEE Journal of Solid-State Circuits, 2005(vol. 40): 1303-1309.
    [33] G. A. Van Huben, T. G. McNamara, and T. E. Gilbert, "PLL modeling and verification in a cycle-simulation environment," IBM Journal of Research and Development, 1999(vol. 43):915-925.
    [34] M. Vanpaemel, "Analysis of a Charge-Pump Pll-a New Model," IEEE Transactions on Communications, 1994(vol. 42): 2490-2498.
    [35] 张厥盛,郑继禹,万心平,锁相技术,第一版.西安:西安电子科技大学出版社,1994.
    [36] 黄建钢,”锁相环频率合成器相位噪声分析,”雷达与对抗,1994.
    [37] M. Curtin and P. O'Brien, "Analog Dialogue 33-5 Phase-Locked Loops for High-Frequency Receivers and Transmitters," Analog Device Inc, 1999.
    [38] B. Dean, "PLL Performance, Simulation and Design " National Semiconductor,1998.
    [39] A. DEVICE, "Dual Low Power PLL Frequency Synthesizer ADF4212L Data Sheet."
    [40] 胡翔,阮文杰,”LFMCW雷达的调频非线性对距离分辨力率的影响,”现代雷达,1998:26-30.
    [41] T. Musch, "A high precision 24-GHz FMCW radar based on a fractional-N ramp-PLL," IEEE Transactions on Instrumentation and Measurement, 2003(vol.52):324-327.
    [42] B. C. Sarkar and B. De, "A new look into the PLL response degradation due to VCO nonlinearity and its compensation technique," Indian Journal of Pure & Applied Physics, 2000(vol. 38):734-740.
    [43] e. Carsten Metz, "Fully Integrated Automotive Radar Sensor with Versatile Resolution," IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, vol. 49.
    [44] K. Seki, M. Morikura, and S. Kato, "High-Resolution and Fast Frequency Settling Pll Synthesizer,"Ieice Transactions on Communications, 1992(vol. E75B):739-746.
    [45] K. Tajima, Y. Imai, Y. Kanagawa, K. Itoh, Y. Isota, and O. Ishida, "Low spurious frequency setting algorithm for a triple tuned type PLL synthesizer driven by a DDS," Ieice Transactions on Electronics, vol. E85C, 2002: 595-598.
    [46] 邓贤进,李家胤,”宽带锁相扫频源设计,”现代电子技术,2005.
    [47] A.D. Inc, "Low Phase Noise, Fast Settling PLL Frequency Synthesizer ADF4193."
    [48] T. n. ADF4193-TN-001, "ADF4193 PLL Loop Filter Design Using ADIsimPLL," Analog Device Inc.
    [49] 方立军,“锁相环路有源滤波器的设计,”雷达科学与技术,1997.
    [50] 方立军,徐光争,丁伟,”低相噪、低杂波数字锁相环路滤波器的设计,”现代雷达,1998.
    [51] 王闯,钱蓉,孙晓玮,”基于倒扣技术的K波段CPW环形混频器,”微波学报,2005(vol.21):117-121.
    [52] P. Byung-Kwon, S. Yamada, O. Boric-Lubecke, and V. Lubecke, "Single-channel receiver limitations in Doppler radar measurements of periodic motion," 2006.
    [53] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. Y. A. Kovacs,"Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring," Microwave Theory and Techniques, IEEE Transactions on, 2004(vol. 52): 838-848.
    [54] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. Y. A. Kovacs, "Range correlation effect on ISM band I/Q CMOS radar for non-contact vital signs sensing," 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700