用户名: 密码: 验证码:
高性能陶瓷多孔膜制备表征及膜蒸馏海水淡化应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
陶瓷膜相比于高分子膜,具有化学稳定性好、热稳定性好、机械强度高、耐有机溶剂、耐微生物侵蚀、耐老化、使用寿命长、对环境友好等诸多优点,受到越来越多的关注,在环境工程、能源工程、化学工程、食品工业、医药工业等多个领域有广泛的应用前景。陶瓷膜技术的应用对于实现节能减排,促进社会经济的可持续发展具有重要的意义。然而陶瓷膜的发展仍然存在许多制约的瓶颈,尤其是传统的陶瓷膜制备过程繁琐,工艺复杂,成本居高不下,极大的限制了其应用范围。
     本课题基于相转换法一次成型技术结合一次高温烧结制备高性能的非对称多孔陶瓷平板膜和中空纤维膜,有望大幅度简化陶瓷膜的制备工艺,降低陶瓷膜的制备成本,提高陶瓷膜的性能并拓展其应用范围。同时,本课题中发展了多孔陶瓷膜的性能表征技术,尤其是结合Otsu图像分析技术和SR-CT三维重构技术来表征多孔材料的孔隙结构。最后,本课题着重研究了多孔陶瓷纤维膜表面修饰在膜蒸馏过程中的应用。
     第一章主要系统的介绍了多孔陶瓷膜的研究现状,包括多孔陶瓷膜的分类、制备工艺介绍、表征方法介绍等。最后着重介绍了膜蒸馏技术的原理、膜蒸馏材料的研究现状及存在的不足。
     第二章主要研究了利用相换转流延法结合高温烧结制备氧化铝多孔平板膜,并发展了多种表征手段对制备的平板膜进行表征。所制备的氧化铝多孔平板膜厚度约为0.7mm,孔隙率高达58.6%,具有典型的非对称结构,包含一个厚的指状孔层,厚度约0.6mm,孔隙率约为59.6%,以及一个很薄的海绵状孔层,厚度约0.1mm,孔隙率约为35.1%。采用基于Otsu图像分析技术的二维BSE-SEM方法和基于SR-CT技术的三维重构法分析多孔平板膜的孔结构,两种方法计算得到的孔隙率都和阿基米德法吻合得较好。同时利用SR-CT方法可以获得多孔平板膜孔隙的三维连通情况,这是其他二维方法很难做到的。制备的氧化铝多孔平板膜具有优异的渗透性能,在水处理、海水脱盐、医药生产等诸多领域有巨大的应用潜力。
     第三章主要研究了利用相换转纺丝法结合高温烧结制备氧化铝多孔中空纤维膜,同时考察了内凝聚剂对中空纤维膜结构的影响。当内凝聚剂为纯水或者低浓度的乙醇水溶液时,.制备的中空纤维膜呈现典型的三明治结构,膜的内侧和外侧各有一个厚的指状孔层,以及中间包含一个薄的海绵状孔层。随着内凝聚剂中乙醇含量的增加,胶凝能力下降,制备的中空纤维膜外径变大,膜壁变薄,外层的指状孔不断向内侧扩展。当内凝聚剂中乙醇的含量达到75vol%时,胶凝能力太弱以至于湿膜的内侧难以发生瞬时分相,而指状孔层几乎消失,形成海绵状孔层。同时,制备的中空纤维膜的孔隙率、平均孔径、氮气渗透通量、纯水渗透通量随着内凝聚剂组成中乙醇含量的增加先增大,在乙醇含量为50%时达到最大值,当乙醇含量为75%时又出现下降趋势。研究表明,通过改变内凝聚剂的组成可以实现对陶瓷中空纤维膜微观结构的调控优化,适当降低内凝聚的胶凝能力对优化膜的结构性能是有利的.
     第四章主要研究了氧化铝多孔中空纤维膜表面修饰变为疏水性并应用于真空式膜蒸馏过程。采用相转换法&烧结制备的氧化铝多孔中空纤维膜通过氟硅烷(FAS)表面修饰由原来的亲水性变为疏水性,接触角由修饰前的480变为了130°,并且FAS修饰后的中空纤维膜与修饰之前相比透气性能几乎没有变化,但是纯水渗透性能改变显著,在压差大于1.5bar时,才观测有水透过。FAS表面修饰的中空纤维膜应用于真空式膜蒸馏过程,并表现出优异的性能。在热侧为80°C,4wt%的NaCl水溶液,透过侧通过抽真空使压力维持在0.04bar时,获得了非常高的水通量42.9Lm-2h-1,并且NaCl离子的截留率大于99.5%,性能可以与目前研究的性能最好的高分子膜相媲美。本论文所研究的表面修饰的氧化铝中空纤维膜在海水淡化等领域有非常好的应用潜力。
     第五章主要研究了8%氧化钇稳定的氧化锆(YSZ)多孔中空纤维膜表面修饰变为疏水性并应用于真空式膜蒸馏过程。YSZ陶瓷相比于氧化铝陶瓷具有更优异的化学稳定性和机械强度,在本论文中采用相转换法与高温烧结相结合制备了非对称结构的多孔YSZ中空纤维膜,与之前研究的氧化铝中空纤维膜相比,海绵状孔层更薄,同时具有更高的孔隙率(54%)和更小的孔径(0.55μm)。通过FAS表面修饰由原来的亲水性变为疏水性,接触角由修饰前的50°变为了1390.FAS修饰后的中空纤维膜与修饰之前相比透气性能几乎没有变化,但是纯水渗透性能改变显著,在压差大于2.9bar时,才有水透过。FAS表面修饰的中空纤维膜应用于真空式膜蒸馏过程,并表现相比于之前研究的氧化铝中空纤维膜具有更优异的性能。在热侧为80°C,4wt%的NaCl水溶液,透过侧通过抽真空使压力维持在0.04bar时,获得了非常高的水通量48.3Lm-2h-1,并且NaCl离子的截留率大于99.7%.本课题中所研究的表面修饰的YSZ中空纤维膜由于其优异的性能,在海水淡化等领域有非常好的应用潜力。
     第六章对本论文的工作进行了总结,并对多孔陶瓷膜及膜蒸馏技术的应用前景和面临的挑战进行了展望。
Ceramic membranes are known to be superior to polymeric membranes due to there some special advantages, such as better chemical and thermal stability, high mechanical properties, better solvent resistance, better microbial erosion resistance, better aging resistance, longer service life and environmentally friendship. In the past twenty years, increasing attention has been paid to ceramic membranes. Nowadays, ceramic membrane are widely applied in various fields, including environmental engineering, energy engineering, chemical industry, food industry, pharmaceutical industry and so on. Therefore, ceramic membranes and related separation technologies could play an important role in promoting energy saving and emission reduction, and are very propitious to sustainable development of social economy. However, there are still many bottlenecks that restrict the further development of ceramic membranes. Most of all, the preparation of traditional ceramic membranes often needs multiple steps, and leads to a complicated production process and a high cost, limiting its scope of applications.
     In this thesis, we fabricated asymmetric porous planar membranes and hollow fiber membranes with high performance by a combined phase-inversion and sintering method. It is expected that such technology could give significantly affect to ceramic membranes that simplify the preparation process, reduce the production cost, improve the performance and expand their scope of applications. At the same time, we developed the characterization techniques of porous ceramic membranes. Especially, we introduced two novel Otsu threshold image segmentation method and SR-CT three-dimensional reconstruction method to analysis the pore structure of the porous ceramic membranes. Lastly, we focused on the research of surface modification of ceramic hollow fibers and applied in membrane distillation process.
     Chapter1is the literature review, it briefly describes the research status of porous ceramic membranes, including introduction of the classification, preparation technology and characterization techniques, etc. Lastly, it is focused on the introduction of the theories of membrane distillation, the research status of membrane materials for membrane distillation process and the existing shortcomings.
     In Chapter2, porous alumina planar membranes were prepared by a combined phase inversion tape-casting and sintering method, and the as-prepared membranes were characterized by several techniques. The planar membrane has a thickness of0.7 mm, and a porosity of58.6%. The membrane showes an excellent asymmetric structure consisting of two layers:a thick finger-like layer with the thickness of0.6mm and the porosity of59.6%, a thin sponge-like layer with the thickness of0.1mm and the porosity of35.1%. BSE-SEM images using Otsu threshold image segmentation method and SR-CT three-dimensional restructuon method were used for analyzing the pore parameter of the membrane. and the values of porosity calculated by the two methods fit well with the results determined by Archimedes method. What's more, using the SR-CT method, the pores'connectivity of the porous membrane in three-dimensional could be obtained, which is very difficult for the other two-dimensional method. The planar membranes also have good N2permeance and pure water flux performance, which can give great potential in water treatment, desalination, pharmaceutical preparation and many other aspects.
     In Chapter3, porous alumina hollow fiber membranes were prepared by a combined phase inversion and sintering method, and the influence of internal coagulants on the micro structure and properties of the hollow fibers were investigated. When the internal coagulants were pure water or ethanol aqueous solution with low concentration, the as-prepared hollow fibers showed a classic sandwich-structure, which containing two finger-like layer near the inner and outer surface, and a thin sponge-like layer in the middle. When the concentration of ethanol increased in the internal coagulants, the gelling ability of the internal coagulants decreased and the as-prepared hollow fiber have a lager diameter, a thinner wall thickness, and the finger-like void originated from the outer side to the inner side. When the inner coagulant contains75vol%ethanol, its gelling ability was so weak that the instantaneous phase inversion was hardly to occur, and the inner side of the hollow fiber formed sponge-like voids instead of finger-like layer. At the same time, the porosity, average pore size, nitrogen permeability and pure water permeability of the hollow fiber increased when the concentration of ethanol increase in the internal coagulants, the maximum appeared when the internal coagulants contains50%ethanol. When the ethanol concentration was75%, all of the parameters began to decrease. It revealed that structural adjustment of the hollow fiber could be achieved by change the composition of the internal coagulants. Partly reduce the gelling ability of the internal coagulant is beneficial to the properties of the hollow fiber.
     In Chapter4, the hydrophobic porous alumina hollow fiber membrane was explored targeting water desalination application. The alumina hollow fiber was prepared by the phase inversion&sintering method. The surface of the hollow fiber was grafted with fluoroalkylsilane (FAS) by immersion in its ethanol solution. The FAS-grafted hollow fiber exhibited a much larger water contact angle (130°) than the un-grafted one (48°), revealing that the grafting had converted the fiber surface from hydrophilic to hydrophobic. The hydrophobic hollow fiber remained well permeable to nitrogen after FAS grafting, but completely blocked liquid water permeation at pressures less than~1.5bar. The water desalination performance of the hollow fiber was tested by exposing the shell side of the fiber to an aqueous solution of4wt%NaCl at80℃and vacuuming the lumen side of the fiber to a pressure of0.04bar. A water flux as large as42.9Lm-2h-1was attained with a salt rejection over99.5%, which is comparable to the best of the polymer membrane. Since the ceramic hollow fiber membrane exhibited much better durability than the polymer counterpart, it is promising for practical applications in water desalination.
     In Chapter5, the hydrophobic porous YSZ hollow fiber membrane was explored targeting water desalination application. YSZ ceramics have better chemical and mechanical stability than alumina ceramics. The YSZ hollow fiber was prepared by the phase inversion&sintering method. Compared with the alumina hollow fibers, the YSZ hollow fibers have thinner thickness of sponge-like layer, higher porosity (54%) and smaller average pore size (0.55μm). The FAS-grafted YSZ hollow fiber exhibited a much larger water contact angle (139°) than the un-grafted one (50°), revealing that the grafting had converted the fiber surface from hydrophilic to hydrophobic. The hydrophobic YSZ hollow fiber remained well permeable to nitrogen after FAS grafting, but completely blocked liquid water permeation at pressures less than~-2.9bar. The water desalination performance of the YSZ hollow fibers were tested by exposing the shell side of the fiber to an aqueous solution of4wt%NaCl at80℃and vacuuming the lumen side of the fiber to a pressure of0.04bar. A water flux as large as48.3Lm-2h-1was attained with a salt rejection over99.7%, which show better performance than the alumina hollow fibers. Such excellent performance is promising for practical applications in water desalination.
     In Chapter6, the researches presented in this dissertation are evaluated and future work concerning the development and challenge of ceramic membranes and membrane distillation are discussed.
引文
[1]A.J.Burggraaf, L.Cot, Fundamentals of Inorganic Membrane Science and Technology [M], Amsterdam:Elsevire,1996
    [2]徐铜文,膜科学与技术教程[M],合肥:中国科学技术大学出版社,2003
    [3]R.R.Bhave, Inorganic membranes synthesis characteristics and applications, Van Nostrand Reinhold, New York,1991
    [4]J.Zhou, X. Zhang, Y.Wang, et al. Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite, J Porous Mater,2010,17:1-9
    [5]张小珍,新型中空纤维陶瓷膜的制备科学研究与性能表征[D],中国科学技术大学博士学位论文,2010.
    [6]董应超,新型低成本多孔陶瓷分离膜的制备与性能研究[D],中国科学技术大学博士学位论文,2008.
    [7]徐南平,邢卫红,赵宜江,无机膜分离技术及应用[M],北京:化学工业出版社,2003.
    [8]常启兵,多孔陶瓷膜的材料设计与科学研究[D],中国科学技术大学博士学位论文,2005.
    [9]Z. P. Shao, W. S. Yang, Y. Cong, H. Dong, J. H. Tong, G. X. Xiong, Investigation of the permeation behavior and stability of a Ba0.5Sr0.5Co0.8Feo.203-δ oxygen membrane, J.Membr. Sci.2000,172:177-181.
    [10]W. Li, T. F. Tian, F. Y. Shi, Y. S. Wang, C. S. Chen, Ce0.8Sm0.2O2-δ-La0.8Sr0.2MnO3-δ Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation, Ind. Eng. Chem. Res.,2009,48 (12):5789-5793
    [11]W. Li, J. J. Liu, C. S. Chen, Hollow fiber membrane of yttrium-stabilized zirconia and strontium-doped lanthanum manganite dual-phase composite for oxygen separation, J. Membr. Sci.2009,340:266-271.
    [12]Y Liu, X. Tan, K. Li, SrCe0.95Yb0.0503-δ(SCYb) hollow fibre membrane: preparation, characterization and performance, J. Membr. Sci.2006,283:380-385.
    [13]詹世景,朱雪峰,王卫平等,Ni- BaCe0.6Zr0.2Nd0.203-δ金属陶瓷双相膜的氢渗透性与稳定性,催化学报,2009,30(10):986-990.
    [14]A. Larbot, Ceramic porous membranes:preparation, applications and future developments, Journal of Ceramics,2005,26 (3):169-176.
    [15]张尚权,流延法制备固体氧化物燃料电池关键材料研究[D],中国科学技术大学博士学位论文,.2010.
    [16]R. E. Mistler, Tape casting:past, present, potential, American Ceramic Society Bulletin,1998,77 (10):82-86.
    [17]S. Q. Zhang, L. Bi, L. Zhang, Z. T. Tao, W. P. Sun, H. Q. Wang, W. Liu, Stable BaCe0.5Zr0.3Y0.16Zn0.04O3-a thin membrane prepared by in situ tape casting for proton-conducting solid oxide fuel cells, J. Power. Sources.,2009,188(2):343-346.
    [18]O. O. Omatete, M. A. Jannety, R. A. Strehlow, Gelcasting:a new ceramic forming process. American Ceramic Society Bulletin,1991,70 (10):1641-1649.
    [19]P. Sepulveda, Gelcasting foams for porous ceramics, American Ceramic Society Bulletin,1997,76 (10):61-65.
    [20]A. Alem, H. Sarpoolaky, M. Keshmiri, Sol-gel preparation of titania multilayer membrane for photocatalytic applications, Ceramics International,2009,35(5): 1837-1843.
    [21]B. L. Bischoff, M. A. Anderson, Peptization Process in the Sol-Gel Preparation of Porous Anatase (TiO2), Chem. Mater.,1995,7 (10):1772-1778
    [22]丁祥金,张继周,宝志琴,丁传贤,氧化铝多孔支撑体的研究,膜科学与技术,2000,20(1):17-21
    [23]W. Lee, R. Ji, U. Gosele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization, Nature Materials 2006,5:741-747.
    [24]S. Loeb, S. Sourirajan. High Flow porous membranes for separating water from saline solutions[P], USP:3 133 132,1964-05-12.
    [25]K. H. Lee, Y. M. Kim, Asymmetric hollow inorganic membranes, Key Eng. Mater,1992,61/62:17-22.
    [26]C. C. Wei, K. Li, Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique, Ind. Eng. Chem. Res,2009,48:3446-3452.
    [27]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, J. Membrane Sci.,2007,291:70-76.
    [28]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membrane Sci.,2001,188:87-95.
    [29]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International,2003,29:875-881.
    [30]W. Li, T. F. Tian, F. Y. Shi, Y. S. Wang, C. S. Chen, Ce0.8Sm0.2O2-La0.8Sr0.2MnO3 Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation, Ind.Eng.Chem.Res,2009,48:5789-5793.
    [31]C. L. Yang, W. Li, S. Q. Zhang, L. Bi, R. R. Peng, C. S. Chen, W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC, J. Power Sources,2009,187:90-92.
    [32]左丹英.溶液相转化法制PVDF微孔膜过程中的结构控制及其性能研究[D].浙江大学博士论文,2005.
    [33]R. E. Kesting, Cellulose and cellulose derivatives, [M], New York: Wiley-Interscience,1971.
    [34]F. Altens, Phase separation phenomena in cellulose acetate solutions in relation to asymmetric membrane formation. PHD dissertation, Twente University of Technology Netherlands,1982.
    [35]陈立新,沈新元,相转换法的湿法成膜机理,膜科学与技术,1997,17:1-6
    [36]C. A. Smolder, A. J. Reuvers, R. M. Boom, I. M. Wienk, Microstructures in phase-inversion membranes part I:Formation of macrovoids, J.Membrane Sci,1992, 73:259-275
    [37]Z. Li, C. Jiang, Investigation of the dynamics of poly (ether sulfone) membrane formation by immersion precipitation, Journal of Polymer Science Part B:Polymer Physics,2005,43:498-510.
    [38]J. S. Kang, Y. M. Lee, Effects of molecular weight of polyvinylpyrrolidone on the glass transition and crystallization of co-lyophilized sucrose, Journal of Applied Polymer Science,2002,85:57-68.
    [39]D. Wang, K. Li, W. K. Teo, Preparation and characterization of polyvinylidene fluoride (PVDF) hollow fiber membranes, J. Membrane Sci,1999,163:211-220.
    [40]刘培生,马晓明,多孔材料检测方法[M],北京,冶金工业出版社,2006
    [41]L. J. Gibson, M. F. Ashby, Cellular Solids:Structure and properties-Second edition. Cambridge University Press,1997.
    [42]朱小龙,苏雪筠.多孔陶瓷材料,中国陶瓷,2000,36(4):36-39.
    [43]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique, J.Membrane Sci.1997,124:149-159
    [44]丁详全,张继周,宝志琴等,泡点法测定微孔孔径分布的改进算法,无机材料学报,2000,15(3):493-498
    [45]J.I. Calvo, P. Pradanos, A. Hernandez, W.R. Bowen, N. Hilal, R. W. Lovitt, P. M. Williams, Bulk and surface characterization of composite UF membranes Atomic force microscopy, gas adsorption-desorption and liquid displacement techniques, J. Membr.Sci,1997,128:7-21
    [46]J.I. Calvo, A. Hernandez, P. Pradanos, L.Martinez, W.R. Bowen, Pore size distributions in Microporous Membranes Ⅱ. Bulk Characterization of Track-Etched Filters by Air Porometry and Mercury Porosimetry, J. Colloid&Interface. Sci,1995, 176:467-478.
    [47]K. Michal, J. Mietek, Gas Adsorption Characterization of Ordered Organic-Inorganic Nano composite Materials, Chem. Mater,2001,13(10): 3169-3183.
    [48]A. Carlos, L. Leony, New perspectives in mercury porosimetry, Advanced in Colloid and Interface Science,1998,76-77:341-372.
    [49]中国金属学会,中国有色金属学会.金属材料物理性能手册,第一册:金属物理性能及测试方法.北京:冶金工业出版社,1987.18-45.
    [50]J. F. Kong, K. Li, An improved gas permeation method for characterising and predicting the performance of microporous asymmetric hollow fibre membranes used in gas absorption, J.Membrane Sci.2001,182:271-281
    [51]J. I. Calvo, A. Bottino, G. Capannelli, A. Hernandez, Pore size distribution of ceramic UF membranes by liquid-liquid displacement porosimetry, J. Membrane Sci, 2008,310:531-538.
    [52]C. S. Zhao, X. S. Zhou, Y. L. Yue, Determination of pore size and pore size distribution on the surface of hollow-fiber filtration membranes:a review of methods, Desalination,2000,129(2):107-123.
    [53]黄仲涛,曾昭槐,钟邦克等编著,无机膜技术及其应用[M],北京:中国石化出版社,1999
    [54]J. Banhart, Manufacture, characterization and application of cellular metals and metal foams, Progress in Materials Science,2001,46:559-632.
    [55]任刚,许如清,韩立等,利用扫描电镜和原子力显微镜测量纳米微孔阳极氧化铝膜,物理,2003,3(1):36-41.
    [56]L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,200, 273-286.
    [57]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, Z. Zhang, T. Q. Xiao, The development of a novel SR-CT technique-originated equipment for microwave sintering, Procedia Engineering,2010,7:72-80.
    [58]H. Y. Qu, F. Xu, X. F. Hu, H. Miao, T. Q. Xiao, Z. Zhang, SR-CT filter-back-projection algorithm and application in detection of microstructure evolution, Procedia Engineering,2010,7:63-71
    [59]F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, Q. X. Yuan, In situ observation of grain evolution in ceramic sintering by SR-CT technique, Transactions of Nonferrous Metals Society of China,2009,19(3):684-688.
    [60]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, H. Miao, Z. Zhang, T. Q. Xiao, In situ investigation of SiC powder's microwave sintering by SR-CT technique, SCIENCE CHINA Technological Sciences,2011,54,1382-1388
    [61]吴问全,李伟,李文杰,关勇,杨云昊,周杰,俞希跃,宋香霞,田扬超,陈初升,基于Nano-CT技术研究多孔陶瓷材料的三维结构,核技术,2010,33:241-245.
    [62]G. T. Herman, Image reconstructed from projections:The fundamentals of computerized Tomography, New York-London, Academic Press,1980
    [63]E. Maire, A. Fazekas, L. Salvo, R. Dendievel, S. Youssef, P. Cloetens, J. M. Letang, X-ray tomography applied to the characterization of cellular materials. Related finite element modeling problems, Composites Science and Technology,2003, 63,2431-2443
    [64]S. H. Lau, W. K. S. Chiu, F. Garzon, H. Y. Chang, A. Tkachuk, M. Feser, W. B. Yun, Non invasive, multiscale 3D X-Ray characterization of porous functional composites and membranes, with resolution from MM to sub 50 NM, Journal of Physics:Conference Series,2009,152,012059
    [65]T. V. Gastel, C. Vandecasteele, A. Buekenhoudt, C. Dotremont, J. Luyten, R. Leysen, B. V. Bruggen, G. Maes, Alumina and titania multilayer membranes for nanofiltration:preparation, characterization and chemical stability, J. Membrane Sci, 2002,207:73-89.
    [66]J. Zhou, X. Zhang, Y. Wang, X. Hu, A. Larbot, M. Persin, Electrokinetic characterization of the Al2O3 ceramic MF membrane by streaming potential measurements, Desalination,2009,235:102-109.
    [67]R. Herbig, P. Arki, G. Tomandl, R. E. Braunig, Comparison of electrokinetic properties of ceramic powders and membranes, Separation and Purification Technology,2003,32:363-369
    [68]J. B. Wachtman, Mechanical Properties of Ceramics, New York:Wiley,1996
    [69]M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Science and technology for water purification in the coming decades, Nature. 2010,452:301-310.
    [70]B.R.Bodell, Silicone rubber vapor diffusion in saline water distillation, United States Patent No.285,032,1963.
    [71]M. E. Findley, Vaporization through porous membranes, Ind. Eng. Chem. Process Des. Dev.,1967,6:226-230.
    [72]D. W. Gore, Gore-Tex membrane distillation, in:proceedings of the 10th annual convention of the water supply improvement assoc, Hononulu, USA,1982.
    [73]S. I. Anderson, N. Kjellander, B. Rodesjo, Design and field tests of a new membrane distillation desalination process, Desalination,1985,56:345-354.
    [74]K. Schnieder, T. J. van Gassel, Membrane distillation, Chem. Eng. Technol., 1984,56:514-521.
    [75]K. W. Lawson, D. R. Lloyd, Membrane distillation, J. Membrane Sci.,1997,124: 1-25.
    [76]M. S. EI-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membrane Sci.,2006,285: 4-29.
    [77]C. A. Smolders, A. C. M. Franken, Terminology for membrane distillation, Desalination,1989,72:249-262
    [78]C. Bier, U. Plantikow, Solar powered desalination by membrane distillation, in: IDA Word Congress on Desalination and Water Science, Abu Dhabi,1995,397-410.
    [79]J. Koschikowski, M. Wieghaus, M. Rommel, Solar thermal-driven desalination plants based on membrane distillation, Desalination,2003,156:295-304.
    [80]J. Phattaranawik, R. Jiraratananon, A.G. Fane, Heat transport and membrane distillation coefficients in direct contact membrane distillation, J. Membr. Sci.,2003, 212:177-193
    [81]M.A. Izquierdo-Gil, M.C. Garcia-Payo, C. Fernandez-Pineda, Air gap membrane distillation of sucrose aqueous solutions, J. Membr. Sci.,1999,155 (2):291-307.
    [82]M. Khayet, M.P. Godino, J.I. Mengual, Theory and experiments on sweeping gas membrane distillation, J. Membr. Sci.,2000,165:261-272
    [83]S. Bandini, C. Gostoli, G.C. Sarti, Separation efficiency in vacuum membrane distillation, J. Membr. Sci.,1992,73:217-229
    [84]马润宇,阎建民,‘用于纯水制备的膜蒸馏技术,全国膜及其新型分离技术在油田、石油化工、化工领域应用研讨会,1999
    [85]P.P. Zolotarev, V.V. Ugrosov, I.B. Volkina, V.N. Nikulin, Treatment of waste-water for removing heavy-metals by membrane distillation, J. Hazard. Mater., 1994,37(1):77-82.
    [86]S.H. Duan, A. Ito, A. Ohkawa, Removal of trichloroethylene from water by aeration, pervaporation and membrane distillation, J. Chem. Eng. Jpn.,2001,34 (8): 1069-1073
    [87]F. A. Banat, M. Al-Shannag, Recovery of dilute acetone-butanol-ethanol (ABE) solvents from aqueous solutions via membrane distillation, Bioprocess Eng.,2000,23 (6):643-649
    [88]S. Nene, S. Kaur, K. Sumod, B. Joshi, K.S.M.S. Raghavarao, Membrane distillation for the concentration of raw cane-sugar syrup and membrane clarified sugarcane juice, Desalination,2002,147:157-160.
    [89]V. Calabro, B.L. Jiao, E. Drioli, Theoretical and experimental study on membrane distillation in the concentration of orange juice, Ind. Eng. Chem. Res., 1994,33(71):1803-1808.
    [90]K. Sakai, T. Muroi, K. Ozawa, S. Takesawa, M. Tamura, T. Nakaue, Extraction of solute-free water from blood by membrane distillation, Trans. Am. Soc. Artif. Intern. Organs,1986,32:397-400.
    [91]Y. Wu, Y. Kong, J. Liu, J. Zhang, J. Xu, An experimental study on membrane distillation-crystallization for treating waste water in taurine production, Desalination, 1991,80:235-242.
    [92]A. M. Alklaibi, N. Lior, Membrane distillation desalination:status and potential, Desalination 2004,171:111-131.
    [93]D. Y. Hou, J. Wang, D. Qu, Z. K. Luan, X. J. Ren, Fabrication and characterization of hydrophobic PVDF hollow fibre membranes for desalination through direct contact membrane distillation, Separation and Purification Technology 2009,69:78-86.
    [94]M. M. Teoh, T. S. Chung, Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes, Separation and Purification Technology.2009,66:229-236.
    [95]S. R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J. Membrane Sci.2006,281:253-259.
    [96]L.Gazagnes, S. Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination 2007,217:260-266.
    [97]Z. D. Hendren, J. Brant, M. R. Wiesner, Surface modification of nanostructured ceramic membranes for direct membrane ditillation, J. Membrane Sci.2009,331: 1-10.
    [1]H.Strathmann, Membrane separation processes:current relevance and future opportunities, AIChE Journal,2001,47:1077-1087.
    [2]A. Hernandez, P. Pradanos, J. Calvo, L. Palacio, Ceramic membranes and their use in separation processes, BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA YVIDRIO,1999,38:185-192.
    [3]A. P. Echavarria, C. Torras, J. Pagan, A. Ibarz, Fruit juice processing and membrane technology application, Food Engineering Reviews,2011,3:136-158
    [4]J. E. Zhou, X. Z. Zhang, Y. Q. Wang, A. Larbot, X. B. Hu, Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite, J. Porous. Mater.,2010,17:1-9.
    [5]T. Tsuru, Inorganic porous membranes for liquid phase separation, Separation and Purification Methods,2001,30:191-220.
    [6]Y. S. Lin, I. Kumakiri, B. N. Nair, H. Alsyouri, Microporous inorganic membranes, Separation & Purification Reviews,2002,31:229-379.
    [7]H. P. Hsieh, R. R. Bhave, H. L. Fleming, Microporous alumina membranes, J. Membr. Sic.,1988,39:221-241.
    [8]H. Verweij, Ceramic membranes:Morphology and transport, J. Mater. Sci.,2003, 38:4677-4695.
    [9]F. Liu, N. A.Hashim, Y. T. Liu, M. R. M. Abred, K. Li, Progress in the production and modification of PVDF membranes, J. Membrane. Sci.,2011,375:1-27.
    [10]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, J. Membrane Sci.2007,291:70-76.
    [11]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membrane Sci.2001,188:87-95.
    [12]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International.,2003,29:875-881.
    [13]B. F. K. Kingsbury, K. Li, A morphological study of ceramic hollow fibre membranes, J.Membrane Sci.,2009,328:134-140.
    [14]S. Q. Zhang, L.Bi, L. Zhang, Z. T. Tao, W. P. Sun, H. Q. Wang, W. Liu, Stable BaCe0.5Zr0.3Y0.16Zn0.04O3-δ Thin Membrane Prepared by in situ Tape Casting for Proton-conducting Solid Oxide Fuel Cells, J. Power. Sources.,2009,188:343-346.
    [15]M. Boaro, J. M. Vohs, R. J. Gorte, Synthesis of High Porous Yttria-Stabilized Zirconia by Tape-Casting Methods, J. Am. Ceram. Soc.,2003,86:395-400.
    [16]W. A. Meulenberg, J. Mertens, M. Bram, H.P. Buchkremer, D. Stover, Graded porous TiO2 membranes for microfiltration, J. Eur Ceram Soc,2006,26:449-454.
    [17]E. Mercadelli, A. Sanson, P. Pinasco, E. Roncari, C. Galassi, Tape cast porosity-graded piezoelectric ceramics, J. Eur Ceram Soc,2010,30:1461-1467.
    [18]L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,200: 273-286.
    [19]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, Z. Zhang, T. Q. Xiao, The development of a novel SR-CT technique-originated equipment for microwave sintering, Procedia Engineering,2010,7:72-80.
    [20]H. Y. Qu, F. Xu, X. F. Hu, H. Miao, T. Q. Xiao, Z. Zhang, SR-CTfilter-back-projectionalgorithm and application in detection of microstructureevolution, Procedia Engineering,2010,7:63-71
    [21]F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, Q. X. Yuan, In situ observation of grain evolution in ceramic sintering by SR-CT technique, Transactions of Nonferrous Metals Society of China,2009,19(3):684-688.
    [22]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, H. Miao, Z. Zhang, T. Q. Xiao, In situ investigation of SiC powder's microwave sintering by SR-CT technique, SCIENCE CHINA Technological Sciences,2011,54:1382-1388
    [23]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique, J.Membrane Sci.,1997,124:149-159.
    [24]N. Otsu, A Threshoold Selection Method from Gray-Level Histograms, IEEE. Trans SMC,1979,9:62-66.
    [25]C. C. Wei, O. Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fibre membranes-One step fabrication process, J.Membrane Sci.,2008,320:191-197.
    [26]Y. F. Gu, G. Y. Meng, A model for ceramic membrane formation by dip-coating, J. Eur. Ceram. Soc.,1999,19:1961-1966.
    [27]H. Qi, X. L. Jiang, S. D. Li, J. Han, Fabrication of Ceramic Membrane Support with Gradient Pore Structures, J. Chin. Ceram. Soc.,2011,39:239-245.
    [1]J. E. Zhou, X. Z. Zhang, Y. Q. Wang, A. Larbot, X. B. Hu, Elaboration and characterization of tubular macroporous ceramic support for membranes from kaolin and dolomite, J. Porous. Mater.,2010,17:1-9.
    [2]H.Strathmann, Membrane separation processes:current relevance and future opportunities, AIChE Journal,2001,47:1077-1087.
    [3]S. Vercauteren, K. Keizer, E.F. Vansant, J. Luyten, R. Leysen, Porous Ceramic Membranes:Preparation, Transport Properties and Applications, Journal of Porous Materials,1998,5:241-258.
    [4]H. Verweij, Ceramic membranes:Morphology and transport, J. Mater. Sci.,2003, 38:4677-4695.
    [5]A. Hernandez, P. Pradanos, J. Calvo, L. Palacio, Ceramic membranes and their use in separation processes, BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO,1999,38:185-192.
    [6]T. Tsuru, Inorganic porous membranes for liquid phase separation, Separation and Purification Methods,2001,30:191-220.
    [7]Y. S. Lin, I. Kumakiri, B. N. Nair, H. Alsyouri, Microporous inorganic membranes, Separation & Purification Reviews,2002,31:229-379.
    [8]C. L. Yang, W. Li, S. Q. Zhang, L. Bi, R. R. Peng, C. S. Chen, W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC, J. Power Sources 187 (2009) 90-92.
    [9]W. Li, T. F. Tian, F. Y. Shi, Y. S. Wang, C. S. Chen, Ce0.8Sm0.2O2-La0.8Sr0.2MnO3 Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation, Ind.Eng.Chem.Res.48 (2009) 5789-5793.
    [10]S. M. Liu, G. R. Gavalas, Oxygen selective ceramichollowfiber membranes, J. Membr Sci,2005,246:103-108
    [11]X. Y Tan, Y. T. Liu, K. Li, Mixed conducting ceramic hollow-fiber membranes for air separation, AIChE Journal,2005,51:1991-2000.
    [12]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membrane Sci.188 (2001) 87-95.
    [13]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, J. Membrane Sci.291 (2007) 70-76.
    [14]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International 29 (2003) 875-881.
    [15]L. Salvo, P. Cloetens, E. Maire, S. Zabler, J. J. Blandin, J.Y. Buffiere, W. Ludwig, E. Boller, D. Bellet, C. Josserond, X-ray micro-tomography an attractive characterisation technique in materials science, Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2003,200, 273-286.
    [16]Y. C. Li, F. Xu, X. F. Hu, H. Y. Qu, Z. Zhang, T. Q. Xiao, The development of a novel SR-CT technique-originated equipment for microwave sintering, Procedia Engineering,2010,7:72-80.
    [17]H. Y. Qu, F. Xu, X. F. Hu, H. Miao, T. Q. Xiao, Z. Zhang, SR-CT filter-back-projection algorithm and application in detection of microstructure evolution, Procedia Engineering,2010,7:63-71
    [18]F. Xu, X. F. Hu, Y. Niu, J. H. Zhao, Q. X. Yuan, In situ observation of grain evolution in ceramic sintering by SR-CT technique, Transactions of Nonferrous Metals Society of China,2009,19(3):684-688.
    [19]E. Jakobs, W. J. Koros, Ceramic membrane characterization via the bubble point technique, J.Membrane Sci.1997,124:149-159
    [20]张小珍, 新型中空纤维陶瓷膜的制备科学研究与性能表征[D],中国科学技术大学博士学位论文,2010.
    [21]H. Qi, X. L. Jiang, S. D. Li, J. Han, Fabrication of Ceramic Membrane Support with Gradient Pore Structures, J. Chin. Ceram. Soc.,2011,39:239-245.
    [1]M. A. Shannon, P. W. Bohn, M. Elimelech, J. G. Georgiadis, B. J. Marinas, A. M. Mayes, Science and technology for water purification in the coming decades, Nature. 452(2010)301-310.
    [2]K. W. Lawson, D. R. Lloyd, Membrane distillation, J. Membrane Sci.124 (1997) 1-25.
    [3]M. S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membrane Sci 285 (2006) 4-29.
    [4]A. M. Alklaibi, N. Lior, Membrane distillation desalination:status and potential, Desalination 171 (2004) 111-131.
    [5]M.Gryta, Long-term performance of membrane distillation process, J. Membrane Sci.265 (2005) 153-159.
    [6]C. Picard, A. Larbot, J. Sarrazin, P. Janknecht, P. Wilderer, Ceramic membranes for ozonation in wastewater treatment, Ann. chem. Sci. Master.26 (2) (2001) 13-22.
    [7]C. Picard, A. Larbot, F. G. Pietrasanta, B. Boutevin, A. Ratsimihety, Grafting of Ceramic membranes by fluorinated silanes:hydrophobic features, Sep. Purif. Technol. 25 (2001) 65-69.
    [8]J. Lu, Y. Yu, J. E. Zhou, L. X. Song, X. F. Hu, A. Larbot, FAS grafted superhydrophobic eramic membrane, Applied Surface Science 255 (2009) 9092-9099.
    [9]W. C. Wu, X. L. Wang, D. A. Wang, M. Chen, F. Zhou, W. M. Liu, Q. J. Xue, Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids, Chem. Commun (2009) 1043-1045.
    [10]C. C. Wei, K. Li, Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique, Ind. Eng. Chem. Res.48 (2009) 3446-3452.
    [11]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, J. Membrane Sci.291 (2007) 70-76.
    [12]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membrane Sci.188 (2001) 87-95.
    [13]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (A12O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International 29 (2003) 875-881.
    [14]W. Li, T. F. Tian, F. Y. Shi, Y. S. Wang, C. S. Chen,Ce0.8Sm0.2O2-La0.8Sr0.2MnO3 Dual-Phase Composite Hollow Fiber Membrane for Oxygen Separation, Ind.Eng.Chem.Res.48 (2009) 5789-5793.
    [15]C. L. Yang, W. Li, S. Q. Zhang, L. Bi, R. R. Peng, C. S. Chen, W. Liu, Fabrication and characterization of an anode-supported hollow fiber SOFC, J. Power Sources 187(2009)90-92.
    [16]B. F. K. Kingsbury, K.Li, A morphological study of ceramic hollow fibre membranes J.Membrane Sci.328 (2009) 134-140.
    [17]C. C. Wei, O. Y. Chen, Y. Liu, K. Li, Ceramic asymmetric hollow fiber membranes-One step fabrication process, J.Membrane Sci.320 (2008) 191-197.
    [18]E. Drioli, V. Calabro, Y. Wu, Microporous membranes in membrane distillation, Pure Appl.Chem.58 (1986) 1657-1662.
    [19]D. Y. Hou, J. Wang, D. Qu, Z. K. Luan, X. J. Ren, Fabrication and characterization of hydrophobic PVDF hollow fibre membranes for desalination through direct contact membrane distillation, Separation and Purification Technology 69 (2009) 78-86.
    [20]S. Simone, A. Figoli, A. Criscuoli, M. C. Carnevale, A. Rosselli, E. Drioli, Preparation of hollow fiber membranes from PVDF/PVP blends and their application in VMD, J. Membrane Sci.364 (2010) 219-232.
    [21]M. M. Teoh, T. S. Chung, Membrane distillation with hydrophobic macrovoid-free PVDF-PTFE hollow fiber membranes, Separation and Purification Technology.66 (2009) 229-236.
    [22]Z. D. Hendren, J. Brant, M. R. Wiesner, Surface modification of nanostructured ceramic membranes for direct membrane ditillation, J. Membrane Sci.331 (2009) 1-10.
    [23]S. R. Krajewski, W. Kujawski, M. Bukowska, C. Picard, A. Larbot, Application of fluoroalkylsilanes (FAS) grafted ceramic membranes in membrane distillation process of NaCl solutions, J. Membrane Sci.281 (2006) 253-259.
    [24]L.Gazagnes, S. Cerneaux, M. Persin, E. Prouzet, A. Larbot, Desalination of sodium chloride solutions and seawater with hydrophobic ceramic membranes, Desalination 217 (2007) 260-266.
    [1]K. W. Lawson, D. R. Lloyd, Membrane distillation, J. Membrane Sci.124 (1997) 1-25.
    [2]M. S. El-Bourawi, Z. Ding, R. Ma, M. Khayet, A framework for better understanding membrane distillation separation process, J. Membrane Sci 285 (2006) 4-29.
    [3]A. M. Alklaibi, N. Lior, Membrane distillation desalination:status and potential, Desalination 171 (2004) 111-131
    [4]M.Gryta, Long-term performance of membrane distillation process, J. Membrane Sci.265(2005)153-159.
    [5]H.Strathmann, Membrane separation processes:current relevance and future opportunities, AIChE Journal,2001,47:1077-1087.
    [6]A. Hernandez, P. Pradanos, J. Calvo, L. Palacio, Ceramic membranes and their use in separation processes, BOLETIN DE LA SOCIEDAD ESPANOLA DE CERAMICA Y VIDRIO,1999,38:185-192.
    [7]C. Picard, A. Larbot, J. Sarrazin, P. Janknecht, P. Wilderer, Ceramic membranes for ozonation in wastewater treatment, Ann. chem. Sci. Master.26 (2) (2001) 13-22.
    [8]C. Picard, A. Larbot, F. G. Pietrasanta, B. Boutevin, A. Ratsimihety, Grafting of Ceramic membranes by fluorinated silanes:hydrophobic features, Sep. Purif. Technol. 25 (2001) 65-69.
    [9]J. Lu, Y. Yu, J. E. Zhou, L. X. Song, X. F. Hu, A. Larbot, FAS grafted superhydrophobic eramic membrane, Applied Surface Science 255 (2009) 9092-9099.
    [10]W. C. Wu, X. L. Wang, D. A. Wang, M. Chen, F. Zhou, W. M. Liu, Q. J. Xue, Alumina nanowire forests via unconventional anodization and super-repellency plus low adhesion to diverse liquids, Chem. Commun (2009) 1043-1045.
    [11]C. C. Wei, K. Li, Preparation and Characterization of a Robust and Hydrophobic Ceramic Membrane via an Improved Surface Grafting Technique, Ind. Eng. Chem. Res.48 (2009) 3446-3452.
    [12]S. Koonaphapdeelert, K. Li, Preparation and characterization of hydrophobic ceramic hollow fiber membrane, J. Membrane Sci.291 (2007) 70-76.
    [13]X. Y. Tan, S. M. Liu, K. Li, Preparation and characterization of inorganic hollow fiber membranes, J. Membrane Sci.188 (2001) 87-95.
    [14]S. M. Liu, K. Li, R. Hughes, Preparation of porous aluminium oxide (Al2O3) hollow fiber membranes by a combined phase-inversion and sintering method, Ceramics International 29 (2003) 875-881.
    [15]B. F. K. Kingsbury, K.Li, A morphological study of ceramic hollow fibre membranes J.Membrane Sci.328 (2009) 134-140.
    [16]L. H. Liu, X. Y. Tan, S. M. Liu, Yttria Stabilized Zirconia Hollow Fiber Membranes, J. Am. Ceram. Soc.89 (2006) 1156-1159.
    [17]E. Drioli, V. Calabro, Y. Wu, Microporous membranes in membrane distillation, Pure Appl.Chem.58 (1986) 1657-1662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700