用户名: 密码: 验证码:
电磁场影响渣金界面反应动力学条件的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
渣金界面反应是冶金工业中最重要的多相反应之一,因此渣金界面反应动力学条件的改善对于提高冶金生产效率具有重要意义。作为电磁冶金的重要手段,交流移动磁场以及稳恒强磁场都可以对金属液行为进行有效控制,从而显著改变渣金界面反应的动力学条件。但目前交流移动磁场在钢铁冶金中的应用研究主要集中于连铸过程钢液内的流场、温度场和浓度场的均匀化,而强磁场影响渣金界面反应动力学条件的研究也非常有限。因此,本研究在国家自然科学基金项目支持下对交流移动磁场(电磁搅拌)条件下的渣金界面反应和金属液行为以及强磁场条件下的渣金界面反应进行了系统的实验研究,探讨了电磁场下渣金界面反应动力学条件及电磁场对该条件的影响机理。
     本研究以钢铁冶金中典型的渣金反应-铁水预处理脱硫为例,对不同电磁搅拌方式及强度下的铁水脱硫反应进行了实验研究,获得了不同条件下硫的容量传质系数;研究结果表明电磁搅拌可以大幅加快铁水脱硫速率,并且脱硫速率随着电磁搅拌强度的增加而加快,不同电磁搅拌方式下的脱硫速率差异明显,电磁搅拌通过改变铁水与熔渣间的界面形态,硫传质的边界层厚度以及铁水卷渣行为影响铁水脱硫速率;载气方式加入脱硫剂并结合电磁搅拌作用可以显著增加脱硫剂和铁水的接触面积和接触时间,是一种比较优越的工艺;旋转电磁搅拌可以获得很高的硫传质系数,从而提高铁水脱硫效率以及脱硫剂的利用率,是一种有应用前景的环境友好工艺。
     为深入研究渣金界面反应动力学条件的改善与电磁搅拌对金属液行为(内部流动,表面形状和表面波动等)的促进作用的关系,本研究首次利用超声波多普勒测速仪对与钢液物理性质非常相似的Pb-Sn-Bi合金液的内部流速进行了测量与分析,同时,本研究还使用激光液位仪对钢包精炼中常用电磁搅拌下金属液的自由表面形状和表面波动状况进行了考察,量化电磁搅拌对渣金界面积等动力学条件的影响。结果表明不同电磁搅拌方式对金属液行为影响的差异明显,在实际冶金生产中,可以针对不同的工艺要求进行调整。如果需要优先考虑改善动力学条件,促进渣金反应,可以优先采用单侧或对向电磁搅拌方式;如果对夹杂物控制要求较高,需要防止卷渣现象的发生,并保证相对稳定的金属液流动状态,则可以采用对称电磁搅拌方式。本研究结果对冶炼工艺中电磁搅拌方式的合理选择以及操作参数的优化具有指导意义;另外,本研究也为电磁场下冶金反应动力学条件的研究提供了新的思路。
     渣金界面处金属液卷渣行为对渣金界面反应动力学条件的控制具有重要意义。本研究首次使用超声波多普勒测速仪对电磁搅拌条件下钢包炉模型内渣金界面处的卷渣临界流速进行了测量分析,研究结果表明,由于边界条件限制,金属液表面的最大水平流速随着搅拌强度的增加而呈抛物线式增加,因此应根据工艺要求,将搅拌强度调节在—定合理范围内。本研究对应的实际钢包卷渣临界流速为800mm/s,临界韦伯数We为20,靠近搅拌器一侧钢包壁面处的卷渣临界磁场强度为0.023T,对应的钢液中心位置处的磁场强度为0.0023T。实际钢包精炼生产中可以依据卷渣临界流速对电磁搅拌下冶炼工艺的进行优化。
     另一方面,本研究首次考察了强磁场对渣金界面反应动力学条件的影响。在不同强磁场条件下,Al-Cu合金与质量配比为MgF2:CaF2:LiF:ZrF4=1.7:1:1.5:9.3的四元熔渣间发生的渣金反应的速率表明,施加无梯度强磁场时,渣金界面反应速率在微观磁流体效应影响下加快;而在梯度强磁场条件下,金属液流动同时受到梯度强磁场引发的磁化力以及微观磁流体效应的影响,因此渣金界面反应速率会相应发生改变。
Slag-metal interfacial reaction is one of the most important multiphase reactions in metallurgical industry, so improvement on slag-metal interfacial reaction kinetics is beneficial to promotion of metallurgical efficiency. Traveling magnetic field and high magnetic field can effectively influence the behaviors of liquid metal so as to change the slag-metal interfacial reaction kinetics greatly, while most of the researches on application of electromagnetic stirring in ferrous metallurgy mainly focused on continuous casting process, and researches on effect of high magnetic field on slag-metal interfacial reaction are quite limited so far. Therefore, slag-metal interfacial reactions with imposition of traveling magnetic field (electromagnetic stirring) and high magnetic field were investigated experimentally with support of national natural science foundation projects of china to study influence mechanism of electromagnetic field on slag-metal interfacial reaction kinetics.
     Desulphurization in hot metal pretreatment is a typical slag-metal interfacial reaction in ferrous metallurgy. Desulphurization experiments with different electromagnetic stirring intensity and stirring types were investigated, and the volume mass transfer coefficients corresponding to different stirring conditions were determined finally. The experiment results show that desulphurization rate of hot metal differed with electromagnetic stirring types, and electromagnetic stirring could change the interfacial state and boundary layer thickness of sulphur mass transfer so as to promote the desulphurization process. The contacting area and contacting time of desulphurizer and hot metal would increase greatly when the desulphurizer was carried into hot metal with argon. The volumetric mass transfer coefficient of sulphur in desulphurization experiment with rotating electromagnetic stirring was very large, and the desulpurization efficiency in the desulphurization process was improved greatly. The environment-friendly technology has potential to be widely used in metallurgical industry.
     The effect of electromagnetic stirring on slag-metal interfacial reaction kinetics is mainly caused by promotion of electromagnetic stirring on liquid metal behaviors (internal flow, free surface shape, level fluctuation, etc.)-Internal flow of Pb-Sn-Bi alloy was successfully measured with ultrasonic Doppler velocimetry for the first time in order to further study flow field of liquid metal exposed to various electromagnetic stirring types. Furthermore, free surface shape and level fluctuation of liquid metal exposed to various electromagnetic stirring types were measured and analyzed with laser liquid level apparatus in order to quantify the effect of electromagnetic stirring on slag-metal interfacial reaction kinetics in this study. The results showed that effect of electromagnetic stirring on internal flow and level fluctuation of liquid metal differed with electromagnetic stirring types, so different electromagnetic stirring types should be introduced to meet technological requirements. The study also provides evidence for stirring parameter adjustment. Due to the physical properties of Pb-Sn-Bi alloy are similar to molten steel, this study is of important guiding significance for research on metallurgical kinetics under the imposition of magnetic field.
     The internal flow distribution of liquid metal on slag-metal interface was measured and analyzed with ultrasonic Doppler velocimetry for the first time to determine the important metallurgical parameters such as critical velocity of slag entrapment as well as the relevant parameters of actual ladle furnace. The results showed that the maximum horizontal velocity on the slag-metal interface increased parabolically with the increase of stirring intensity. The determined critical velocity of slag entrapment, weber number, magnetic field intensity in molten steel next to electromagnetic stirrer and magnetic field intensity in the center of ladle furnace were800mm/s,20,0.023T and0.0023T respectively. Different electromagnetic stirring intensity should be introduced to meet different refining requirements according to the critical velocity of slag entrapment.
     On the other hand, rate of slag-metal interfacial reaction in high magnetic field under different conditions was investigated to make sure of how the high magnetic field influence every step in the reaction process on slag-metal interface and the global reaction rate. The reaction rate between Al-Cu alloy and quaternionic slag revealed that the reaction rate was quickened owing to the micro-MHD effect if the high magnetic field applied to the reaction interface is of zero gradient, while the reaction rate changed in gradient magnetic field because the reaction interface was under the action of both the magnetization force evoked by the magnetic field and micro-MHD effect. A conclusion is thus drawn that the reaction rate on slag-metal interface can be controlled efficiently via high magnetic field.
引文
1.日本金属学会.冶金物理化学[M],北京:冶金工业出版社,1988,213-224.
    2.黄希祜.钢铁冶金原理[M],北京:冶金工业出版社,2008,99-109.
    3.郭汉杰.冶金物理化学教程[M],北京:冶金工业出版社,2006,46-48.
    4.冯聚和,艾立群,刘建华.铁水预处理与钢水的炉外精炼[M],北京:冶金工业出版社,2006,54-58.
    5.高泽中,贺道中.炉外精炼[M],北京:冶金工业出版社,2005,21-25.
    6.周建安.狭缝式透气砖底喷粉铁水脱硫的实验研究[J],钢铁研究学报,200719(9):14-18.
    7.杨洪良.钢包精炼过程中电磁搅拌技术使用效果研究[C],中国特殊钢年会2005论文集,2005,125-129.
    8. Thrumz A,孔祥茂.钢水加热合金化工艺-钢包感应搅拌[J],特殊钢,1996,17(4):46-48.
    9.赵和恩,赵敏杰.国产60吨铝熔炉感应式电磁搅拌器的应用[J],轻金属,2006,19(7):37-41.
    10.江中块,程乃良,冷祥贵等.LF炉钢包电磁搅拌在梅钢的应用与展望[C],第五期连铸电磁搅拌技术学习研讨班论文集,2008,178-185.
    11.潘秀兰,王艳红,梁慧智.国内外电磁搅拌技术的发展与展望[J],鞍钢技术,2005,(4):9-15.
    12.贾光霖,庞维成.电磁冶金原理与工艺[M],沈阳:东北大学出版社,2003,143-150.
    13.韩至成.电磁冶金学[M],北京:人民交通出版社,2001,110-126.
    14.王学东,张伟强,时海芳.电磁搅拌技术的国内外发展现状[J],辽宁工程技术大学学报(自然科学版),2001,20(1):82-84.
    15.杨洪良,Thrumz A.用于熔铝炉和静置炉的电磁搅拌器[J],轻合金加工技术,2003,31(11):9-12.
    16.西安电炉研究所行业室情报组.钢包精炼法[J],电炉,1975,4(2):24-42.
    17.赵沛.炉外精炼及铁水预处理实用技术手册[M],北京:冶金工业出版社,2004, 257-312.
    18.西安电炉研究所二室.钢包精炼炉[J],电炉,1975,4(2):1-23.
    19. LF-EMS技术报告[R]. ABB公司,2004,1-10.
    20.胡安虎,刘强,刘自康.梅钢LF炉生产工艺现状分析[J],梅山科技,2004,25(7):53-55.
    21.张建平,张俊江,龚志翔.马钢LF-VD(EMS)精炼工艺研究[J],钢铁,1997,32(2):650-652.
    22. Nakanishi K, Fujii T, Szekely J, et al. Stirring and its effect on aluminum deoxidation of steel in the ASEA-SKF furnace. I. Plant scale measurements and preliminary analysis[J], Metallurgical Transactions B (Process Metallurgy),1975,6B (1):111-118.
    23. Szekely J, Nakanishi K. Stirring and its effects on aluminum deoxidation in the ASEA-SKF furnace. Ⅱ. Mathematical representation of the turbulent flow field and of tracer dispersion [J], Metallurgical Transactions B (Process Metallurgy),1975,6B (2): 245-256.
    24. Blum E Y. Mass transfer in magneto hydrodynamics flow including the chemical kinetics of reactions at the boundaries[J], Magnitnaya Gidrodinamika,1970,6(3): 83-90.
    25. Taniguchi S. New advancement in electromagnetic processing of materials[J], CAMP-ISIJ,2000,13(2):74-76.
    26. Takeo I. Promotion of desulphurization in ladle through slag emulsification by stirring with stationary AC electromagnetic field[J], Journal of the Iron and Steel Institute of Japan,2003,43 (6):828-835.
    27. Shuji T. Prospect of application of electromagnetic processing of materials (EPM) to refining technologies[J], CAMP-ISIJ,2001,14(1):35-37.
    28.彭涛,辜承林.强磁场发展动态与趋势[J],物理,2004,33(8):570-573.
    29.任忠鸣,晋芳伟.强磁场在金属材料制备中应用研究的进展[J],上海大学学报(自然科学版),2008,14(5):446-455.
    30.高翱,王强,王春江等.强磁场条件下Mn-Sb梯度复合材料的制备[J],物理 学报,2008,57(2):767-771.
    31.王强,王春江,王恩刚等.强磁场对不同磁化率非磁性金属凝固组织的影响[J],金属学报,2005,41(2):128-132.
    32.黄琦晨,钟云波,任忠鸣等.强磁场下铜电沉积层表面形貌及织构的研究[J],稀有金属材料与工程,2006,35(SuPP1.2):381-385.
    33.李喜,王晖,任忠鸣等.稳恒强磁场技术的发展及其在材料科学中的应用[J],材料导报,2002,16(10):25-27.
    34.晋芳伟.梯度强磁场对铝硅过共晶合金凝固的影响[D].上海:上海大学,2007.
    35. Ryoichi A. Recent progress in magneto-electrochemistry [C], The 5th International Symposium on Electromagnetic Processing of Materials,2006,799-804.
    36. Hirota N, Hara S, Sakka Y. In-situ microscopic observations of magnetic field effects on the growth of silver dendrites[J], Materials Transactions,2007,48(11): 2888-2892.
    37. Andreas B, Ispas A, Mutschke G. Magnetic field effects on electrochemical metal depositions[J], Science and Technology of Advanced Materials,2008,9(2):1-6.
    38. Zhou Y B, Ren Z M, Lei Z S. Effect of high static magnetic field on NiFe membrane electro-deposition [C], The 5th International Symposium on Electromagnetic Processing of Materials,2006,814-820.
    39. Kozuka T. Metal substitution reaction under intense magnetic field[C], The 4th International Symposium on Electromagnetic Processing of Materials,2003,28-34.
    40. Dubke M, Tacke K H, Spitzer K H, et al. Flow fields in electromagnetic stirring of rectangular strands with linear inductors:Part Ⅰ. Theory and experiments with cold models[J], Metallurgical Transactions B,1988,19B(8):581-593.
    41. Dubke M, Tacke K H, Spitzer K H, et al. Flow fields in electromagnetic stirring of rectangular strands with linear inductors:Part Ⅱ. Computation of flow fields in billets, blooms, and slabs of steel[J], Metallurgical Transactions B,1988,19B(8):595-602.
    42.程常桂,马国军.铁水预处理[M],北京:化学工业出版社,2009,1-3.
    43.王硕明,朱立光,唐国章等.影响铁水预脱硫的工艺因素[J],河北理工学院 学报,1999,21(4):23-26.
    44. Wei J H. Mass transfer characteristics between molten steel and particles in RH-PTB refining[J], Ironmaking and Steelmaking,2001,28(6):455-464.
    45.王新房.超声多普勒发展史略[J],中国医学影像技术,1989,5(3):4-5.
    46. Takeda Y. Ultrasonic Doppler method for velocity profile measurement in fluid dynamics and fluid engineering[J], Experiments in Fluids,1999,26(3):177-178.
    47. Brito D, Nataf H C, Philippe. Ultrasonic Doppler velocimetry in liquid gallium[J], Experiments in Fluids,2001,31(6):653-663.
    48. Takeda Y, Kikura H. Flow mapping of the mercury flow[J], Experiments in Fluids, 2002,32(2):161-169
    49. Eckert S, Gerbeth G. Velocity measurements in liquid sodium by means of ultrasound Doppler velocimetry[J], Experiments in Fluids,2002,32(5):542-546.
    50. Eckert S, Gerbeth G, Melnikov V L. Velocity measurements at high temperatures by ultrasound Doppler velocimetry using an acoustic wave guide[J], Experiments in Fluids,2003,35(5):381-388.
    51. Cramer A, Zhang C, Eckert S. Local flow structures in liquid metals measured by ultrasonic Doppler velocimetry[J], Flow Measurement and Instrumentation,2004, 15(3):145-153.
    52. Wang X D, Fautrelle Y, Jacqueline E. Characteristisation of a recirculating flow using ultrasonic Doppler velocimetry[C], CFM2007,2007,27-31.
    53.张欢,王铁峰,王金福等.液固循环流化床中颗粒轴向速度的实验研究[J],高校化学工程学报,2002,16(4):408-414.
    54.张欢,王铁峰,王金福等.液固循环流化床中的颗粒速度场[J],化工学报,2003,54(10):1355-1360.
    55.贾洪海,于湛,雷作胜等.旋流水口对小方坯连铸结晶器流场影响的水模拟[J],金属学报,2008,44(3),375-380.
    56.李伟轩,于湛,邓康.电磁场作用下铜板带水平连铸熔体的流动和凝固特征[J],中国有色金属学报,2008,18(6):1058-1063.
    57. DOP2000 user's manual, signal processing S.A., Switzerland,2007.
    58.翟冉.旋流作用下连铸浸入式水口及结晶器内的流动模型实验研究[D],沈 阳:东北大学,2009.
    59.于洋,李宝宽.钢连铸电磁搅拌工艺中电磁力的计算[J],金属学报,2006,42(5):540-544.
    60.张琦,金俊泽,王同敏等.金属液在旋转电磁搅拌器作用下的流动分析[J],中国有色金属学报,2007,17(1):98-104.
    61.任兵芝,朱苗勇,王宏丹等.大方坯连铸结晶器电磁搅拌三维电磁场与流场的数值模拟[J],金属学报,2008,44(4):507-512.
    62.陈永,张长利,沈厚发等.连铸结晶器电磁搅拌磁场及钢液流场模拟[J],钢铁研究学报,2008,20(7):15-18.
    63.丁国,李建超,王宝峰等.小方坯连铸结晶器电磁搅拌磁场和流场的耦合分析[J],包头钢铁学院学报,2006,25(3):222-225.
    64.于海岐,朱苗勇.圆坯结晶器电磁搅拌过程三维流场与温度场数值模拟[J],金属学报,2008,44(12):1465-1473.
    65. Kim H, Jeong H, Kim G, et al. Metal flow analysis of strand electromagnetic stirrer for a vertical bloom caster[C], The 4th International Symposium on Electromagnetic Processing of Materials,2003,190-195.
    66. Okazawa K, Toh T, Fukuda J, et al. Fluid flow in a continuous casting mold driven by linear induction motors[J], ISIJ International,2001,41(8):851-858.
    67. Partinen J, Szekely J, Vives C, et al. Fluid flow and free surface phenomena in rotary electromagnetic stirring of a metallic melt[J], ISIJ International,1995,35(3): 292-301.
    68.李秋玲,邓康,李伟轩等.薄板坯水平连铸结晶器电磁搅拌的模拟实验研究[J],上海金属,2005,27(6):31-35.
    69.朱苗勇,程乃良,杨洪良.钢包精炼过程中电磁搅拌技术使用效果研究[C],中国国际钢铁大会技术交流会论文集,2004,298-305.
    70.黄军,王宝峰,李建超等.钢包炉电磁搅拌磁场与流场的数值模拟[J],炼钢,2008,24(5):33-36.
    71.高海潮,朱伦才,颜根发.钢包电磁搅拌生产洁净钢的几个工艺理论问题[J], 钢铁研究,2000,114(3):14-18.
    72.张建平,龚志翔,刘国平等.马钢90t LF精炼炉电磁搅拌混合特性的水模型研究[J],安徽冶金,2001,26(1):1-8.
    73. Barbier J N, Fautrelle Y, Evans J W, et al. Numerical simulation of induction heated furnaces[J], Journal de Mecanique Theorique et Appliquee,1982, 1(3):533-556.
    74. Zhu X R, Harding R A, John C. Electromagnetic confinement including the dynamic effect due to melt flow[J], ISIJ International,1999,39(1):1-9.
    75. Partinen J, Szekely J, Vives C, et al. Fluid flow and free surface phenomena rotary electromagnetic in stirring of a metallic melt[J], ISIJ International,1995, 35(3):292-301.
    76. Pericleous K, Bojarevics V, Djambazov G, et al. Experimental and numerical study of the cold crucible melting process [J], Applied Mathematical Modellin,2006, 30(11):1262-1280.
    77.张斌,李廷举,贾非等.中频电磁场作用下金属液面稳定性的研究[J],铸造,2002,51(6):336-338.
    78.王朝阳,王恩刚,张兴武等.圆坯中频电磁软接触结晶器内磁场分布实验研究[J],钢铁,2009,44(10):36-40.
    79. Sato S, Fujisaki K. Responsiveness of free surface flow to M-EMS exciting frequency[J], IEEE Transactions on Magnetics,2005,41(10):354-361.
    80. Shoji T, Kazuyuki U, Shimazaki S I, et al. Electromagnetic stirring of liquid metal by simultaneous imposition of rotating and traveling magnetic fields[J], Journal of the Iron and Steel Institute of Japan,2006,92(6):364-371.
    81. Debray F, Fautrelle Y. Free surface deformation frequencies of an electromagnetically excited mercury layer[J], Experiments in Fluids,1994,16(5): 316-322.
    82. Florent L, Roger B, Michel A, et al. Kinetics of the actinides-lanthanides separation:mass transfer between molten fluorides and liquid metal at high temperatures [J], Journal of Nuclear Materials,2005,336(2):163-172.
    83. Su Z J, Iwai K, Asai S. Characteristics of liquid metal motion driven by quasi-sinusoidal magnetic fields[J], ISIJ International,1999,39 (12):1224-1230.
    84.胡隐樵,陈晋北,左洪超.湍流强度定理和湍流发展的宏观机制[J],中国科学D辑:地球科学,2007,37(2):272-281.
    85.黄军,王宝峰,李建超等.钢包炉电磁搅拌磁场与流场的数值模拟[J],炼钢,2008,24(5):33-35.
    86.刘欣.C72DA钢连铸时避免结晶器钢水卷渣的工艺实践[J],特殊钢,2007,28(1):61-62.
    87.王波,郭俊玉,张捷宇等.板坯连铸异型中间包卷渣水模型实验研究[J],铸造技术,28(4):504-507.
    88.孙彦辉,韦耀环,蔡开科等.宽板坯连铸结晶器内卷渣现象试验研究[J],钢铁,2007,42(11):31-33.
    89.张佩,文光华.连铸结晶器内卷渣模拟方法研究[J],云南冶金,2009,38(5):25-28.
    90.王现辉,王新华,张炯明等.CSP结晶器内卷渣的瞬态特征[J],北京科技大学学报,2009,31(6):764-769.
    91.陆巧彤,王新华,于会香等.F数计算及其与板坯连铸结晶器内钢水卷渣的关系[J],北京科技大学学报,2007,29(8):811-815.
    92.陆巧彤,王新华,于会香等.板坯连铸结晶器保护渣卷渣及其影响因素的研究[J],钢铁,2006,41(7):29-32.
    93.霍贞蓉,包燕平,岳峰等.板坯连铸结晶器边部卷渣的水模型研究[J],连铸,2009,28(3):13-16.
    94.包燕平,朱建强,蒋伟等.薄板坯结晶器内卷渣现象的研究[J],北京科技大学学报,1999,21(6):530-534.
    95.金友林,包燕平,刘建华等.不锈钢板坯连铸结晶器内钢/渣界面行为模拟及卷渣分析[J],北京科技大学学报,2009,31(5):618-624.
    96.齐新霞,岳峰.板坯连铸结晶器钢液卷渣现象研究[J],河南冶金,2003,11(2):12-14.
    97.齐新霞,刘国林.板坯连铸机结晶器钢液卷渣的水模型研究[J],特殊钢,2004,25(3):29-31.
    98.雷洪,许海虹,朱苗勇.高速连铸结晶器内卷渣机理及其控制研究[J],钢铁,1999,34(8):20-23.
    99.朱苗勇,王军,雷洪等.连铸结晶器内钢水卷渣的机理与控制[J],鞍钢技术,2005,(2):1-4.
    100.雷洪,朱苗勇,赫冀成.连铸结晶器内卷渣过程的数学模型[J],金属学报,2000,36(10):1113-1117.
    101.卢金雄,王文科,张炯明等.板坯连铸结晶器吹氩对铸坯卷渣的影响[J],北京科技大学学报,2006,28(1):34-37.
    102.成国光,张鉴,佟福生等.单嘴精炼装置真空室内卷渣水模型研究[J],特殊钢,1994,15(1):27-30.
    103.成国光,张鉴,佟福生等.钢包底吹氩搅拌卷渣机理的水模型研究[J],钢铁研究,1994,22(2):3-7.
    104.成国光,张鉴,易兴俊.钢包底吹氩搅拌卷渣机理的研究[J],炼钢,1993,(6): 23-25.
    105.薛正学,赵彦岭,艾新港等.邢钢钢包底吹卷渣模拟研究[J],河北冶金,2008,30(6):7-9.
    106. Manabul I, Yutakal S, Ryusukel O, et al. Evaluation of critical gas flow rate for the entrapment of slag using a water model[J], ISIJ International,1994, 34(2):164-170.
    107. Thunman M, Eckert S, Hennig O, et al. Study on the formation of open-eye and slag entrainment in gas stirred ladle[J], Steel Research International,2007, 78(12):849-856.
    108.艾新港,包燕平,吴华杰等.钢包底吹氩卷渣临界条件的水模型研究[J],特殊钢,2009,30(3):7-9.
    109.毛斌,王世郁.钢水连铸电磁搅拌的磁流体力学基础[J],钢铁研究,1988,46(1):11-15.
    110.干磊,何平.钢包卷渣临界底吹流量规律的水力学模拟研究[J],炼钢,2009,25(1):41-46.
    111.黄军.钢包电磁搅拌磁流耦合模拟研究[D],包头:内蒙古科技大学,2007.
    112. Asai S, Nishio N, Muchi I. Theoretical analysis and model experiments on electromagnetically driven flow in continuous casting[J], Journal of the Iron and Steel Institute of Japan,1981,67(20):333-341.
    113.张华书,萧泽强.渣-钢混合状态对冶金速率的影响[J],钢铁,1987,22(9):21-25.
    114.萧泽强,彭一川.喷吹钢包中渣金卷混现象的数学模化及其应用[J],钢铁,1989,24(10):17-21.
    115.张胜军,朱苗勇,张永亮等.高拉速吹氩板坯连铸结晶器内的卷渣机理研究[J],金属学报,2006,42(10):1087-1090.
    116.王晖,任忠鸣,邓康.磁场对Bi-Mn合金两相区中MnBi相凝固组织的影响[J],金属学报,2002,38(1):41-46.
    117.王春江,王强.强磁场对合金凝固组织中硅分布的影响[J],物理学报,2006,55(2):648-653.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700