用户名: 密码: 验证码:
铬污染土壤特性表征与陶粒制备机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着城市化进程的加快,大量企业搬出主城区,其遗留下来的被污染的场地成为了阻碍城市建设的难题。在众多的重金属污染中,铬污染因具有致癌致畸效应而备受关注。目前我国尚处于铬渣治理的扫尾阶段,铬污染场地的治理与修复才刚刚起步。因此,对铬污染土壤处理或利用的研究将具有重要的意义。
     文章成功结合陶粒焙烧和干法解毒工艺的特点,将铬污染土壤与解毒剂混合,高温下得到一种新颖的铬污染土壤资源化利用方法。文章完成了从土壤采样到产品利用的全过程研究,主要内容包括:场地调查与评价、典型铬污染土壤的特性表征分析、处理或利用方式筛选、解毒剂选择、陶粒烧制小试实验、烧制工艺优化过程、烧制机理分析、中试实验,陶粒产品检测与运用等。
     以民丰化工原厂址区为研究对象,布点采样核实研究区的污染程度,运用潜在生态风险和健康风险评价方法评价场地的风险程度并确定修复限值。选取高浓度的铬污染土壤,通过XRF、FT-IR、XRD、激光粒径分析、表面积测试与孔径分析、TG-DSC综合热分析法等技术研究其理化性能及热力学特性;运用毒性浸出、分步提取、热灼烧等方法分析土壤重金属特性;据此筛选合适的铬污染土壤处理或利用方式。
     选用粉煤灰、煤矸石和污泥等常见固废作为解毒剂混合土壤烧制陶粒,详细分析三种解毒剂性能;通过单因素实验分析烧成工艺对陶粒Cr(VI)浸出浓度、颗粒强度、表观密度和1h吸水率的影响;通过正交实验优化烧成工艺并用有约束的均匀设计方法对陶粒原料配比进行二次优化;开展陶粒生产的中试实验;全面分析了陶粒产品的建材特性品质和环境安全性指标;并对陶粒应用做了尝试。
     根据烧成动力学理论分析陶粒烧成机理,根据胚料物质主要热反应特征建立热反应动力学模型并求解最概然机理函数。利用XEM和EDS观察陶粒产品表面、剖面的微观结构特征;利用FT-IR、XRD等技术手段研究陶粒形成和铬固化机理。
     通过以上各方面的研究得到以下主要结论:
     ①研究区绝大部分为重度污染,土壤不能达到HJ305-2007中II级土壤要求;土壤潜在生态风险评价发现31.3%的土壤样品具有高生态风险;健康风险评价结果表明研究区土壤可能对敏感人群造成致癌和非致癌影响;研究区铬修复限值为:Cr(Ⅲ)8621.8mg/kg,Cr(VI)5.3mg/kg。
     ②供试土壤以中小颗粒为主,多孔结构不明显,吸附性不强;土壤富含SiO_2、Al_2O_3、Fe_2O_3等成分,主要晶体类型为α-石英相;土壤基本不具备热性能;总铬含量1726.3mg/kg,Cr(VI)浸出浓度60.25mg/L,是一种具备浸出毒性但不具备腐蚀性的危险废物;铬的结合形态排序为残渣态>弱酸提取态>可还原态>可氧化态;通过土壤处理方案筛选,确定干法解毒方案比淋洗和水泥固化更具有优越性。
     ③粉煤灰、煤矸石和污泥作为解毒剂富含SiO_2、Al_2O_3等成陶成分,含有残余碳粉或有机物成分,能在高温条件下产生CO等还原性气体使Cr(VI)还原并促使陶粒膨胀;三种添加剂的烧失量分别为5.97%、28.60%、33.24%;TG-DSC曲线表明三种材料均在空气氛围、不同升温速率下存在一个主要的热失重阶段。
     ④实验获得三种陶粒产品和相应的最佳工艺条件。实验表明温度为影响产品性能的主要条件,污泥添加量对陶粒产品性能有显著影响;铬污染土壤-煤矸石陶粒因易在空气中潮解,故被淘汰。运用有约束配方均匀混料法优化原料配方,得最佳原材料配比为:铬污染土壤75.1%,粉煤灰18.7%,污泥6.2%。
     ⑤胚料热反应过程依次经历了自由水挥发、有机物燃烧、碳酸盐受热分解、残留碳份氧化、金属氧化物熔融等过程。分析认为30K/min为烧制陶粒的最佳升温速率。整体而言,陶粒胚料在不同温度下衍射峰位置无明显差异,对比陶粒剖面和表面的微观形貌发现,烧制过程中仅有陶粒表面有新物相生成。陶粒胚料最终生成链状或骨架状结构的硅酸盐和硅铝酸盐,烧成过程中有大量玻璃化物质生成。球形对称相界反应R3机理函数为陶粒烧成反应的最概然机理函数。通过拟合计算,得该函数的动力学三因子Ea=214.37kJ/mol,A=4.80E+06(s~(-1)),G(a)=1-(1-a)~(1/3)。
     ⑥总结重金属铬的固化机理为:在超过800℃时Cr(VI)被C、CO等还原为Cr(Ⅲ);热处理温度大于900℃时,Cr(Ⅲ)可能进入粘土Si-Al-O网状结构;高温下Cr(Ⅲ)氧化物与原料中的硅氧化物、铝氧化物充分接触生成NaCrSi_2O_6或CaCrAlSiO_6等稳定的固熔体;由于Fe(Ⅲ)、Cr(Ⅲ)与Al(Ⅲ)的半径相近,电荷相同,在高温条件下容易发生类质同相作用而形成一系列化合物;玻璃态物质对Cr(VI)起到有效的固定作用,也防止Cr(Ⅲ)物质被再次氧化。
     ⑦利用回转窑进行中试实验,确定烧制陶粒的最优烧制条件为:铬污染土壤:粉煤灰:污泥=75.1:18.7:6.2,窑预热温度350℃,烧成温度1120℃,烧成温度保持时间2min。以此条件制得的陶粒,Cr(VI)浸出浓度0.065mg/L,颗粒强度540N,堆积密度530kg/m~3,1h吸水率7.2%,其他性能满足轻集料标准要求。陶粒的重金属浸出特性检测结果表明陶粒浸出液中各项重金属含量均远低于危险废物鉴别标准(GB/T5083.3-2007)、污水综合排放标准(GB8978-1996)、填埋标准(GB16889-2008)所规定的浓度限值,不会对环境造成二次污染,具有环境安全性。
With the rapid development of urbanization, a large number of companies movedout of the city, leaving the contaminated soil as a big problem for city construction.Among the heavy mental pollution, chromium pollution gained more attention becauseof its carcinogenic and teratogenic effects. To date, China is in the “mop-up stage” ofchromium disposal; and the remediation of chromium contaminated sites has just begun.Therefore, it would be of great significance to study the treatment or utilization ofchromium contaminated sites.
     In this paper, the study centers on the collection of chromium contaminated soilsamples and their utilization. The main contents include: surveying and evaluatingselected sites, analyzing characteristics of typical chromium contaminated soil samples,screening disposal or treatment methods, selecting antidote, making ceramsite,optimizing the firing process, analyzing the firing mechanism, the mid-experiment ofsintering ceramsite, testing and applying the ceramsite products, and so forth.
     The original site of Mingfeng Chemical Factory was chosen as the research area,and the pollution degree was assessed by verifying the samples collected from the studyarea. The potential ecological risk assessment and health risk assessment wereintroduced to determine the risk degree of the selected site as well as to obtain thelimited values for restoring. Afterwards, high concentrations of chromium contaminatedsoils was selected to delve into their physical and chemical properties and kineticcharacteristics of thermal reaction by way of X-ray diffraction analysis, Fourier infraredspectroscopy analysis, laser particle size analysis, static nitrogen absorption BET andpore size analysis, atomic absorption spectrophotometry, and TG-DSC method.Characteristics of heavy metals were analyzed by TCLP, step by step extraction, andthermal sintering method, thereby determining the appropriate disposal or treatmentmethods for chromium contaminated soils.
     Fly coal ash, coal gangue, and sludge were chosen as the antidote; and theirphysical and chemical characteristics were analyzed. The single factor experiment wasconducted to analyze raw material ratios, sintering temperature, sintering time, Cr (VI)leaching concentration, particle strength, surface particle density and one-hour waterabsorption, and so on. Sintering process of ceramsite was optimized by orthogonalexperimental design. Thereafter, the second optimization of ceramsite raw material ratio was conducted by uniform design method based on the advantages and disadvantages ofceramsite. The evolution of ceramsite was simulated by a quadratic polynomialnonlinear fitting, according to the most probable mechanism function. The mechanismof ceramsite formation and chromium solidification were studied by observing thesurface and the microscopic structural characteristics with X-ray micro-spectroscopyscanning electron microscope.
     The results are shown as follows:
     Most of the research areas were heavily polluted. The soil quality cannot meet theHJ305-2007and also cannot used as stadium land, green land, commercial land, andpublic municipal land. In potential ecological risk assessment,31.3%of soil sampleshad high ecological risks. In health risk assessment, all HQ and CR values exceeded thethreshold, posing a great threat to human health. The repair limit values of Cr (III) andCr (VI) were8621.8and5.3mg/kg, respectively.
     Most soil in study area was small or mid-sized. The pore was large and had nostrong absorption, and its structure was inconspicuous. Soil was rich in SiO_2, Al_2O_3, andFe_2O_3. The main crystal type was quartz, and did not have thermal properties. The totalchromium content was1726.3mg/kg, and the leaching concentration of Cr (VI) was60.25mg/l, indicating that it is not a hazardous waste. Chromium migrated easily in thesoil, with residual> weak acid extractable> reducible> oxidisable. The dryingdetoxification programs had more advantages than leaching and cement solidificationby comparing the disposal method of soil.
     Additives of fly coal ash, coal gangue and sludge were rich in SiO_2, Al_2O_3, tonerresidual and organic ingredients, generated CO under high temperature to deoxygenizeCr (VI), and eventually promote the expansion of ceramsite. The losses of threeadditives were5.97%,28.60%, and33.24%, respectively. TG-DSC curves evinced thatthere was a major phase of thermal loss at atmospheric conditions or different heatingrates.
     The optimal process conditions for sintering ceramsite of chromium contaminatedsoils and fly coal ash were25%of fly coal ash addition, the temperature of1120℃, andsintering time of10min. The characteristics of ceramsite were as follows: the leachingconcentration of Cr (VI) was0.042mg/l; the strength of particle was600N; the densityof particle was1.19g/cm3; one-hour water absorption was15.2%. Similarly, the optimalprocess conditions for sintering ceramsite of chromium contaminated soils and sludgewere12%of sludge addition, the temperature of1030℃, and sintering time of10min, with0.067mg/l leaching concentration,440N particle strength,1.08g/cm3particledensity, and20.2%one-hour water absorption. Temperature was the main factor forsintering ceramsite of chromium contaminated soils and fly coal ash, while both thecontent of sludge addition and sintering temperature were important for sinteringceramsite of chromium contaminated soils and sludge. Furthermore, ceramsite ofchromium contaminated soils and coal gangue was abandoned for its deliquescent.
     The constraint mixing method was introduced to optimize the raw material ratios.The results indicated that75.1%of chromium contaminated soil,18.7%of fly ash, and6.2%sludge; the total heat loss rate of ceramsite billet decreased with the heating rateincreased, while the peak temperature of DSC curves increased as the heating rateincreased. The thermal reaction of the billet involved water volatilization, combustionof organic compounds, thermal decomposition of carbonate, oxidation of residualcarbon, and melting process of metal oxides. The increase of heating rate was conduciveto reducing the ceramsite quality. More intense reaction between the components of thebillet was good for firing ceramsite.30K/min was generally considered as the optimalheating rate for sintering ceramisite.
     The diffraction peaks of ceramsite billet had no significant difference at differenttemperatures, signifying that very few new substances were generated during thesintering process. However, the contents of each phase were quite different as thetemperature increased, and a large number of amorphous materials were produced at1150℃. After sintering, SiO_2, metal or nonmetal oxide, silicon oxide in themontmorillonite clay, and aluminum oxide in ceramsite billet reacted to generate a chainor skeleton-like structure of silicate. Meanwhile, other chemical groups have all beendestroyed. R3mechanism function was the most probable mechanism function forsintering ceramsite. Three kinetic factors of fitting equation were Ea=214.37kJ/mol,A=4.80E+06(s~(-1)), and G (a)=1-(1-a)~(1/3).
     The mechanism of chromium solidification was as follows. Cr (VI) wasdeoxygenize by C and CO at the temperature of more than800℃. Cr (Ⅲ) may enterSi-Al-O structure of clay when temperature was greater than900℃. Cr (Ⅲ) oxide andsilicon and aluminum oxide in raw material would generate NaCrSi_2O_6or CaCrAlSiO_6.Fe (Ⅲ), Cr (Ⅲ), and Al (Ⅲ) have similar radius and same charge. Glassy substances ofCr (VI) can not only play a fixed role, but also prevent re-oxidation of Cr (Ⅲ)substances.
     Rotary kiln experiment was conducted to determine the optimum sintering conditions for sintering ceramsite. The optimum conditions were as follows:Temperature of kiln preheating is350℃, the sintering temperature was1120℃, and thehold time was2min. The characteristics of ceramsite were0.065mg/l Cr (VI) leachingconcentration,540N particle strength,530kg/m~3particle density,7.2%one-hour waterabsorption, meeting the standards of lightweight aggregate. Results of leaching heavymetals shown that heavy metals in ceramsite leaching solution were much lower thanthe hazardous waste identification standards (GB/T5083.3-2007), wastewater dischargestandard (GB8978-1996), and landfill standards (GB16889-2008), revealing theirenvironmental safety.
引文
[1] Petrilli FL, F.S., et al.. Toxieity and mutagenicity of hexavalent chromiumon SalmonellatyPhimurium[J]. Applied and Environmental Microbiolog,1977.33(4):805-809.
    [2] Gibb HJ, L.P., Pinsky P.F.. Lung caneer among workers in chromium chemical production[J].American Journal of Industrial Medicine,2002.38:15-126.
    [3]陈传宏,田保国.21世纪初期中国环境保护与生态建设科技发展战略研究[J].2001,北京:中国环境科学出版社.
    [4]辽宁省环境科学研究院,铬渣干法解毒处理处置工程技术规范[S].2008.
    [5]常文越,陈晓东,冯晓斌.含铬(VI)废物堆放场所土壤/地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境保护科学,2001.28(114):31-33.
    [6]裴廷权,王里奥,钟山,等.典型铬渣简易掩埋场铬渣及土壤铬污染特征和处置分析[J].环境工程学报,2007.2(7):994-999.
    [7]中国化工报.失控的铬渣http://www.ccin.com.cn/ccin/news/2011/08/19/195007.shtml,[EB/OL].2011.
    [8]黄昌勇编.土壤学[M].2004,北京:中国农业出版社.
    [9]陈同斌,黄启飞,高定,等.中国城市污泥的重金属含量及其变化趋势[J].环境科学学报,2003.23(5):561-569.
    [10]国家环境保护总局.铬渣污染治理环境保护技术规范[S].2007.
    [11]陈晓冉.云南曲靖通报非法倾倒剧毒废料致污染事件.http://www.cnr.cn/newscenter/gnxw/201108/t20110813_508365101.shtml[EB/OL].2011.
    [12] Calder L.M.. Chromium contamination of groundwater[J]. Advance in environmentalscience and technology,1988,20:215~219.
    [13]黄顺红.铬渣堆场铬污染特征及其铬污染土壤微生物修复研究[D].中南大学博士论文.2009.
    [14] J. Kota, Z. Stasicka. Chromium occurrence in the environment and methods of itsspeciation[J]. Environmental Pollution,2000,107(3):61-67.
    [15]蒋廷惠,胡霭堂,秦怀英.土壤中锌、铜、铁、锰的形态与有效性的关系[J].环境科学学报,1990,20(5):228-231
    [16] Zhu B., Alva A.K.. Differential adsorption of trace metals by soils as influenced byexchangeable cation and ionic strength[J]. Soil Science,1993,155(1):
    [17]王海,王春霞,王了健.太湖表层沉积物中重金属的形态分析[J].环境化学,2002,21(5):430-435
    [18]王贵,张丽洁.海湾河口沉积物重金属分布特征及形态研究[J].海洋地质动态,2002,18(12):1-5.
    [19] Kartal S., Aydin Z., Tokalioglu.. Fractionation of metals in street sediment samples by usingthe BCR sequent extraction procedure and multivariate statistical elucidation of the dat[J].Journal of Hazardous Materials,2006,132(1):80-89.
    [20]王亚平,黄毅,王苏明,等.土壤和沉积物中元素的化学形态及顺序提取法[J].地质通报,2005,24(8):728-734.
    [21]冯素萍,刘慎坦,杜伟,等.利用BCR改进法和Tessier修正法提取不同类型土壤中Cu、Zn、Fe、Mn的对比研究[J].分析测试学报,2009(03):297-300..
    [22] Gambrell R.P.. Trace and Toxic Metals in Wetland: A Review[J]. Journal of EnvironmentQuality,1994,23:883-891.
    [23] Shuman L. M.. Fractionation method for soil microelement[J]. Soil Science,1985,140(1):11-22.
    [24]周启星,黄国宏.环境生物地球化学及全球环境变化[M].2001,北京:北京工业出版社.
    [25] Koleli N.. Speciation of chromium in12agricultural soils from Turkey[J]. Chemosphere,2004,57(10):1473-1478.
    [26]惠秀娟,马汐平,徐成斌,等.沈阳市新城子铬渣堆存区土壤铬污染分布及形态分析[J].黑龙江环境通报,2009(03):50-53.
    [27]陈志明.不同改良剂修复重金属铬污染土壤的研究[D].山东农业大学硕士学位论文,2010.
    [28]姜身永,侯明.土壤几种化学性质对土壤Cr形态的影响[J].桂林工学院学报,2008(04):558-561.
    [29]陈英旭.土壤中铬的形态及转化[J].环境科学,1994,15(3):53-56.
    [30]夏星辉,陈静生.土壤重金属污染治理方法研究进展[J].环境科学,1997,18(3):72~76.
    [31] Kumpiene J., A. Lagerkvist, C. Maurice. Stabilization of As, Cr, Cu, Pb and Zn in soil usingamendments–A review[J]. Waste Management,2008,28(1):215-225.
    [32]韩怀芬,黄玉柱,金漫彤.铬渣的固化/稳定化研究[J].环境污染与防治,2002(04):199-200.
    [33]韩怀芬,黄玉柱.金漫彤.铬渣水泥固化及固化体浸出毒性的研究[J].环境污染治理技术与设备,2002,3(7):9-12.
    [34]张华,蒲心诚.碱矿渣水泥基铬渣固化体浸出毒性的安全性研究[J].重庆建筑大学学报,1999,21(1):60-67.
    [35] Meegoda JN, E.A., Fang HY, et al..Waste immobilization technologies[J]. PracticePeriodical of Hazardous, Toxic, and Radioactive Waste Management,2002,7(1):46-58.
    [36] Polettini A,Pomi R,Valente M.. Remediation of a Heavy Metal-Contaminated Soil byMeans of Agglomeration[J]. Journal of Environmental Science and Health, Part A:Toxic/Hazardous Substances and Environmental Engineering,2004,39(4):999-1010.
    [37] Reddy K. R., Chinthamreddy S.. Effects of initial from of chromium on electrokineticremediation in clays[J]. Advances in Environmental Research,2003,7(2):353-365.
    [38]孟凡生,王业耀.铬(VI)污染土壤电动修复影响因素研究[J].农业环境科学学报,2006,25(5):983-987.
    [39]周东美,邓昌.重金属污染土壤的电动修复技术研究进展[J].农业环境科学学报,2003,22(4):505-508.
    [40] Akira Sawada, Ko-ichi Mori, Shunitz Tanaka. Removal of Cr(VI) from contaminated soil byelectrokinetic remediation[J]. Waste Management,2004,24(5):483-490.
    [41] Long Cang, Dong-Mei Zhou, Akram N. Effects of sodium hypochlorite and high pH buffersolution in electrokinetic soil treatment on soil chromium removal and the functionaldiversity of soil microbial community[J]. Journal of Hazardous Materials,2007,144(1-2):111-117.
    [42]尹晋,马小东,孙红文.电动修复不同形态铬污染土壤的研究[J].环境工程学报,2008,2(5):6.
    [43]周东美,仓龙,邓昌芬.过氧化氢对铬在黄棕壤中电动过程的影响[J].土壤学报,2005,25(1):59-63.
    [44] Chih-Huang Weng, Ching Yuan. Removal of Cr(III) from Clay Soils by Electrokinetics[J].Environmental Geochemistry and Health,2001,23(3):281-285.
    [45] QIN Fei, SHAN Xiao-quan, WEI Bei. Effects of low-molecular-weight organic acids andresidence time on desorption of Cu, Cd, and Pb from soils[J].Chemosphere,2004,57(4):253-263
    [46]郭涛,曹宏斌,杨秀红.重金属铬污染土壤淋洗修复技术研究进展[C].2010重金属污染综合防治技术研讨会论文集.2010:130-134.
    [47] Dermont G., Bergeron M., Mercier G., et al.. Soil washing for metal removal: A review ofphysical/chemical technologies and field applications[J]. Journal of Hazardous Materials,2008,152(1):1-31.
    [48] DAVIS A., OLSEN R. L.. Ground Water Monitoring and Remediation. The geochemistry ofchromium migration and remediation in the subsurface1995,33(6):759-768.
    [49] Liliane Jean, Fran ois Bordas, Jean-Claude Bollinger. Chromium and nickel mobilizationfrom a contaminated soil using chelants[J]. Environmental Pollution,2007,147(3):729–736.
    [50]李丹丹,郝秀珍,周东美,等.淋洗法修复铬渣污染场地实验研究[J].农业环境科学学报,2011(12):2451-2457.
    [51]梁丽丽,郭书海,李刚,等.柠檬酸/柠檬酸钠淋洗铬污染土壤效果及弱酸可提取态铬含量的变化[J].农业环境科学学报,2011,30(5):881-885.
    [52]周启星,宋玉芳.污染土壤修复原理与方法[M].2004,北京:科学出版社.
    [53] FRANCO D. V., DA. SILVA L. M., JARDIM W. F.. Reduction of Hexavalent Chromium inSoil and Ground Water Using Zero-Valent Iron Under Batch and Semi-Batch Conditions[J].Water Air and Soil Pollution,2009,197(1-4):40-60.
    [54] PARK D., AHN C. K., KIM Y. M., et al.. Enhanced abiotic reduction of Cr(VI) in a soilslurry system by natural biomaterial addition[J]. Journal of Hazardous Materials,2008.160(2-3):422-427.
    [55] CHIU C-C, CHENG C-J, LIN T-H, et al.. The effectiveness of four organic matteramendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils[J].Journal of Hazardous Materials,2009,161(2-3):1239-1244.
    [56]黄启飞,高定,丁德蓉,等.垃圾堆肥对铬污染土壤的修复机理研究[J].土壤与环境,2001,10(3):176-180.
    [57] Bruce R. James. Remediation-by-reduction strategies for chromate-contaminated soil[J].Environmental Geochemistry and Health2001,23(3):175-179.
    [58]曲向荣.土壤环境学[M].2010,北京:清华大学出版社.
    [59] Baker A. J. M.. Terrestrial higher plants which hyperaccumulate metallic elements[J].1989,1(2):81-126.
    [60] Raskin I., Smith R.D., Salt D.E. Phytoremediation of metals: Using plants to removepollutants from the environment[J]. Current Opinion in Biotechology,1997,8(2):221-226.
    [61]张学洪,罗亚平,黄海涛.一种新发现的湿生铬超积累植物-李氏禾(Leersia hexandraSwartz)[J].生态学报,2006,26(3):950-953.
    [62]张学洪,罗亚平,黄海涛.某电镀厂土壤重金属污染及植物富集特征[J].桂林工学院学报,2005,25(3):289-292.
    [63]张学洪,蔡湘文,李恺,等.氮肥形态对李氏禾富集铬的影响及其生化分析[J].桂林理工大学学报,2011,03:399-403.
    [64]纪柱.铬污染土壤的修复[M].无机盐工业,2008,40(2):47-50.
    [65]黄慧,陈宏.植物修复重金属汞、镉、铬污染土壤的研究进展[J].中国农学通报,2010,26(24):326-329.
    [66]常文越,陈晓东,王磊.土著微生物修复铬(Ⅵ)污染土壤的条件实验研究[J].环境保护科学,2007,33(1):42-44.
    [67] Sara Kamaludeen, Mallavarapu Megharaj, Albert Juhasz, Nabrattil Sethunathan, RaviNaidu[J]. Chromium-Microorganism Interactions in Soils: Remediation ImplicationsReviews of Environmental Contamination and Toxicology,2003,178:94-164.
    [68]许友泽,杨志辉,向仁军.铬污染土壤的微生物修复[J].环境化学,2011.30(2):555-560.
    [69]常文越,陈晓东,冯晓斌,等.含铬Ⅵ废物堆放场所土壤地下水的污染特点及土著微生物的初步生物解毒实验研究[J].环境保护科学,2002,28(114):31-33.
    [70] CHAI L Y, HUANG S H, YANG Z H, PENG B, HUANG Y,CHEN Y H.. Hexavalentchromium reduction by Pannonibacter phragmitetus BB isolated from soils underchromium-containing slag heap[J]. Journal of Environmental Science and Health Part,2009,44(6):615-622.
    [71] Ibarrolaza A., Coppotelli B.M., Del. Panno M.T., Donati E.R., Morelli I.S.. Dynamics ofmicrobial community during bioremediation of phenanthrene andchromium(VI)-contaminated soil microcosms[J]. Biodegradation,2009,20(1):95-107.
    [72] R. Elangovan, Ligy Philip. Performance evaluation of various bioreactors for the removal ofCr(VI) and organic matter from industrial effluent[J]. Biochemical Engineering Journal,2009,44(2-3):174-186.
    [73]柴立元,许友泽,王海鹰,等. Pannonibacter phragmitetus对Cr(Ⅵ)污染土壤的修复效应[J].中国有色金属学报,2009,19(12):2230-2236.
    [74] XU W., LIU Y., ZENG G., LI X., TANG C., YUAN X.. Enhancing effect of iron onchromate reduction by Cellulomonas flavigena[J]. Journal of Hazardous Materials B,2005,126((1/3)):17-22.
    [75]石磊,赵由才,牛冬杰.铬渣的无害化处理和综合利用[J].再生资源研究,2004,6:34-37.
    [76]石玉敏,苏丹,常春芝.铬渣堆存现状及干法解毒工程技术[J].四川大学学报,2009,46(1):189-194.
    [77]纪柱.铬渣的危害及无害化处理综述[J].无机盐工业,2003,35(3):1-4.
    [78]杨雷.利用城市污泥烧制页岩陶粒[J].环境工程学报,2010,4(5):1177-1180.
    [79]张振文.污泥陶粒的现状及宁波市发展污泥陶粒的前景[C].2008年中国国际墙体保温材料及应用技术交流会论文集,2008.
    [80]国办发[2005]33号,国务院办公厅关于进一步推进墙体材料革新和推广节能建筑的通知[Z].
    [81]高连敬.曝气生物滤池沸石和陶粒滤料性能对比研究[J].水处理技术,2009,12:53-57.
    [82]张晓岚,唐升卿,李涛,等.陶粒生物滤池与无烟煤滤池强化过滤效果对比[J].中国给水排水,2007,01:72-76.
    [83]陈烈芳,宋淑敏,李寿德.粘土陶粒生产技术及发展综述[C].2004“第七届全国轻骨料混凝土学术讨论会”暨“第一届海峡两岸轻骨料混凝土产制与应用技术研讨会”.2004,中国南京:57-62.
    [84]范锦忠.我国轻骨料及其混凝土和制品生产、应用综述[J].硅酸盐通报,2005,05:73-77+90.
    [85]范锦忠.粉煤灰陶粒的生产方法和主要性能[J].砖瓦,2007,09:114-117.
    [86]范锦忠.利用煤矸石生产陶粒的技术要点[J].墙材革新与建筑节能,2008,10:39-41+4.
    [87]李虎杰,陶军.煤矸石制备高强陶粒的试验研究[J].非金属矿,2010,03:20-22.
    [88]王萍,李国昌.煤矸石陶粒滤料制备及在生物滤池中应用研究[J].非金属矿,2007,06:53-56.
    [89] S. Nakouzia, D. Mielewski, J. C. Ball. A novel approach to paint sludge recycling:Reclaiming of paint sludge components as ceramic composites and their applications inreinforcement of metals and polymers[J]. Journal of Materials Research.,1998,13(1):53-60.
    [90]罗晖.污水污泥页岩陶粒烧胀特性[J].硅酸盐学报,2010,38(7):1247-1252.
    [91] WANG Li-ao, ZHANG Lei, HUANG Chuan. Sintering condition of sewage sludge forartificial lightmass aggregate[J]. Journal of Central South University of Technology,2009,S1:270-275.
    [92]张振文,胡彭青,周海华,柳俊哲.基于固体废弃物的高性能陶粒的研究[J].2010,1:11-13.
    [93]何必繁,王里奥,黄川.弧叶型旋转窑烧制污泥陶粒试验研究[J].环境工程学报,2011,5(4):909-916.
    [94]金宜英,杜欣,王志玉.采用污水厂污泥制陶粒的烧结工艺及配方研究[J].中国环境科学,2009,29(1):17-21.
    [95] G.R. Xu, J.L. Zou, Y. Dai. Utilization of dried sludge for making ceramsite[J]. WaterScience&Technology2006,50(9):66-79.
    [96]樊文华,白中科,李慧峰,等.复垦土壤重金属污染潜在生态风险评价[J].农业工程学报,2011,01:348-354.
    [97]毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-273.
    [98]董霁红,卞正富,王贺封.矿山充填复垦场地重金属含量对比研究[J].中国矿业大学学报,2007,36(4):531-536.
    [99]刘磊.某市铬渣污染场地风险评价与修复技术筛选[D].浙江大学硕士学位论文,2010.
    [100] EPA., U., Exposure factors handbook[EB/OL].1997: Washington DC.
    [101]陈鸿汉,谌宏伟,何江涛,等.污染场地健康风险评价的理论和方法[J].地学前缘,2006,13(1):216-223.
    [102]国家发展和改革委员会会同国家环境保护总局.铬渣污染综合整治方案[S].2005,发改环资[2005]2113号.
    [103]荣伟英,周启星.铬渣堆放场地土壤的污染过程、影响因素及植物修复[J].生态学杂志,2010,29(3):598-604.
    [104]刘玉强,李丽,王琪,等.典型铬渣污染场地的污染状况与综合整治对策[J].环境科学研究,2009,22(2):248-253.
    [105]罗建峰,曲东.青海海北化工厂铬渣堆积场土壤铬污染状况研究[J].西北农业学报,2006,06:244-247.
    [106] Loyaux-Lawniczak Stephanie, Lecomte Paul, Ehrhardt, Jean-Jacques. Behavior ofhexavalent chromium in a polluted groundwater: Redox processes and immobilization insoils[J]. Environmental Science and Technology,2001,35(7):1350-1357.
    [107]罗建峰.青海海北化工厂铬渣堆积场土壤中铬的环境化学行为研究[D].西北农林科技大学硕士学位论文,2006.
    [108] Garnier, J., et al.. Solid speciation and availability of chromium in ultramafic soils fromNiquelandia, Brazil[J]. Journal of Geochemical Exploration,2006,88(1-3SPEC. ISS.):206-209.
    [109]赵沁娜,徐启新,杨凯.潜在生态危害指数法在典型污染行业土壤污染评价中的应用[J].华东师范大学学报,2005,1:111-116.
    [110]贾振邦,梁涛,林健枝.香港河流重金属污染及潜在生态危害研究[J].北京大学学报,1997,33(4):485-492.
    [111]杨秀红,胡振琪,张学礼.粉煤灰充填复垦土地风险评价及稳定化修复技术[J].科技导报,2006,24(3):33-35.
    [112]国家环保总局,《污染场地风险评估技术导则》(征求意见稿)编制说明[S].2009.
    [113]武红叶,曾明.六价铬致癌机制的研究进展[J].癌变·畸变·突变,2006,18(6):491-493.
    [114]易超,于素芳.六价铬化合物致肺癌机制的研究进展[J].中国公共卫生,2006,22(4):497-498.
    [115]国家环境保护总局,危废鉴别标准通则[S].2007.
    [116]国家环境保护总局,腐蚀性鉴别标准(GB5085.1-2007)[S].2007.
    [117]国家环境保护总局,危险废物鉴别标准浸出毒性鉴别[S].2007.
    [118]赵晶,汤旭.不同粒径土壤中重金属的分布规律[J].四川环境,2011,30(4):17-20.
    [119]严继民,张启元,高敬琮.吸附与凝聚[M].1986,北京:科学出版社.
    [120]汪政德,张茂林,梅海燕,等.毛细凝聚和吸附-脱附回路的物理化学解释[J].新疆石油地质,2002.23(3):233-235.
    [121]朱月珍.影响土壤中铬迁移转化的几个因素[J].土壤学报,1985,04:390-393.
    [122]龙腾发,柴立元,傅海洋.铬渣浸出毒性试验研究[J].环境工程,2004,22:71-73.
    [123]郝汉舟,靳孟贵,汪丙国.铬在不同粒径土壤中的分布[J].湖北农业科学,2007,46(4):544-546.
    [124]陈玲.有机质去除对名山河流域土壤粒径吸附铬(VI)的影响[D].四川农业大学硕士学位论文,2011
    [125]吴平霄.粘土矿物材料与环境修复[M].2004,北京:化学工业出版社.
    [126]张其土.无机材料科学基础[M].2007,上海:华东理工大学出版社.
    [127]闫金定,崔洪,杨建丽,等.热重质谱联用研究兖州煤的热解行为[J].中国矿业大学学报,2003,32(3):311-315.
    [128] A. Conesa J, et al.. Kinetic study of the pyrolysis of sewage sludge[J]. Waste Management&Research,1997,15(3):293-305.
    [129] B. Batchelor. Overview of waste stabilization with cement[J]. Waste Management,2006,26(7):689-698.
    [130] R. Malviya, R.Chaudhary. Factors affecting hazardous waste solidification/stabilization: areview[J]. Journal of Hazardous Materials,2006,137(1):267-276.
    [131] X. D. Li, C. S. Poon, H. Sun, et al.. Heavy metal speciation and leaching behaviors incement based solidified/stabilized waste materials[J]. Journal of Hazardous Materials,2001,82(3):215-230.
    [132] C.A. Johnson, M. Kersten, F. Ziegler, et al.. Leaching behaviour and solubility-controllingsolid phases of heavy metals in municipal solid waste incinerator ash[J]. Waste Management,1996,16(1-3):129-134.
    [133]贾晓蕾.粉煤灰掺用量对水泥固化/稳定重金属污染底泥的影响[J].安全与环境学报,2010,10(5):50-54.
    [134] Trauner, E.J.. Sludge ash bricks fired to above and below ash-vitrifying temperature[J].Envy. Eng. Div. ASCE,1997,191(3):506-519.
    [135]王征,郭玉顺.粉煤灰高强陶粒烧胀规律的试验研究[J].新型建筑材料,2002,02:10-14.
    [136]郭玉顺,王征,丁建彤.粉煤灰烧胀陶粒的化学成分、膨胀气体与性能关系的研究[C].中国硅酸盐学会2003年学术年会.2003.
    [137]高礼雄,胡曙光,丁庆军.高强粉煤灰陶粒的研制及其混凝土试配[J].桂林工学院学报,2002,02:171-173.
    [138]高礼雄,丁庆军,王发洲.粉煤灰陶粒的研制[J].河南建材,2002,01:3-4.
    [139]姚雪燕.城市生活垃圾陶粒化试验研究[D].重庆大学硕士学位论文,2010.
    [140]余民锋,沙晨光.烧结粉煤灰陶粒的开发与研究应用[J].河南建材,2011,03:156-158.
    [141]王伟,周华强.粉煤灰对环境的危害及其综合利用[J].建材技术与应用,2007,05:4-6.
    [142]彭敏.粉煤灰的形貌、组成分析及其应用[D].湘潭大学硕士学位论文,2004.
    [143]冯朝朝,韩志婷,张志义,刘磊.煤矿固体废物——煤矸石的资源化利用[J].煤炭科技,2010,21(9):5-7.
    [144]谢晓旺.煤矸石及其综合利用[J].环境科技,2009,21(1):121-123.
    [145]冯李文.均匀设计法及其在新产品开发中的应用[J].川化,2005(2):18-23.
    [146]王炳功,王煜.论烧胀型粉煤灰陶粒[J].粉煤灰综合利用,2002,3:40.
    [147]周亚栋.无机材料物理化学[M].1994,武汉:武汉工业大学出版社.
    [148]王培铭,许乾慰.材料研究方法[M].2005,北京:科学出版社.
    [149]胡荣祖,高胜利,赵凤起.热分析动力学[M].2008,北京:科学出版社.
    [150]来克立,李何.铬渣的无害化处理及在建材工业上的应用[J].辽宁城乡环境科技,2006,26(4):59-60+64.
    [151]王兴润.污泥制陶粒技术可行性分析与烧结机理研究[J].环境科学研究,2008,21(6):80-84.
    [152]王兴润.城市污水厂污泥烧结制陶粒的可行性研究[J].中国给水排水,2007,23(7):11-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700