用户名: 密码: 验证码:
低浓度甲烷流向变换催化燃烧实验研究及模型化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对煤层气中低浓度甲烷(Vol.%≤1%)流向变换催化燃烧脱除及其化学能回收,系统开展了以堇青石为载体的、甲烷催化燃烧整体式催化剂制备、性能表征及动力学特性等方面的研究;以所研制的、性能较优的催化剂为基础,深入开展了带有中间换热装置的低浓度甲烷流向变换催化燃烧反应器性能模拟研究;在山西潞安集团五阳煤矿完成了煤矿通风乏气处理量为1000Nm~3/h的流向变换催化燃烧中试实验。所取得的结论为实现低浓度甲烷煤层气能源的高效、洁净利用奠定了应用和技术基础。
     酸蚀预处理和涂敷层改性对γ-AL_2O_3/COR(堇青石)整体式复合载体本体结构及其涂敷能力影响的实验结果表明:在满足机械强度的要求下,经过适宜的酸处理(10%的HNO_3浸渍堇青石2h)可以提高堇青石载体与涂层载体的结合力;选择溶胶固含量30wt%,n(H~+)/n(AlOOH)=0.08的制备条件配制过渡涂层AlOOH溶胶,经涂覆层改性后的堇青石载体比表面积由0.81m2/g增至50m2/g,且孔径分布在0nm~20nm之间,有利于活性组分在载体表面的分散。
     以上述改性γ-AL_2O_3/COR为载体,制备了一系列贵金属Pd、双金属Pd-Co和铜锰复合氧化物为活性组分的低浓度甲烷催化燃烧整体式催化剂,并以实验评价和SEM、ICP-AES、XPS、N_2-吸脱附、TPR/O等表征相结合的方式对所制备催化剂进行了性能特性考察。
     在所考察的四种不同Pd负载量的贵金属整体式催化剂中,以Pd负载量为0.1%时,活性组分Pd~0/PdO在载体表面分散最为均匀,且Pd~0和PdO的配比最优,有利于晶格氧在PdO→Pd→PdO氧化还原过程中的流动,进而提高催化剂的活性。在430oC和20000h~(-1)的空速条件下,甲烷转化率可达90%以上。
     虽然0.1%Pd负载型整体式催化剂具有很好的活性,但对于甲烷催化燃烧这一结构敏感反应,存在活性组分在载体表面分散度越好,越容易烧结,并最终导致催化剂热稳定性变差的问题,因此,为了充分提高催化剂活性相和载体之间的协同效应,本文采用掺杂过渡金属Co的方法对负载型贵金属催化剂进行改性。结果表明:适量Co元素的添加可以与载体形成比较稳定的晶体簇CoAl2O4,从而改善活性相和载体间的结合力,保护Pd0/PdO活性位不被烧结;同时,Co-O键的断裂为活性相Pd0/PdO提供了更多的晶格氧(O~(2-)),从而使催化剂氧化能力进一步提高。其中,以0.1%Pd-0.25%Co/γ-AL_2O_3/COR整体式催化剂性能最佳,在410oC和20000h~(-1)的空速条件下,甲烷转化率即可达90%以上,且热稳定性也相对提高。
     贵金属催化剂对低浓度甲烷催化燃烧具有较高活性,但成本偏高,以非贵金属作为替代具有重要意义。本研究中采用铜锰复合氧化物来替代贵金属作为甲烷催化燃烧活性组分,制备了一系列Cu-Mn-O/γ-AL_2O_3/COR整体式催化剂,系统考察了制备工艺、活性组分负载量及辅助助剂等因素对催化剂性能的影响。表征和评价结果表明:采用等体积浸渍法制备的负载量为12%的催化剂催化效果相对较好。在650°C和GHSV=20000h~(-1)反应条件下,甲烷转化率可达80%以上。进而,为了提高铜锰复合氧化物整体式催化剂对甲烷的低温催化燃烧性能,以稀有金属氧化物CeO_2、ZrO_2、La_2O_3和CeO_2-ZrO_2为助剂,考察了加助剂对催化剂性能的影响。结果表明:稀有金属氧化物的添加调节了催化剂表面孔径分布,不仅提高了催化剂比表面积,而且使反应物气体在催化剂表面的扩散吸附与甲烷催化燃烧反应更好的耦合;此外,助剂的添加使活性组分和载体间的电子重新分布,从而提高了活性位上晶格氧的流动性,进而有利于提高催化剂的氧化能力。其中以添加ZrO_2的效果更佳,在570°C,空速20000h-1的条件下,甲烷转化率达90%以上。
     对上述分别以Pd、Pd-Co和铜锰复合氧化物为活性组分制备的三种优选催化剂性能对比可见,在甲烷初始浓度1.0vol.%、空速20000h~(-1)和甲烷转化率90%工况下,三者所需温度依次为:0.1%Pd-0.25%Co/γ-AL_2O_3/COR (410°C)<0.1%Pd/γ-AL_2O_3/COR(430°C)<12%Cu-Mn-Zr-O/γ-AL_2O_3/COR (570°C)。因此,0.1%Pd-0.25%Co/γ-AL_2O_3/COR具有比其他两种催化剂更高的低温活性,基于低能耗和自热平衡上的考虑,本文随后的反应器性能模拟和动力学实验将基于该催化剂进行。
     基于所制备的0.1%Pd-0.25%Co/γ-AL_2O_3/COR整体式催化剂,通过在线质谱动态响应实验,结合催化剂表征分析结果,对该催化剂上甲烷催化燃烧反应机理和动态行为特性进行了研究。结果表明,CH_4在催化剂表面快速形成吸附态CH_3~+,在O2过量的反应条件下,CH_3~+同时与晶格氧(O~(2-))和气相氧(O_2)发生氧化反应,并且气相氧(O2)补充表面晶格氧(O~(2-))的消耗。在贫燃富氧的反应条件下,甲烷被完全氧化,反应产物只有CO_2和H_2O,符合Mars and van-Krevelen氧化还原机理。根据该氧化还原机理,建立了在Pd-Co/γ-Al_2O_3/COR催化剂上的由吸附态甲烷和气相氧表面反应控制的甲烷催化燃烧反应速率模型。
     采用等温积分反应器(Φ10×2mm),在常压、温度范围350°C~450°C、空速40000h~(-1)~50000h~(-1)和甲烷体积浓度0.1%~1%的条件下,对Pd-Co/γ-Al_2O_3/COR催化剂上低浓度甲烷催化燃烧本征动力学进行了系统的实验研究。并基于所建立的、吸附态甲烷和气相氧表面反应为控制步骤的甲烷催化燃烧反应速率模型,以单纯形法对动力学模型参数进行优化估值,最终建立了与实验数据良好相容的、低浓度甲烷催化燃烧双曲型本征动力学模型。
     针对煤层气中低浓度甲烷的催化燃烧处理和化学能回收,设计了一种带有中间换热装置的甲烷流向变换反应器,并建立了其行为描述的一维非均相动态数学模型。以该模型为基础,对1000Nm3/h煤层气乏风处理能力的中试规模装置进行了模拟研究,系统考察了换向周期、伴热层温度和进料浓度等工况条件对反应器性能的影响。结果表明,换向周期是影响反应器性能的重要操作参数,过长的换向周期将会导致反应器“熄火”,而过短的换向周期不利于反应器自热平衡操作;选择适宜的伴热温度既可以保证反应器的良好自热平衡操作,又能够将能源有效利用;在所考察的范围内,较低的甲烷浓度(Vol.%≤0.5%)会导致反应器“熄火”。因此,工况条件的优化控制既可以保障催化反应器处于良好的操作状况,同时对于节能降耗和降低操作费用也是大有裨益的。
     以上述模拟研究结果为基础,设计并在山西潞安集团五阳煤矿搭建了处理量为1000Nm~3/h的、带有中间取热的流向变换催化燃烧中试装置。中试实验结果表明,在煤矿通风中甲烷浓度只有0.34%~0.54%的条件下,经过适当的反应气预热,并选择合适的周期变换时间,流向变换反应器在较低的能耗条件下可维持自热。矿井通风气经流向变换催化燃烧后,排放到大气中的甲烷含量低于0.06%。
     以上结果为流向变换强制对流操作技术在煤矿乏风中的推广应用提供了应用基础和技术参考。
In this work, reverse flow catalytic combustion of lean methane inmine ventilation air (≤1.0%CH_4) was researched for exhaust removal andrecycling of chemical energy. The preparation, characterization anddynamic characteristics of catalysts with cordierite carrier for methanecombustion were studied systematically. Based on the optimal catalyst,depth research about simulation of lean methane reverse flow catalyticcoumbusiton reacor with heat exchanger in the middle of the reactor wascarried out. A pilot plant (processing capacity of1000Nm3/h) of leanmethane reverse flow catalytic combusiton was designed and constrctedat Lu’an Group Wuyang Coal Mine. The obtained conclusion can providetechnical basis for the efficient and clean use of the energy of lowconcentrations of methane.
     The modified experimental results of acid treatment and washcoatloading for γ-AL_2O_3/Cordierite indicated that acid treatment (impregnatedcordierite in10%HNO_3for2h) can improve the adhesion capacity ofcordierite carrier and washcoat carrier under the premise of mechanicalstrength; AlOOH gel prepared on the condition of n(H~+)/n(AlOOH)0.08, solid content30%, after coating modified, the surface ofγ-Al_2O_3/cordierite was improved from0.81m2/g to50m2/g, and the poresize distribution of the support was between0nm to20nm, which wasfavorable to improve the dispersion of the active component on thesurface of the support.
     With the γ-Al_2O_3/cordierite above as carrier, a series of γ-Al_2O_3/CORsupported catalysts applied to lean methane combustion were preparedwhich the active component include monometallic palladium (Pd),bimetallic cobalt (Co) and palladium (Pd), and Cu-Mn complex oxides.The catalysts were characterized by SEM,ICP-AES,XPS,TPR/O andN_2-adsorption-desorption.
     Compared four different Pd loading of monolithic catalyst, on thecatalyst surface of0.1%Pd loading, the active phase of Pd0/PdO scatteredevenly, and the ratio of Pd~0and PdO achieved better, which wasconducive to the mobility of lattice oxygen on the Pd~O→Pd→PdO redoxprocess, thereby increased the activity of the catalyst. On the condition of430oC and GHSV20000h~(-1), the methane conversion was over90%.
     The methane catalytic combustion on the supported catalyst isgenerally considered to belong to the structure-sensitive reaction: betterdispersion of active component on the surface of the carrier, easier toagglomerate, leading to poor thermal stability. Although the0.1%Pdloading monolithic catalyst performed excellent in activity, in order to improve the synergies between active phase and carrier, the transitionmetals Co was used to modify the supported Pd catalysts. The resultsshowed that, appropriate amount of Co addition can form stable crystalcluster CoAl_2O_4on the catalysts surface which can improve the bindingforce between the active phase and carrier to protect Pd0/PdO active sitenot to be sintered; on the other hand, the Co-O bond cleavage can providemore lattice oxygen (O~(2-)) to the active phase of Pd0and Pd~O, improvedthe oxidative capacity of the catalyst. Among of which, the0.1%Pd-0.25%Co/γ-Al_2O_3/COR catalyst performed best, on the conditionof410oC and GHSV=20000h~(-1), methane conversion was over90%, andthermal stability of the catalyst was relative increased.
     Taking into account the cost of catalysts, the Cu-Mn complex oxideswas used to instead of Pd as the active component for methanecombustion. And the factors which influenced the catalytic performancesuch as active component loading method, active component loading andadditives were investigated. Characterization and evaluation resultsshowed that the the catalyst prepared by impregnation method with theloading12%performed better for methane combustion. On the conditionof650oC and GHSV=20000h~(-1), methane conversion was over80%.Furthermore, in order to improve the low-temperature catalyticcombustion performance of Cu-Mn composite oxide monolithic catalysts,the influence of promoters such as CeO_2、ZrO_2、La_2O_3&CeO_2-ZrO_2 additives was investigated. The results indicated that with theintroduction of CeO_2、ZrO_2、La_2O_3&CeO_2-ZrO_2as the promoter toCu-Mn composite oxide monolithic catalysts, the specific surface area ofthe catalysts increased obviously, resulting in an enhancement of activecomponent dispersion and oxygen species concentration on the catalystsurface. Therefore, the surface oxidation reactivity of the catalysts isimproved. Besides, the pore structure of the catalysts was also adjustedwell, which was beneficial for matching the diffusion-reaction couplingbehavior on the catalyst. In addition, the promoter can change theinteraction between the active phase and the carrier, re-distribute theelectronic around Cu, Mn, Al and O, improve the mobility of latticeoxygen, and enhance the oxidation of the catalyst. Among the testedpromoters, ZrO_2shows the best promoting effect. The methaneconversion over Cu-Mn-Zr-O/γ-Al_2O_3/COR monolithic catalyst is up to90%under the conditions of570oC and GHSV=20000h~(–1).
     Compared the three different active components of the monolithiccatalysts for lean methane combustionon the condition of space velocity20000h-1and methane concentration1.0vol.%, these catalysts formethane completely oxided with desired temperature:0.1%Pd-0.25%Co/γ-Al_2O_3/COR<0.1%Pd/γ-Al_2O_3/COR<12%Cu-Mn--Zr-O/γ-Al_2O_3/COR。In order to reduce the energy consumption of leanmethane catalytic combustion in a reverse flow reactor,0.1%Pd-0.25%Co composition of monolithic catalyst was choosed to use for simulation andexperimental of pilot scale.
     Based on transient responses to step-change in feed composition, themechanism and the dynamic characteristics of the methane combustionon0.1%Pd-0.25%Co/γ-Al_2O_3/COR catalyst were reasearched. It showedthat the adsorbed CH~(3+)was oxidized both by the lattice oxygen (O~(2-)) andgas oxygen (O_2). And the consumed lattice oxygen (O~(2-)) was renewed bygas oxygen (O_2). On the condition of lean methane and superfluousoxygen, methane was completely oxidized; the reaction products wereCO_2and H_2O only. Methane catalytic combustion on the catalystcomplied with the Mars and van-Krevelen redox mechanism. Accordingto the redox mechanism, the intrinsic kinetic models of catalyticcombustion of methane over Pd-Co/γ-Al_2O_3/COR catalysts weredeveloped with surface-reaction of CH_3~+and gas oxygen controlassumption.
     The intrinsic kinetic experiments of catalytic combustion of methaneover Pd-Co/γ-Al_2O_3/COR catalysts were undertaken in an integralmicro-recator(Φ10×2mm) on the condition of atmospheric pressure,temperature350°C~450°C, space velocity40000h-1to50000h~(-1), methanevolume concentration0.1%~1%. Before the experiments, the influence ofinternal diffusion、external diffusion and the impact of heat transfer wereeliminated. Model parameters of surface-reaction of CH_3~+and gas oxygen control assumption were estimated with Simolex methods. Statistical testshowed that the model was highly accepted.
     At the background of mine ventilation air purification, andmonolithic catalysts used in the flow reactor, a one-dimensionalheterogeneous dynamic mathematical model for RFR was established, inorder to simulatie the pilot-scale device with handling capacity of1000Nm3/h CBM. The influence of switch time, working conditions ofthe adiabatic layer and feed concentration on the reactor performancewere investigated. The results showed that the switch time was animportant operating parameter for the impact of reactor performance, toolong for the switch time would cause the reactor to "turn off"; too shortswitch time would not be conducive to the reactor heat balance operation.The appropriate choice of adiabatic layer temperature can not only ensuregood reactor thermal equilibrium operation, but also to the efficient use ofenergy. In the range of inspection, reactor would be"extinct" at the lowerconcentration of methane (Vol.%≤0.5%). Therefore, the optimization ofoperating conditions control could protect the catalytic reactor is in goodworking condition, while saving energy and reducing operating costs wasof great benefit.
     According to the simulation results, a pilot plant (processingcapacity of1000Nm~3/h) with heat exchanger was designed and constrctedat Lu’an Group Wuyang Coal Mine. The pilot experimental results showed that, on the condition of methane concentration0.34%~0.54%inmine ventilation air, the reactor can operate normally with appropriatepreheat and proper switch time. The methane content of emissions waslower than0.06%after reverse flow catalytic combustion.
     The experimental and simulation result can provide technicalsupport for the application of RFR in mine ventilation air.
引文
[1] Wuebbles D J, Hayhoe K. Atmospheric methane and global change [J]. Earth-ScienceReviews,2002,57(3-4):177-210
    [2]杨俊辉.矿井通风瓦斯综合利用[J].中国煤层气,2012,(01):43-46
    [3]刘文革,张斌川,刘馨,孙庆刚,窦晓冬.中国煤矿区甲烷零排放[J].中国煤层气,2005,02:6-9
    [4]徐龙君,鲜学福,刘成伦.煤层气污染控制及其资源化利用的研讨[J].矿业安全与环保,2000,(02):6-8
    [5]宫诚.国外煤层气发展现状[J].中国煤炭,2005,03:77-78
    [6]李旭.世界煤层气开发利用现状[J].煤炭加工与综合利用,2006,06:41-45
    [7] Komatsuzaki K, Murayama Y, Giambarella U, Ogata E, Seino S, Nishimoto I. A novelsystem that reports the G-proteins linked to a given receptor: a study of type3somatostatin receptor [J]. FEBS Letters,1997,406(1–2):165-170
    [8]周晓红,李豪峰.煤层气产业发展战略与相关政策问题[J].中国能源,2001,(07):15-17
    [9]黄仲涛,吴国华.强制振荡条件下的催化反应过程和机理[J].化工进展,1987,(05):10-15
    [10]李成岳,吴慧雄.化学反应器人为非稳态操作特性的研究[M].北京:北京化工大学,2004
    [11]安娜.流向变换催化燃烧及其控制技术的应用基础研究[D].北京化工大学,2003
    [12]牛学坤,李成岳,陈标华,周集义.流向变换催化燃烧反应器的热波特性[J].化工学报,2003,(08):1087-1092
    [13]牛学坤,陈标华,李成岳,周集义.流向变换催化燃烧反应器的可操作性[J].化工学报,2003,(09):1235-1239
    [14]牛学坤.流向变换催化燃烧空气净化过程的模型化研究[D].北京化工大学,2003
    [15] Ben-Tullilah M, Alajem E, Gal R, Sheintuch M. Flow-rate effects in flow-reversalreactors: experiments, simulations and approximations [J]. Chemical EngineeringScience,2003,58(7):1135-1146
    [16] Bobrova L, Slavinskaya E, Noskov A, Matros Y. Unsteady-state performance of NOcatalytic reduction by NHx3[J]. Reaction Kinetics and Catalysis Letters,1988,37(2):267-272
    [17] Haynes T N, Georgakis C, Caram H S. The design of reverse flow reactors for catalyticcombustion systems [J]. Chemical Engineering Science,1995,50(3):401-416
    [18] Matros Y S, Noskov A S, Chumachenko V A, Goldman O V. Theory and application ofunsteady catalytic detoxication of effluent gases from sulfur dioxide, nitrogen oxidesand organic compounds [J]. Chemical Engineering Science,1988,43(8):2061-2066
    [19] Sharma R K, Zhou B, Tong S, Chuang K T. Catalytic Destruction of Volatile OrganicCompounds Using Supported Platinum and Palladium Hydrophobic Catalysts [J].Industrial&Engineering Chemistry Research,1995,34(12):4310-4317
    [20] Züfle H, Turek T. Catalytic combustion in a reactor with periodic flow reversal. Part1.Experimental results [J]. Chemical Engineering and Processing: Process Intensification,1997,36(5):327-339
    [21] Züfle H, Turek T. Catalytic combustion in a reactor with periodic flow reversal. Part2.Steady-state reactor model [J]. Chemical Engineering and Processing: ProcessIntensification,1997,36(5):341-352
    [22] Noskov A S, Bobrova L N, Matros Y S. Reverse-process for NOmination [J]. Catalysis Today,1993,17(1-2):293-300x-off gasesdeconta[23] Frederick G. Cottrell, W. D. C. Purifying gases and apparatus [P]: U.S.2171733,1938
    [24] Boreskov G K, Matros Y U S. Unsteady-State Performance of Heterogeneous CatalyticReactions [J]. Catalysis Reviews,1983,25(4):551-590
    [25] Beld van de L, Westerterp K R. Operation of a catalytic reverse flow reactor for thepurification of air contaminated with volatile organic compounds [J]. Canadian Journalof Chemical Engineering,1997,75(5):975-983
    [26] Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Flow reversal reactor for thecatalytic combustion of lean methane mixtures [J]. Catalysis Today,2003,83(1-4):59-69
    [27] Salomons S, Hayes R E, Poirier M, Sapoundjiev H. Modelling a reverse flow reactor forthe catalytic combustion of fugitive methane emissions [J]. Computers ChemicalEngineering,2004,28(9):1599-1610
    [28] van Sint Annaland M, Nijssen R C. A novel reverse flow reactor coupling endothermicand exothermic reactions: an experimental study [J]. Chemical Engineering Science,2002,57(22-23):4967-4985
    [29] van Sint Annaland M, Scholts H A R, Kuipers J A M, van Swaaij W P M. A novelreverse flow reactor coupling endothermic and exothermic reactions. Part I: comparisonof reactor configurations for irreversible endothermic reactions [J]. ChemicalEngineering Science,2002,57(5):833-854
    [30] van Sint Annaland M, Scholts H A R, Kuipers J A M, van Swaaij W P M. A novelreverse flow reactor coupling endothermic and exothermic reactions: Part II: Sequentialreactor configuration for reversible endothermic reactions [J]. Chemical EngineeringScience,2002,57(5):855-872
    [31] Neumann D, Veser G. Catalytic partial oxidation of methane in a high-temperaturereverse-flow reactor [J]. AIChE Journal,2005,51(1):210-223
    [32] Neophytides S G, Froment G F. A bench scale study of reversed flow methanol synthesis[J]. Industrial&Engineering Chemistry Research,1992,31(7):1583-1589
    [33]陈晓春,李成岳.流向变换强制周期操作合成甲醇[J].现代化工,2000,(07):43-45
    [34]吴慧雄,李成岳.二氧化硫强制动态氧化过程的模型化(Ⅳ)——模型参数的修正与单级反应器的性能预测[J].化工学报,1999,(01):31-38
    [35]吴慧雄,卢洪,李成岳.二氧化硫强制动态氧化过程的模型化(Ⅲ)催化剂装量升级的模试考察[J].化工学报,1998,(05):566-573
    [36]吴慧雄,张树增,李成岳,傅举孚.二氧化硫强制动态氧化过程的模型化(Ⅰ)——钒催化剂固定床的轴向传热特性[J].化工学报,1995,(04):416-423
    [37]张树增,吴慧雄,李成岳.二氧化硫强制动态氧化过程的模型化(Ⅱ)——模型模拟与参数分析[J].化工学报,1995,(04):424-430
    [38]王辉,肖博文,袁渭康.中间移热式非定态SO2转化器(Ⅱ)——两点移热式转化器的控制策略[J].化工学报,1998,(04):455-461
    [39]王辉,肖博文,袁渭康.中间移热式非定态SO2转化器(Ⅰ)——转化器性能与操作条件的关系[J].化工学报,1998,(04):447-454
    [40]韦军,孙欣欣,张金昌,李成岳.丙烯腈尾气流向变换催化燃烧的实验研究[J].化学反应工程与工艺,2005,(03):199-204
    [41] Kushwaha A, Poirier M, Sapoundjiev H, Hayes R E. Effect of reactor internal propertieson the performance of a flow reversal catalytic reactor for methane combustion [J].Chemical Engineering Science,2004,59(19):4081-4093
    [42] Matros Y S, Bunimovich G A. Reverse-flow operation in fixed bed catalytic reactors [J].Catalysis Reviews: Science and Engineering,1996,38(1):1-68
    [43] Smith W R, Bobrova L N. Mathematical modelling of a reverse flow reactor withcatalytic surface dynamics [J]. Chemical Engineering Science,2002,57(3):393-407
    [44] Chen X C, Li C Y, L. Silveston P. Modeling of a reverse flow reactor for methanolsynthesis [J]. Chinese Journal of Chemical Engineering,2003,11(1):9-14
    [45] Edouard D, Hammouri H, Zhou X G. Control of a reverse flow reactor for VOCcombustion [J]. Chemical Engineering Science,2005,60(6):1661-1672
    [46] Gosiewski K. Efficiency of heat recovery versus maximum catalyst temperature in areverse-flow combustion of methane [J]. Chemical Engineering Journal,2005,107(1-3):19-25
    [47] Marín P, Hevia M A G, Ordó ez S, Díez F V. Combustion of methane lean mixtures inreverse flow reactors: Comparison between packed and structured catalyst beds [J].Catalysis Today,2005,105(3-4):701-708
    [48] Balaji S, Fuxman A, Lakshminarayanan S, Forbes J F, Hayes R E. Repetitive modelpredictive control of a reverse flow reactor [J]. Chemical Engineering Science,2007,62(8):2154-2167
    [49] Davy J, F.R.S. M D. The collected work of Sir Humphrey Davy [M]. London: SmithElder and CO. Cornhill,1839
    [50]陈信华.催化燃烧技术进展[J].现代化工,1991,(05):19-24
    [51]马温亮.催化燃烧技术基本原理进展及其应用的研究[J].科技资讯,2007,(01):6
    [52]何毅,王华,李光明,赵修华,赵建夫.有机废气催化燃烧技术[J].江苏环境科技,2004,(01):35-38
    [53] Civera A, Pavese M, Saracco G, Specchia V. Combustion synthesis of perovskite-typecatalysts for natural gas combustion [J]. Catalysis Today,2003,83(1-4):199-211
    [54]周继军,彭伟功.氮氧化物的生成机理及控制技术[J].内江科技,2006,(06):127-128
    [55] Zwinkels M F M, J r s S G, Menon P G, Griffin T A. Catalytic Materials forHigh-Temperature Combustion [J]. Catalysis Reviews,1993,35(3):319-358
    [56]杜娟,田成文,范庆伟.催化燃烧技术研究进展及其应用[J].节能,2006,(02):37-39
    [57]梁克民,王惠文,赵志芳,张江,宋永吉.催化燃烧消除有毒和污染气体[J].化工进展,2002,(07):514-517
    [58] Groppi G, Tronconi E, Forzatti P. Mathematical Models of Catalytic Combustors [J].Catalysis Reviews,1999,41(2):227-254
    [59] Pfefferle L D, Pfefferle W C. Catalysis in Combustion [J]. Catalysis Reviews,1987,29(2-3):219-267
    [60]韩维屏.催化化学导论[M].北京:中国科学技术出版社,2003
    [61] Kim J P, Schnell U, Scheffknecht G. Comparison of Different Global ReactionMechanisms for MILD Combustion of Natural Gas [J]. Combustion Science andTechnology,2008,180(4):565-592
    [62]史春开.甲烷低温燃烧反应分子筛负载Pd催化剂[D].厦门大学,2003
    [63] Thevenin P O, Ersson A G, Ku ar H M J, Menon P G, J r s S G. Deactivation of hightemperature combustion catalysts [J]. Applied Catalysis A: General,2001,212(1-2):189-197
    [64]严河清,张甜,王鄂凤,白延利.甲烷催化燃烧催化剂的研究进展[J].武汉大学学报(理学版),2005,(02):161-166
    [65]王军威,田志坚,徐金光,徐云鹏,徐竹生,林励吾.甲烷高温燃烧催化剂研究进展[J].化学进展,2003,(03):242-248
    [66]陈明,王新,焦文玲,王延连.甲烷催化燃烧机理及催化剂研究进展[J].煤气与热力,2010,(11):34-37
    [67]陆富生.甲烷催化燃烧催化剂催化理论与应用研究进展[J].化工时刊,2009,(08):52-56
    [68] Eguchi K, Arai H. Low temperature oxidation of methane over Pd-basedcatalysts—effect of support oxide on the combustion activity [J]. Applied Catalysis A:General,2001,222(1-2):359-367
    [69] Thevenin P O, Alcalde A, Pettersson L J, J r s S G, Fierro J L G. Catalytic combustionof methane over cerium-doped palladium catalysts [J]. Journal of Catalysis,2003,215(1):78-86
    [70] Yamamoto H, Uchida H. Oxidation of methane over Pt and Pd supported on alumina inlean-burn natural-gas engine exhaust [J]. Catalysis Today,1998,45(1-4):147-151
    [71] Requies J, Alvarez-Galvan M C, Barrio V L, Arias P L, Cambra J F, Güemez M B,Manrique Carrera A, de la Pe a O'Shea V A, Fierro J L G. Palladium-manganesecatalysts supported on monolith systems for methane combustion [J]. Applied CatalysisB: Environmental,2008,79(2):122-131
    [72] Larsson P O, Berggren H, Andersson A, Augustsson O. Supported metal oxides forcatalytic combustion of CO and VOCs emissions: preparation of titania overlayers on amacroporous support [J]. Catalysis Today,1997,35(1-2):137-144
    [73] Park P W, Ledford J S. The influence of surface structure on the catalytic activity ofalumina supported copper oxide catalysts. Oxidation of carbon monoxide and methane[J]. Applied Catalysis B: Environmental,1998,15(3-4):221-231
    [74]应卫勇,龟山秀雄.金属壁与催化层一体化汽车尾气净化催化剂[J].化学世界,2000,(04):185-187+201
    [75]王珂,林志娇,江志东.甲烷催化燃烧整体型催化剂研究进展[J].天然气化工(C1化学与化工),2009,(01):71-78
    [76]唐伟,胡晓东,宣逸安.掺铈的铜锰钴复合氧化物催化剂对甲苯催化燃烧的性能研究[J].能源环境保护,2005,(01):35-37
    [77]李大光,章弘毅,张鹤丰,郭清泉,曹明澈.钙钛矿型复合氧化物的研究与应用进展[J].材料导报,2006,(S1):296-299
    [78]徐占林,赵丽娜,王良,贾树勇,甄开吉.新型功能材料六铝酸盐复合氧化物研究进展[J].功能材料,2006,(02):178-181+184
    [79]孙诚,吴东方,周建成.六铝酸盐型天然气燃烧催化剂研究进展[J].精细石油化工进展,2007,(12):16-21
    [80]张涯远,蒋政,张世超,朱庆山. La0.8Sr0.2FeMn1.5Al9.5O19-δ六铝酸盐气溶胶催化剂的催化性能[J].物理化学学报,2008,(02):211-216
    [81]赵阳,郑亚锋,辛峰.整体式催化剂性能及应用的研究进展[J].化学反应工程与工艺,2004,(04):357-362
    [82] Avila P, Montes M, Miró E E. Monolithic reactors for environmental applications: Areview on preparation technologies [J]. Chemical Engineering Journal,2005,109(1-3):11-36
    [83]张益群,余立挺,马建新.构件化催化剂的研究现状与应用[J].工业催化,2003,(01):1-7
    [84]高陇桥.蜂窝陶瓷的应用和进展[J].真空电子技术,2003,(03):72-73+79
    [85]杜永娟,李萍华,吴文艳,胡丽华.降低蜂窝状堇青石陶瓷载体热膨胀的途径[J].耐火材料,1999,(06):351-354
    [86]周燕.堇青石质蜂窝陶瓷载体的研究[D].武汉理工大学,2002
    [87] Elmer T H. Ultra-low thermal expansion ceramic articles[P]:U.S.3958058,1976
    [88] Beal D M,Merkel G A. Fabrication of low thermal expansion, high strength cordieritestructures[P]: U.S.6319870,2001
    [89]白佳海,郭露村.酸处理对堇青石质蜂窝陶瓷性能的影响[J].中国陶瓷工业,2005,(01):1-4
    [90]华金铭,郑起,魏可镁,林性贻.酸蚀预处理对蜂窝状堇青石及其不同方法涂敷氧化铝涂层的影响[J].分子催化,2006,(06):550-555
    [91]陈波.新型固体酸催化剂的设计、制备及其在烷基化反应中的应用研究[D].华东师范大学,2004
    [92]姚杰.结构型催化氧化催化剂及在有机污染物降解中的应用[D].哈尔滨工业大学,2009
    [93]王春永.堇青石、氧化铝为载体的负载型钯催化剂对丙酮催化氧化反应性能的研究
    [D].浙江大学,2006
    [94]武斌,沈岳年,胡瑞生.蜂窝状堇青石载体表面涂层及其相关燃烧催化剂的性能研究[J].内蒙古大学学报(自然科学版),2000,(04):398-401
    [95]付会娟,金月昶,康久常.蜂窝陶瓷载体上氧化铝涂层的制备[J].当代化工,2006,(05):289-292+296
    [96]卢冠忠,郭耘,郭杨龙.稀土在化石燃料催化燃烧中的作用及其研究[J].中国基础科学,2003,(04):21-25
    [97] Wang H, Chen Y, Zhang Q, Zhu Q, Gong M, Zhao M. Catalytic methanol decompositionto carbon monoxide and hydrogen over Pd/CeO2-ZrO2-La2O3with different Ce/Zr molarratios [J]. Journal of Natural Gas Chemistry,2009,18(2):211-216
    [98] Klvana D, Kirchnerová J, Chaouki J, Delval J, Ya ci W. Fiber-supported perovskites forcatalytic combustion of natural gas [J]. Catalysis Today,1999,47(1-4):115-121
    [99]成青华,余倩,余林,黄应敏,彭兰乔,李永峰,孙明.六铝酸盐催化剂制备的研究进展[J].工业催化,2005,(11):65-68
    [100] Klinghoffer A A, Cerro R L, Abraham M A. Catalytic wet oxidation of acetic acid usingplatinum on alumina monolith catalyst [J]. Catalysis Today,1998,40(1):59-71
    [101] Xiaoding X, Vonk H, Cybulski A, Moulijn J A. Alumina washcoating and metaldeposition of ceramic monoliths [J]. Studies in Surface Sience&catalysis,1995,91:1069-1078
    [102] Schmidt F. New catalyst preparation technologies—observed from an industrialviewpoint [J]. Applied Catalysis A: General,2001,221(1-2):15-21
    [103]张乐.加氢精制催化剂制备方法的研究[D].石油化工科学研究院,2001
    [104]陈甘棠.化学反应工程[M].北京:化学工业出版社,2005
    [105]郭锴,唐小恒,周续美.化学反应工程[M].北京:化学工业出版社.2000
    [106] Fujimoto K., Ribeiro F H, Avalos-Borja M, Iglesia E. Structure and Reactivity ofPdOx/ZrOsis,2Catalysts for Methane Oxidation at Low Temperatures[J]. Journal ofCataly1998,179(2):431-442
    [107] Muto K., Katada N, Niwa M. Complete oxidation of methane on supported palladiumcatalyst: Support effect [J]. Applied Catalysis A: General,1996,134(2):203-215
    [108] Neyestanaki A K, Kumar N, Lindfors L E. Catalytic combustion of propane and naturalgas over Cu and Pd modified ZSM zeolite catalysts [J]. Applied Catalysis B:Environmental,1995,7(1-2):95-111
    [109] Cullis C F, Willatt B M. Oxidation of methane over supported precious metal catalysts[J]. Journal of Catalysis,1983,83(2):267-285
    [110] Firth J G. Catalytic oxidation of methane on palladium-gold alloys [J]. Transactions ofthe Faraday Society,1966,62:2566-2576
    [111] Doornkamp C, Ponec V. The universal character of the Mars and Van Krevelenmechanism [J]. Journal of Molecular Catalysis A: Chemical,2000,162(1-2):19-32
    [112] Monteiro R S, Zemlyanov D, Storey J M, Ribeiro F H. Surface Area Increase on PdFoils after Oxidation in Excess Methane [J]. Journal of Catalysis,2001,201(1):37-45
    [113] Hurtado P, Ordó ez S, Sastre H, D amp, xez FV. Combustion of methane over palladiumcatalyst in the presence of inorganic compounds: inhibition and deactivation phenomena[J]. Applied Catalysis B: Environmental,2004,47(2):85-93
    [114] Monteiro R S, Zemlyanov D, Storey J M, Ribeiro F H. Turnover Rate and ReactionOrders for the Complete Oxidation of Methane on a Palladium Foil in Excess Dioxygen[J]. Journal of Catalysis,2001,199(2):291-301
    [115] Ribeiro F H, Chow M, Dallabetta R A. Kinetics of the Complete Oxidation of Methaneover Supported Palladium Catalysts [J]. Journal of Catalysis,1994,146(2):537-544
    [116] Okumura K, Matsumoto S, Nishiaki N, Niwa M. Support effect of zeolite on themethane combustion activity of palladium [J]. Applied Catalysis B: Environmental,2003,40(2):151-159
    [117] Shigapov A N, Graham G W, McCabe R W, Paputa Peck M, Kiel Plummer Jr H. Thepreparation of high-surface-area cordierite monolith by acid treatment [J]. AppliedCatalysis A: General,1999,182(1):137-146
    [118]王胜,高典楠,张纯希,袁中山,张朋,王树东.贵金属甲烷燃烧催化剂[J].化学进展,2008,(06):789-797
    [119] Blik H F Jvt, Prins R. Characterization of supported cobalt and cobalt-rhodium catalysts.I. Temperature-programmed reduction (TPR) and oxidation (TPO) of Co-Rh/Alrnal,1986,(97):188-1992O3[J].Jou[120] Profeti L P R, Ticianelli E A, Assaf E M. Co/Alproduction of hydrogen by methane steam2Or3catalysts promoted with noble metalsforeforming [J]. Fuel,2008,87(10-11):2076-2081
    [121] Corro G, Vázquez-Cuchillo O, Banuelos F, Fierro J L G, Azomoza M. An XPS evidenceof the effect of the electronic state of Pd on CHCommunications,2007,8(12):1977-194oxidation on Pd/γ-Al802O3catalysts [J].Catalysis[122] Mathew J P, Srinivasan M. Photoelectron spectroscopy (XPS) studies on somepalladium catalysts [J]. European Polymer Journal,1995,31(9):835-839
    [123] Gatla S, Madaan N, Radnik J, Kalevaru V N, Lücke B, Martin A, Bentrup U, BrücknerA. Impact of Co-Components on the State of Pd and the Performance of SupportedPd/TiO2Catalysts in the Gas-Phase Acetoxylation of Toluene [J]. ChemCatChem,2011,3(12):1893-1901
    [124] Tanaka Y, Utaka T, Kikuchi R, Takeguchi T, Sasaki K, Eguchi K. Water gas shiftreaction for the reformed fuels over Cu/MnO catalysts prepared via spinel-type oxide [J].Journal of Catalysis,2003,215(2):271-278
    [125]李俊宁,王丽娜,齐涛,初景龙,刘长厚,张懿.介孔气体吸附剂[J].化学进展,2008,(06):851-858
    [126] Sadykov V A, Tikhov S F, Bulgakov N N, Gerasev A P. Catalytic oxidation of CO onCuOx revisited: Impact of the surface state on the apparent kinetic parameters[J].Catalysis Today,2009,144(3-4):324-333
    [127] Panzner G, Egert B, Schmidt H P. The stability of CuO and Cu1985,12O surfaces during argonsputtering studied by XPS and AES [J]. Surface Science,51(2-3):400-408
    [128] Di Castro V, Furlani C, Gargano M, Rossi M. XPS characterization of the CuO/MnOcatalyst [J]. Applied Surface Science,1987,28(3):270-2782
    [129] Zampieri G, Abbate M, Prado F, Caneiro A. Mn-2pXPS spectra of differently hole-dopedMn perovskites [J]. Solid State Communications,2002,123(1-2):81-85
    [130] Zhou R. X., Yu T. M., Jiang X.Y., Chen F., Zheng X. M. Temperature-programmedreduction and temperature-programmed desorption studies of CuO/ZrO2catalysts [J].Applied Surface Science,1999,148(3-4):263-270
    [131]张佳瑾,李建伟,朱吉钦,王越,陈标华.助剂对Cu-Mn复合氧化物整体式催化剂催化低浓度甲烷燃烧反应性能的影响[J].催化学报,2011,(08):1380-1386
    [132] Luo M. F.,Fang P.,He M.,Xie Y.L. In situ XRD, Raman, and TPR studies ofCuO/Al32O9(3catalysts for CO oxidation [J]. Journal of Molecular Catalysis A: Chemical,2005,21-2):243-248
    [133] Voorhoeve R J H, Remeika J P, Freeland P E, Matthias B T. Rare-Earth Oxides ofManganese and Cobalt Rival Platinum for the Treatment of Carbon Monoxide in AutoExhaust [J]. Science,1972,177(4046):353-354
    [134]黄晓峰.丁烷选择氧化制顺酐动态动力学模型及其应用[D].北京化工大学,1999
    [135] Huang J. Y.,Li C. Y. nAd robust adaptive algorrithm for flow reversal fixed-bed reactormodels [C]. Process2Joint China/USA Chememical Engineering Conference.1997:266-270
    [136]若尾法昭,影清井一郎著,沈静珠,李有润译.填充床传热与传质过程[M].北京:化学工业出版社,1986
    [137]王盈,朱吉钦,李成岳.低浓度甲烷流向变换催化燃烧取热技术[J].北京化工大学学报(自然科学版),2006,(05):14-17

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700