用户名: 密码: 验证码:
梓醇和前B细胞克隆增强因子的神经保护作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以帕金森(PD)和脑缺血损伤模型为例,采用原代皮层纯星形胶质细胞培养体系、皮层或中脑纯神经元培养体系以及中脑神经元-星形胶质细胞混合培养体系作为研究对象,探讨梓醇和PBEF在神经退行性疾病中的保护作用和机理,主要内容如下:
     1.梓醇的神经保护作用
     梓醇在纯星形胶质细胞培养体系中的神经保护作用。一方面,采用H202诱导的星形胶质细胞氧化应激损伤,结果发现,梓醇能够明显提高细胞活力,减少细胞内ROS的形成。此外,梓醇还通过增强谷胱甘肽还原酶(GR)、谷胱甘肽过氧化物酶(GSH-Px)等谷胱甘肽代谢循环中关键酶的活性以及降低氧化型谷胱甘肽(GSSG)在总谷胱甘肽(GSx)中的比例,从而抑制H202诱导的氧化应激损伤。但是,梓醇对过氧化氢酶(CAT)活性的增强作用却并不明显,说明梓醇在此损伤模型中潜在的保护机制主要是增强谷胱甘肽代谢循环效率以及抑制ROS生成。另一方面,采用脂多糖(LPS)与干扰素-Y(IFN-Y)共同刺激星形胶质细胞诱导炎症反应,结果表明,梓醇显著抑制了一氧化氮(NO)和ROS的生成,削弱了诱导型一氧化氮合酶(iNOS)的活性。此外,梓醇还明显下调了相关炎症基因iNOS、环氧化酶-2(COX-2)和Toll样受体-4(TLR4)的表达。进一步研究发现,梓醇的抗炎作用是通过调节核转录因子-kB(NF-KB)的激活以控制下游炎症因子的表达与释放,从而抑制星形胶质细胞激活诱发的炎症反应,最终实现神经保护的目的。
     梓醇在中脑纯神经元培养体系中的神经保护作用。利用鱼藤酮诱导中脑神经元损伤以模拟PD的发生,通过细胞形态学、免疫组化以及流式细胞分析,发现梓醇能够有效地抑制鱼藤酮诱导的中脑神经元凋亡或坏死。更进一步,发现梓醇是通过调控细胞外调节蛋白激酶(ERK)以抑制iNOS表达与NO释放,从而使神经元免于变性死亡的命运。
     梓醇在中脑神经元-星形胶质细胞混合培养体系中的神经保护作用。1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)已经是众所周知的临床以及生化水平上的神经毒素,可以模拟PD的发生。其主要作用机理是:MPTP先被星形胶质细胞内的单胺氧化酶-B(MAO-B)转化成有毒性的1-甲基-4-苯基吡啶离子(MPP+),然后被神经元选择性吸收,并且损伤神经元的线粒体造成功能紊乱,而最终导致神经元变性死亡。本研究中,利用MPTP分别处理中脑神经元-星形胶质细胞混合培养体系,以进一步探索梓醇的神经保护作用及其潜在的保护机制。结果发现,梓醇预处理明显削弱了神经元变性死亡的趋势,其保护机制涉及对线粒体功能的改善,主要体现在:增强了线粒体复合物I活性,阻止了线粒体膜电位(MMP)的损失,抑制了ROS的产生与Ca2+超载以及降低了线粒体通透性转运孔(MPTp)的开放度。
     2. PBEF的神经保护作用
     前B细胞克隆增强因子(PBEF)是烟酰胺(NAM)转化成烟酰胺腺嘌呤二核苷酸(NAD+)过程中的限速酶,在NAD+生物合成补救途径过程中起到重要作用。最近以小鼠为对象的研究表明,PBEF主要在野生型(+/+)以及半敲除型(+/-)小鼠的神经元中表达。采用光栓法建造脑缺血模型,发现与PBEF+/+相比,PBEF+/-小鼠更容易受到损伤而导致更大的缺血面积。本研究以原代小鼠皮层神经元为实验对象,采用氧糖剥夺模型(OGD)以及谷氨酸神经兴奋性毒性体外模拟脑缺血缺氧损伤,继续探索PBEF在脑缺血缺氧损伤中的神经保护作用。结果表明,作为PBEF的底物与产物,NAM和NAD+在OGD以及谷氨酸诱导的神经损伤模型中表现出较好的神经保护作用。利用PBEF特异性抑制FK866展开进一步研究,发现FK866的处理会加剧OGD诱导的神经损伤,表现在降低的细胞活力和NAD+水平上;而且,在谷氨酸诱导的神经兴奋性毒性损伤中,野生型PBEF过表达的神经元表现出更强的生命力,提示作为NAD+合成的限速酶,PBEF在脑缺血缺氧损伤模型中扮演着至关重要的角色。通过对线粒体功能的检测与分析,发现外源NAD+与NAM的补充明显削弱了OGD与FK866引起的线粒体生物合成障碍。此外,野生型PBEF过表达的神经元能够在一定程度上抑制谷氨酸诱导的MMP损失,提示PBEF的神经保护作用一部分是通过对线粒体功能的调节和优化实现的。
In this study, the protective effects and mechanisms of catalpol and PBEF on neurodegenerative disease were investigated with Parkinson's disease (PD) and Cerebral ischemia models in cortical astrocyte-enriched cultures, cortical or mesencephalic neuron-enriched cultures and mesencephalic neuron-astrocyte cultures, the primary coverage as follows:
     1. Neuroprotective Effects of Catalpol
     Neuroprotective effects of catalpol in astrocytes primary cultures. On one hand, we treated astrocytes with H2O2to induce oxidant stress. The results showed that catalpol could significantly increase the cell viability and reduce the intracellular ROS formation. Furthermore, catalpol attenuated H2O2-induced oxidative stress via preventing the decrease in the activities of antioxidant enzymes in glutathione redox cycling such as glutathione reductase (GR), glutathione peroxidase (GSH-Px), and glutathione content. However, the catalase (CAT) activity did not appear to be elevated by catalpol adequately. Together, the main mechanism underlying the protective effects of catalpol in H2O2-injured astrocytes might be related to the maintenance of glutathione metabolism balance and the decrease of ROS formation. On the other hand, astrocytes were pretreated with catalpol prior to lipopolysaccharide (LPS) plus interferon-γ (IFN-γ) stimulation which induced a inflammatory response. Biochemical analyses showed that nitric oxide (NO), ROS production and the inducible nitric oxide synthase (iNOS) activity were significantly reduced by catalpol. The data at transcriptional level also demonstrated that catalpol potently attenuated gene expressions which involved in inflammation, such as iNOS, cyclooxygenase-2(COX-2) and toll-like receptor4(TLR4). In addition, our exploration further revealed that the suppressive action of catalpol on inflammation was mediated via inhibiting nuclear factor-KB (NF-κB) activation. Collectively, these results adequately suggested that catalpol could exert inhibitory effects on inflammatory reaction in astrocytes and the inactivation of NF-κB could be the major determinant for its anti-inflammatory mechanism.
     Neuroprotective effects of catalpol in mesencephalic neurons. In current study, we stimulated primary mesencephalic neurons by rotenone to simulate PD occurring, and the results indicated that catalpol inhibited primary mesencephalic neurons from apoptosis by morphological assay, immunocytochemistry and flow cytometric evaluation. Moreover, the Extracellular regulated protein kinases (ERK) signaling pathway plays an important role in NO-mediated degeneration of neuron.
     Neuroprotective effects of catalpol in mesencephalic neuron-astrocyte cultures. MPTP is well known to produce clinical, biochemical and neurochemical changes similar to those which occur in PD. Furthermore, the accumulated evidence suggests that MPP+, conversed by monoamine oxidase type B (MAO-B) in astrocytes principally, is the active metabolite of MPTP and the major cause to PD associated with mitochondrial dysfunction. In this study, we treated mesencephalic neuron-astrocyte with MPTP respectively to investigate the neuroprotective effects of catalpol and the underlying protective mechanisms. Our results showed that pre-treatment with catalpol prior to MPTP treatment attenuated mitochondrial dysfunction by reversing the activity of mitochondrial complex I, mitochondrial membrane potential (MMP), intracellular Ca+level, and ROS accumulation as well as mitochondrial permeability transition pore (MPTp) opening.
     2. Neuroprotective Effects of PBEF
     Pre-B-Cell Colony-Enhancing Factor (PBEF) is a rate-limiting enzyme to convert nicotinamide to nicotinamide mononucleotide (NMN) in the salvage pathway of nicotinamide adenine dinucleotide (NAD+) biosynthesis. Previously we found PBEF is exclusively expressed in neurons in mouse brain and heterozygous PBEF knockout (Pbef+/-) mice have larger ischemic lesion than wild type mice using photothrombosis-induced ischemia model. For mechanistic study of neuronal protective role of PBEF, we used in vitro oxygen-glucose deprivation (OGD) and glutamate excitotoxicity models of primary cultured neurons. Our results show that the treatments of neurons with nicotinamide and NAD+, the substrate and product of PBEF respectively, reduce neuronal death after OGD and glutamate excitotoxicity. Neurons with treatment of FK866, a PBEF inhibitor, have reduced cell viability and NAD+level after OGD as compared with neurons without treatment. Furthermore, overexpression of PBEF reduced glutamate excitotoxicity. We further tested whether PBEF affect mitochondrial function and biogenesis. Inhibition of PBEF reduces mitochondrial biogenesis, while addition of NAD+and NAM increase mitochondrial biogenesis. We further show overexpression of PBEF in neurons reduces MMP depolarization following glutamate stimulation using fluorescent live cell imaging. We conclude that PBEF exerts neuroprotection in ischemia through its enzymatic activity for NAD+production that can ameliorate mitochondrial dysfunction.
引文
[1]Smith M A, Perry G, Zhu X, et al. Neurodegenerative diseases:Mechanisms and therapies [J]. J Biomed Biotechnol,2006,2006(3):47539.
    [2]Wolozin B and Behl C. Mechanisms of neurodegenerative disorders:Part 2:Control of cell death [J]. Arch Neurol,2000,57(6):801-804.
    [3]Borthwick G M, Taylor R W, Walls T J, et al. Motor neuron disease in a patient with a mitochondrial trnaile mutation [J]. Ann Neurol,2006,59(3):570-574.
    [4]Chen L, Cagniard B, Mathews T, et al. Age-dependent motor deficits and dopaminergic dysfunction in dj-1 null mice [J]. J Biol Chem,2005,280(22):21418-21426.
    [5]Goldberg M S, Fleming S M, Palacino J J, et al. Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons [J]. J Biol Chem,2003,278(44):43628-43635.
    [6]Hemmings B A. Akt signaling:Linking membrane events to life and death decisions [J]. Science, 1997,275(5300):628-630.
    [7]Martin L J. Mitochondriopathy in parkinson disease and amyotrophic lateral sclerosis [J]. J Neuropathol Exp Neurol,2006,65(12):1103-1110.
    [8]Noorbakhsh F, Overall C M and Power C. Deciphering complex mechanisms in neurodegenerative diseases:The advent of systems biology [J]. Trends Neurosci,2009,32(2):88-100.
    [9]Palacino J J, Sagi D, Goldberg M S, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice [J]. J Biol Chem,2004,279(18):18614-18622.
    [10]Rich T, Allen R L and Wyllie A H. Defying death after DNA damage [J]. Nature, 2000,407(6805):777-783.
    [11]Stephens B, Guiloff R J, Navarrete R, et al. Widespread loss of neuronal populations in the spinal ventral horn in sporadic motor neuron disease. A morphometric study [J]. J Neurol Sci, 2006,244(1-2):41-58.
    [12]van der Putten H, Wiederhold K H, Probst A, et al. Neuropathology in mice expressing human alpha-synuclein [J]. J Neurosci,2000,20(16):6021-6029.
    [13]Zhou Q, Snipas S, Orth K, et al. Target protease specificity of the viral serpin crma. Analysis of five caspases [J]. J Biol Chem,1997,272(12):7797-7800.
    [14]Klionsky D J and Emr S D. Autophagy as a regulated pathway of cellular degradation [J]. Science, 2000,290(5497):1717-1721.
    [15]Lockshin R A and Zakeri Z. Caspase-independent cell deaths [J]. Curr Opin Cell Biol, 2002,14(6):727-733.
    [16]Martin L J. Neuronal cell death in nervous system development, disease, and injury (review) [J]. Int J MolMed,2001,7(5):455-478.
    [17]Kumral E, Kisabay A, Atac C, et al. The mechanism of ischemic stroke in patients with dolichoectatic basilar artery [J]. Eur J Neurol,2005,12(6):437-444.
    [18]Lyden P. Early major ischemic changes on computed tomography should not preclude use of tissue plasminogen activator [J]. Stroke,2003,34(3):821-822.
    [19]Burke R E and Kholodilov N G. Programmed cell death:Does it play a role in parkinson's disease? [J]. Ann Neurol,1998,44(3 Suppl 1):S 126-133.
    [20]Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism [J]. Nature,1998,392(6676):605-608.
    [21]Calne D B. Is idiopathic parkinsonism the consequence of an event or a process? [J]. Neurology, 1994,44(1):5-10.
    [22]Dauer W and Przedborski S. Parkinson's disease:Mechanisms and models [J]. Neuron, 2003,39(6):889-909.
    [23]Schapira A H. Etiology of parkinson's disease [J]. Neurology,2006,66(10 Suppl 4):S10-23.
    [24]Schapira A H, Cooper J M, Dexter D, et al. Mitochondrial complex i deficiency in parkinson's disease [J]. J Neurochem,1990,54(3):823-827.
    [25]Shoffner J M, Watts R L, Juncos J L, et al. Mitochondrial oxidative phosphorylation defects in parkinson's disease [J]. Ann Neurol,1991,30(3):332-339.
    [26]Wallace D C. Mitochondrial diseases in man and mouse [J]. Science,1999,283(5407):1482-1488.
    [27]Di Monte D A. The environment and parkinson's disease:Is the nigrostriatal system preferentially targeted by neurotoxins? [J]. Lancet Neurol,2003,2(9):531-538.
    [28]Weber C A and Ernst M E. Antioxidants, supplements, and parkinson's disease [J]. Ann Pharmacother, 2006,40(5):935-938.
    [29]Arai H, Furuya T, Mizuno Y, et al. Inflammation and infection in parkinson's disease [J]. Histol Histopathol,2006,21(6):673-678.
    [30]Hald A and Lotharius J. Oxidative stress and inflammation in parkinson's disease:Is there a causal link? [J]. Exp Neurol,2005,193(2):279-290.
    [31]Hunot S and Hirsch E C. Neuroinflammatory processes in parkinson's disease [J]. Ann Neurol, 2003,53 Suppl 3(S49-58; discussion S58-60.
    [32]Cheung E C, Melanson-Drapeau L, Cregan S P, et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by bax-dependent and bax-independent mechanisms [J]. J Neurosci, 2005,25(6):1324-1334.
    [33]Hengartner M O. The biochemistry of apoptosis [J]. Nature,2000,407(6805):770-776.
    [34]Bates S and Vousden K H. P53 in signaling checkpoint arrest or apoptosis [J]. Curr Opin Genet Dev, 1996,6(1):12-18.
    [35]Shimizu S, Narita M and Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel vdac [J]. Nature,1999,399(6735):483-487.
    [36]Deng H, Le W, Guo Y, et al. Genetic analysis of lrrk2 mutations in patients with parkinson disease [J]. J Neurol Sci,2006,251(1-2):102-106.
    [37]Simon D K and Standaert D G. Neuroprotective therapies [J]. Med Clin North Am, 1999,83(2):509-523, viii.
    [38]Stocchi F and Olanow C W. Neuroprotection in parkinson's disease:Clinical trials [J]. Ann Neurol, 2003,53 Suppl 3(S87-97; discussion S97-89.
    [39]Rodnitzky R L. Can calcium antagonists provide a neuroprotective effect in parkinson's disease? [J]. Drugs,1999,57(6):845-849.
    [40]Kernie S G and Parada L F. The molecular basis for understanding neurotrophins and their relevance to neurologic disease [J]. Arch Neurol,2000,57(5):654-657.
    [41]Hubble J P. Novel drugs for parkinson's disease [J]. Med Clin North Am,1999,83(2):525-536.
    [42]LeWitt P A. Clinical trials of neuroprotection for parkinson's disease [J]. Neurology,2004,63(7 Suppl 2):S23-31.
    [43]Lang A E. Surgery for parkinson disease:A critical evaluation of the state of the art [J]. Arch Neurol, 2000,57(8):1118-1125.
    [44]Sawada H, Ibi M, Kihara T, et al. Estradiol protects dopaminergic neurons in a mpp+parkinson's disease model [J]. Neuropharmacology,2002,42(8):1056-1064.
    [45]Seki S, Horikoshi K, Takeda H, et al. Effects of sustained low-flow ischemia and reperfusion on ca2+ transients and contractility in perfused rat hearts [J]. Mol Cell Biochem,2001,216(1-2):111-119.
    [46]Pellegrini-Giampietro D E. The distinct role of mglul receptors in post-ischemic neuronal death [J]. Trends Pharmacol Sci,2003,24(9):461-470.
    [47]Coyle J T and Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders [J]. Science, 1993,262(5134):689-695.
    [48]Halliwell B. Free radicals, antioxidants, and human disease:Curiosity, cause, or consequence? [J]. Lancet,1994,344(8924):721-724.
    [49]Sugawara T and Chan P H. Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia [J]. Antioxid Redox Signal,2003,5(5):597-607.
    [50]Lenzi G L, Frackowiak R S and Jones T. Cerebral oxygen metabolism and blood flow in human cerebral ischemic infarction [J]. J Cereb Blood Flow Metab,1982,2(3):321-335.
    [51]Crack P J and Taylor J M. Reactive oxygen species and the modulation of stroke [J]. Free Radic Biol Med,2005,38(11):1433-1444.
    [52]Schroeter M, Jander S, Witte O W, et al. Local immune responses in the rat cerebral cortex after middle cerebral artery occlusion [J]. J Neuroimmunol,1994,55(2):195-203.
    [53]Hum P D, Subramanian S, Parker S M, et al. T-and b-cell-deficient mice with experimental stroke have reduced lesion size and inflammation [J]. J Cereb Blood Flow Metab,2007,27(11):1798-1805.
    [54]Gong C, Qin Z, Betz A L, et al. Cellular localization of tumor necrosis factor alpha following focal cerebral ischemia in mice [J]. Brain Res,] 998,801 (1-2):1-8.
    [55]Huang J, Upadhyay U M and Tamargo R J. Inflammation in stroke and focal cerebral ischemia [J]. Surg Neurol,2006,66(3):232-245.
    [56]Wiessner C, Gehrmann J, Lindholm D, et al. Expression of transforming growth factor-beta 1 and interleukin-1 beta mrna in rat brain following transient forebrain ischemia [J]. Acta Neuropathol, 1993,86(5):439-446.
    [57]Tasaki K, Ruetzler C A, Ohtsuki T, et al. Lipopolysaccharide pre-treatment induces resistance against subsequent focal cerebral ischemic damage in spontaneously hypertensive rats [J]. Brain Res, 1997,748(1-2):267-270.
    [58]Guan Q H, Pei D S, Liu X M, et al. Neuroprotection against ischemic brain injury by sp600125 via suppressing the extrinsic and intrinsic pathways of apoptosis [J]. Brain Res,2006,1092(1):36-46.
    [59]Guan Q H, Pei D S, Zong Y Y, et al. Neuroprotection against ischemic brain injury by a small peptide inhibitor of c-jun n-terminal kinase (jnk) via nuclear and non-nuclear pathways [J]. Neuroscience, 2006,139(2):609-627.
    [60]Shinoura "N, Satou R, Yoshida Y, et al. Adenovirus-mediated transfer of bcl-x(1) protects neuronal cells from bax-induced apoptosis [J]. Exp Cell Res,2000,254(2):221-231.
    [61]Zhao H, Yenari M A, Cheng D, et al. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity [J]. J Neurochem,2003,85(4):1026-1036.
    [62]Hamilton W T, Haffajee C I, Dalen J E, et al. Atrial septal defect secundum:Clinical profile with physiologic correlates in children and adults [J]. Cardiovasc Clin,1979,10(1):267-277.
    [63]Wang L C, Futrell N, Wang D Z, et al. A reproducible model of middle cerebral infarcts, compatible with long-term survival, in aged rats [J]. Stroke,1995,26(11):2087-2090.
    [64]Dietrich W D, Nakayama H, Watson B D, et al. Morphological consequences of early reperfusion following thrombotic or mechanical occlusion of the rat middle cerebral artery [J]. Acta Neuropathol, 1989,78(6):605-614.
    [65]Dawson V L, Kizushi V M, Huang P L, et al. Resistance to neurotoxicity in cortical cultures from neuronal nitric oxide synthase-deficient mice [J]. J Neurosci,1996,16(8):2479-2487.
    [66]Rothman S. Synaptic release of excitatory amino acid neurotransmitter mediates anoxic neuronal death [J]. J Neurosci,1984,4(7):1884-1891.
    [67]Araque A, Parpura V, Sanzgiri R P, et al. Tripartite synapses:Glia, the unacknowledged partner [J]. Trends Neurosci,1999,22(5):208-215.
    [68]Sofroniew M V and Vinters H V. Astrocytes:Biology and pathology [J]. Acta Neuropathol, 2010,119(1):7-35.
    [69]Dong Y and Benveniste E N. Immune function of astrocytes [J]. Glia,2001,36(2):180-190.
    [70]Song H, Stevens C F and Gage F H. Astroglia induce neurogenesis from adult neural stem cells [J]. Nature,2002,417(6884):39-44.
    [71]Lalo U, Pankratov Y, Kirchhoff F, et al. Nmda receptors mediate neuron-to-glia signaling in mouse cortical astrocytes [J]. J Neurosci,2006,26(10):2673-2683.
    [72]Benarroch E E. Neuron-astrocyte interactions:Partnership for normal function and disease in the central nervous system [J]. Mayo Clin Proc,2005,80(10):1326-1338.
    [73]Saadoun S, Papadopoulos M C and Krishna S. Water transport becomes uncoupled from k+siphoning in brain contusion, bacterial meningitis, and brain tumours:Immunohistochemical case review [J]. J Clin Pathol,2003,56(12):972-975.
    [74]Verkhratsky A and Kettenmann H. Calcium signalling in glial cells [J]. Trends Neurosci, 1996,19(8):346-352.
    [75]Cahoy J D, Emery B, Kaushal A, et al. A transcriptome database for astrocytes, neurons, and oligodendrocytes:A new resource for understanding brain development and function [J]. J Neurosci, 2008,28(1):264-278.
    [76]Svendsen C N. The amazing astrocyte [J]. Nature,2002,417(6884):29-32.
    [77]Ullian E M, Sapperstein S K, Christopherson K S, et al. Control of synapse number by glia [J]. Science,2001,291 (5504):657-661.
    [78]Charles A C, Merrill J E, Dirksen E R, et al. Intercellular signaling in glial cells:Calcium waves and oscillations in response to mechanical stimulation and glutamate [J]. Neuron,1991,6(6):983-992.
    [79]Christopherson K S, Ullian E M, Stokes C C, et al. Thrombospondins are astrocyte-secreted proteins that promote ens synaptogenesis [J]. Cell,2005,120(3):421-433.
    [80]Chen Y, Vartiainen N E, Ying W, et al. Astrocytes protect neurons from nitric oxide toxicity by a glutathione-dependent mechanism [J]. J Neurochem,2001,77(6):l 601-1610.
    [81]Sharma G and Vijayaraghavan S. Nicotinic cholinergic signaling in hippocampal astrocytes involves calcium-induced calcium release from intracellular stores [J]. Proc Natl Acad Sci USA, 2001,98(7):4148-4153.
    [82]Hirase H, Qian L, Bartho P, et al. Calcium dynamics of cortical astrocytic networks in vivo [J]. PLoS Biol,2004,2(4):E96.
    [83]Takano T, Kang J, Jaiswal J K, et al. Receptor-mediated glutamate release from volume sensitive channels in astrocytes [J]. Proc Natl Acad Sci USA,2005,102(45):16466-16471.
    [84]Perea G and Araque A. Astrocytes potentiate transmitter release at single hippocampal synapses [J]. Science,2007,317(5841):1083-1086.
    [85]Fiacco T A and McCarthy K D. Intracellular astrocyte calcium waves in situ increase the frequency of spontaneous ampa receptor currents in cal pyramidal neurons [J]. J Neurosci,2004,24(3):722-732.
    [86]Zhang Z, Chen G, Zhou W, et al. Regulated atp release from astrocytes through lysosome exocytosis [J]. Nat Cell Biol,2007,9(8):945-953.
    [87]Kucher B M and Neary J T. Bi-functional effects of atp/p2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes [J]. J Neurochem, 2005,92(3):525-535.
    [88]Martin E D, Fernandez M, Perea G, et al. Adenosine released by astrocytes contributes to hypoxia-induced modulation of synaptic transmission [J]. Glia,2007,55(1):36-45.
    [89]Hertz L, Yu A C, Kala G, et al. Neuronal-astrocytic and cytosolic-mitochondrial metabolite trafficking during brain activation, hyperammonemia and energy deprivation [J]. Neurochem Int, 2000,37(2-3):83-102.
    [90]Miralles V J, Martinez-Lopez I, Zaragoza R, et al. Na+dependent glutamate transporters (eaatl, eaat2, and eaat3) in primary astrocyte cultures:Effect of oxidative stress [J]. Brain Res,2001,922(1):21-29.
    [91]Dawson V L and Dawson T M. Nitric oxide in neurodegeneration [J]. Prog Brain Res, 1998,118(215-229.
    [92]Juric D M and Carman-Krzan M. Cytokine-regulated secretion of nerve growth factor from cultured rat neonatal astrocytes [J]. Pflugers Arch,2000,440(5 Suppl):R96-98.
    [93]Hayden M S and Ghosh S. Shared principles in nf-kappab signaling [J]. Cell,2O08,132(3):344-362.
    [94]Moynagh P N. The nf-kappab pathway [J]. J Cell Sci,2005,118(Pt 20):4589-4592.
    [95]Magni G, Amici A, Emanuelli M, et al. Enzymology of nad+homeostasis in man [J]. Cell Mol Life Sci,2004,61(1):19-34.
    [96]Revollo J R, Grimm A A and lmai S. The regulation of nicotinamide adenine dinucleotide biosynthesis by nampt/pbef/visfatin in mammals [J]. Curr Opin Gastroenterol,2007,23(2):164-170.
    [97]lmai S. The nad world:A new systemic regulatory network for metabolism and aging-sirtl, systemic nad biosynthesis, and their importance [J]. Cell Biochem Biophys,2009,53(2):65-74.
    [98]Tanaka T and Nabeshima Y. Nampt/pbef/visfatin:A new player in beta cell physiology and in metabolic diseases? [J]. Cell Metab,2007,6(5):341-343.
    [99]Revollo J R, Grimm A A and Imai S. The nad biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates sir2 activity in mammalian cells [J]. J Biol Chem, 2004,279(49):50754-50763.
    [100]Rongvaux A, Shea R J, Mulks M H, et al. Pre-b-cell colony-enhancing factor, whose expression is up-regulated in activated lymphocytes, is a nicotinamide phosphoribosyltransferase, a cytosolic enzyme involved in nad biosynthesis [J]. Eur J Immunol,2002,32(11):3225-3234.
    [101]Li L, Yang G, Shi S, et al. The adipose triglyceride lipase, adiponectin and visfatin are downregulated by tumor necrosis factor-alpha (tnf-alpha) in vivo [J]. Cytokine,2009,45(1):12-19.
    [102]Hector J, Schwarzloh B, Goehring J, et al. Tnf-alpha alters visfatin and adiponectin levels in human fat [J]. Horm Metab Res,2007,39(4):250-255.
    [103]Li Y, Zhang Y, Dorweiler B, et al. Extracellular nampt promotes macrophage survival via a nonenzymatic interleukin-6/stat3 signaling mechanism [J]. J Biol Chem,2008,283(50):34833-34843.
    [104]Brema I, Hatunic M, Finucane F, et al. Plasma visfatin is reduced after aerobic exercise in early onset type 2 diabetes mellitus [J]. Diabetes Obes Metab,2008,10(7):600-602.
    [105]Qin L, Liu Y, Cooper C, et al. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species [J]. J Neurochem, 2002,83(4):973-983.
    [106]Mao Y R, Jiang L, Duan Y L, et al. Efficacy of catalpol as protectant against oxidative stress and mitochondrial dysfunction on rotenone-induced toxicity in mice brain [J]. Environ Toxicol Pharmacol,2007,23(3):314-318.
    [107]Jiang B, Zhang H, Bi J, et al. Neuroprotective activities of catalpol on mpp+/mptp-induced neurotoxicity [J]. Neurol Res,2008,30(6):639-644.
    [108]Li D Q, Bao Y M, Li Y, et al. Catalpol modulates the expressions of bcl-2 and bax and attenuates apoptosis in gerbils after ischemic injury [J]. Brain Res,2006,1115(1):179-185.
    [109]Li D Q, Duan Y L, Bao Y M, et al. Neuroprotection of catalpol in transient global ischemia in gerbils [J]. Neurosci Res,2004,50(2):169-177.
    [110]Li D Q, Li Y, Liu Y, et al. Catalpol prevents the loss of cal hippocampal neurons and reduces working errors in gerbils after ischemia-reperfusion injury [J]. Toxicon,2005,46(8):845-851.
    [111]Zhang X, Zhang A, Jiang B, et al. Further pharmacological evidence of the neuroprotective effect of catalpol from rehmannia glutinosa [J]. Phytomedicine,2008,15(6-7):484-490.
    [112]Zhang X L, An L J, Bao Y M, et al. D-galactose administration induces memory loss and energy metabolism disturbance in mice:Protective effects of catalpol [J]. Food Chem Toxicol, 2008,46(8):2888-2894.
    [113]Zhang X L, Jiang B, Li Z B, et al. Catalpol ameliorates cognition deficits and attenuates oxidative damage in the brain of senescent mice induced by d-galactose [J]. Pharmacol Biochem Behav, 2007,88(1):64-72.
    [114]Qin L, Liu Y, Wang T, et al. Nadph oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia [J]. J Biol Chem,2004,279(2):1415-1421.
    [115]Jiang B, Du J, Liu J H, et al. Catalpol attenuates the neurotoxicity induced by beta-amyloid(1-42) in cortical neuron-glia cultures [J]. Brain Res,2008,1188(139-147.
    [116]Nedergaard M, Ransom B and Goldman S A. New roles for astrocytes:Redefining the functional architecture of the brain [J]. Trends Neurosci,2003,26(10):523-530.
    [117]Yamazaki M, Chiba K and Mohri T. Neuritogenic effect of natural iridoid compounds on pcl2h cells and its possible relation to signaling protein kinases [J]. Biol Pharm Bull,1996,19(6):791-795.
    [118]Liu J, He Q J, Zou W, et al. Catalpol increases hippocampal neuroplasticity and up-regulates pkc and bdnf in the aged rats [J]. Brain Res,2006,1123(1):68-79.
    [119]Maragakis N J and Rothstein J D. Mechanisms of disease:Astrocytes in neurodegenerative disease [J]. Nat Clin Pract Neurol,2006,2(12):679-689.
    [120]Sakkas L 1, Chikanza I C and Platsoucas C D. Mechanisms of disease:The role of immune cells in the pathogenesis of systemic sclerosis [J]. Nat Clin Pract Rheumatol,2006,2(12):679-685.
    [121]Cornet A, Bettelli E, Oukka M, et al. Role of astrocytes in antigen presentation and naive t-cell activation [J]. J Neuroimmunol,2000,106(1-2):69-77.
    [122]Good P F, Hsu A, Werner P, et al. Protein nitration in parkinson's disease [J]. J Neuropathol Exp Neurol,1998,57(4):338-342.
    [123]Green S P, Cairns B, Rae J, et al. Induction of gp91-phox, a component of the phagocyte nadph oxidase, in microglial cells during central nervous system inflammation [J]. J Cereb Blood Flow Metab,2001,21(4):374-384.
    [124]张鹏霞,曲凤玉,欧芹,et al.熟地提取液对衰老模型小鼠脑组织nos、no、sod利lpo的影响[J].中国老年学杂志,1999,19(3):1.
    [125]管家齐,刘军莲and王传金.干地黄在金匮肾气丸中抗衰老实验研究[J].南京中医药大学学报(白然科学版),2002,18(3):2.
    [126]魏小龙.海马学习记忆功能有关基因及六味地黄汤益智作用与基因表达关系的研究[J].生理科学进展,2000,31(3):4.
    [127]伍倩and董淳.六味地黄汤及其补、泻组分的抗衰老作用及机制[J].中药药理与临床,2003,19(3):3.
    [128]赵建生,叶振邦,赵涛,et al.六味地黄丸延缓衰老的临床研究及其药理实验研究[J].世界科学技术-中医约现代化,2006,8(2):7.
    129李龙宣,赵斌,许志恩,et al.熟地黄抑制阿尔茨海默病样大鼠海马神经元凋亡的作川[J].中华神经医学杂志,2006,5(1):4.
    [130]Tian Y Y, An L J, Jiang L, et al. Catalpol protects dopaminergic neurons from lps-induced neurotoxicity in mesencephalic neuron-glia cultures [J]. Life Sci,2006,80(3):193-199.
    [131]Tian Y Y, Jiang B, An L J, et al. Neuroprotective effect of catalpol against mpp(+)-induced oxidative stress in mesencephalic neurons [J]. Eur J Pharmacol,2007,568(1-3):142-148.
    [132]Jiang B, Liu J H, Bao Y M, et al. Catalpol inhibits apoptosis in hydrogen peroxide-induced pe12 cells by preventing cytochrome c release and inactivating of caspase cascade [J]. Toxicon, 2004,43(1):53-59.
    [133]Adibhatla R M, Hatcher J F and Dempsey R J. Citicoline:Neuroprotective mechanisms in cerebral ischemia [J]. J Neurochem,2002,80(1):12-23.
    [134]Bhardwaj A, Alkayed N J, Kirsch J R, et al. Mechanisms of ischemic brain damage [J]. Curr Cardiol Rep,2003,5(2):160-167.
    [135]Danton G H and Dietrich W D. Inflammatory mechanisms after ischemia and stroke [J]. J Neuropathol Exp Neurol,2003,62(2):127-136.
    [136]Han H S and Yenari M A. Cellular targets of brain inflammation in stroke [J]. Curr Opin Investig Drugs,2003,4(5):522-529.
    [137]Harukuni I and Bhardwaj A. Mechanisms of brain injury after global cerebral ischemia [J]. Neurol Clin,2006,24(1):1-21.
    [138]Hou S T and MacManus J P. Molecular mechanisms of cerebral ischemia-induced neuronal death [J]. Int Rev Cytol,2002,221(93-148.
    [139]Nardelli E, Bassi A, Mazzi G, et al. Systemic passive transfer studies using igm monoclonal antibodies to sulfatide [J]. J Neuroimmunol,1995,63(1):29-37.
    [140]Pulsinelli W A and Duffy T E. Regional energy balance in rat brain after transient forebrain ischemia [J]. J Neurochem,1983,40(5):1500-1503.
    [141]Sugawara T, Fujimura M, Noshita N, et al. Neuronal death/survival signaling pathways in cerebral ischemia [J]. NeuroRx,2004,1 (1):17-25.
    [142]Zheng Z, Lee J E and Yenari M A. Stroke:Molecular mechanisms and potential targets for treatment [J]. Curr Mol Med,2003,3(4):361-372.
    [143]Feng Y P, Sun Y D, Chen B T, et al. [brain energy metabolism of cerebral ischemic mice and the effects of some drugs] [J]. Yao Xue Xue Bao,1989,24(2):89-94.
    [144]Jiang Y, Pan Y, Huang Q, et al. The effect of herbs on cerebral energy metabolism in cerebral ischemia-reperfusion mice [J]. Chin Med J (Engl),2001,114(8):881-883.
    [145]Yager J Y, Brucklacher R M and Vannucci R C. Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats [J]. Am J Physiol,1992,262(3 Pt 2):H672-677.
    [146]Alano C C, Garnier P, Ying W, et al. Nad+ depletion is necessary and sufficient for poly(adp-ribose) polymerase-1-mediated neuronal death [J]. J Neurosci,2010,30(8):2967-2978.
    [147]D'Amours D, Sallmann F R, Dixit V M, et al. Gain-of-function of poly(adp-ribose) polymerase-1 upon cleavage by apoptotic proteases:Implications for apoptosis [J]. J Cell Sci,2001,114(Pt 20):3771-3778.
    [148]Wang S, Xing Z, Vosler P S, et al. Cellular nad replenishment confers marked neuroprotection against ischemic cell death:Role of enhanced DNA repair [J]. Stroke,2008,39(9):2587-2595.
    [149]Ying W. Nad+ and nadh in neuronal death [J]. J Neuroimmune Pharmacol,2007,2(3):270-275.
    [150]Luk T, Malam Z and Marshall J C. Pre-b cell colony-enhancing factor (pbef)/visfatin:A novel mediator of innate immunity [J]. J Leukoc Biol,2008,83(4):804-816.
    [151]Magni G, Amici A, Emanuelli M, et al. Enzymology of nad+ synthesis [J]. Adv Enzymol Relat Areas Mol Biol,1999,73(135-182, xi.
    [152]Ying W. Nad+ and nadh in cellular functions and cell death [J]. Front Biosci,2006,11(3129-3148.
    [153]Sheline C T, Behrens M M and Choi D W. Zinc-induced cortical neuronal death:Contribution of energy failure attributable to loss of nad(+) and inhibition of glycolysis [J]. J Neurosci, 2000,20(9):3139-3146.
    [154]Araki T, Sasaki Y and Milbrandt J. Increased nuclear nad biosynthesis and sirtl activation prevent axonal degeneration [J]. Science,2004,305(5686):1010-1013.
    [155]Bitterman K J, Anderson R M, Cohen H Y, et al. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human sirtl [J]. J Biol Chem, 2002,277(47):45099-45107.
    [156]Yang H, Yang T, Baur J A, et al. Nutrient-sensitive mitochondrial nad+ levels dictate cell survival [J]. Cell,2007,130(6):1095-1107.
    [157]Li H, Liu P, Cepeda J, et al. Augmentation of pulmonary epithelial cell 11-8 expression and permeability by pre-b-cell colony enhancing factor [J]. J Inflamm (Lond),2008,5(15.
    [158]Zhang W, Xie Y, Wang T, et al. Neuronal protective role of pbef in a mouse model of cerebral ischemia [J]. J Cereb Blood Flow Metab,2010,30(12):1962-1971.
    [159]Jin D Q, Lim C S, Hwang J K, et al. Anti-oxidant and anti-inflammatory activities of macelignan in murine hippocampal cell line and primary culture of rat microglial cells [J]. Biochem Biophys Res Commun,2005,331 (4):1264-1269.
    [160]Dringen R. Metabolism and functions of glutathione in brain [J]. Prog Neurobiol, 2000,62(6):649-671.
    [161]Gutteridge J M and Halliwell B. Free radicals and antioxidants in the year 2000. A historical look to the future [J]. Ann N Y Acad Sci,2000,899(136-147.
    [162]Lomaestro B M and Malone M. Glutathione in health and disease:Pharmacotherapeutic issues [J]. Ann Pharmacother,1995,29(12):1263-1273.
    [163]Dringen R and Hamprecht B. Glutathione restoration as indicator for cellular metabolism of astroglial cells [J]. Dev Neurosci,1998,20(4-5):401-407.
    [164]Dringen R, Pawlowski P G and Hirrlinger J. Peroxide detoxification by brain cells [J]. J Neurosci Res, 2005,79(1-2):157-165.
    [165]Hirrlinger J, Schulz J B and Dringen R. Effects of dopamine on the glutathione metabolism of cultured astroglial cells:Implications for parkinson's disease [J]. J Neurochem,2002,82(3):458-467.
    [166]Heales S J, Lam A A, Duncan A J, et al. Neurodegeneration or neuroprotection:The pivotal role of astrocytes [J]. Neurochem Res,2004,29(3):513-519.
    [167]Chao C C, Hu S, Sheng W S, et al. Cytokine-stimulated astrocytes damage human neurons via a nitric oxide mechanism [J]. Glia,1996,16(3):276-284.
    [168]Jeohn G H, Kim W G and Hong J S. Time dependency of the action of nitric oxide in lipopolysaccharide-interferon-gamma-induced neuronal cell death in murine primary neuron-glia co-cultures [J]. Brain Res,2000,880(1-2):173-177.
    [169]Chen C, Magee J C and Bazan N G. Cyclooxygenase-2 regulates prostaglandin e2 signaling in hippocampal long-term synaptic plasticity [J]. J Neurophysiol,2002,87(6):2851-2857.
    [170]Akira S. Toll-like receptor signaling [J]. J Biol Chem,2003,278(40):38105-38108.
    [171]Akira S and Takeda K. Toll-like receptor signalling [J]. Nat Rev Immunol,2004,4(7):499-511.
    [172]Davis R L, Sanchez A C, Lindley D J, et al. Effects of mechanistically distinct nf-kappab inhibitors on glial inducible nitric-oxide synthase expression [J]. Nitric Oxide,2005,12(4):200-209.
    [173]Castro-Alcaraz S, Miskolci V, Kalasapudi B, et al. Nf-kappa b regulation in human neutrophils by nuclear i kappa b alpha:Correlation to apoptosis [J]. J Immunol,2002,169(7):3947-3953.
    [174]Magnani M, Crinelli R, Bianchi M, et al. The ubiquitin-dependent proteolytic system and other potential targets for the modulation of nuclear factor-kb (nf-kb) [J]. Curr Drug Targets, 2000,1(4):387-399.
    [175]Liu B, Du L and Hong J S. Naloxone protects rat dopaminergic neurons against inflammatory damage through inhibition of microglia activation and superoxide generation [J]. J Pharmacol Exp Ther,2000,293(2):607-617.
    [176]Green L C, Wagner D A, Glogowski J, et al. Analysis of nitrate, nitrite, and [15n]nitrate in biological fluids [J]. Anal Biochem,1982,126(1):131-138.
    [177]Anderson D. Antioxidant defences against reactive oxygen species causing genetic and other damage [J]. Mutat Res,1996,350(1):103-108.
    [178]Meister A. Glutathione-ascorbic acid antioxidant system in animals [J]. J Biol Chem, 1994,269(13):9397-9400.
    [179]Sies H and Stahl W. Vitamins e and c, beta-carotene, and other carotenoids as antioxidants [J]. Am J Clin Nutr,1995,62(6 Suppl):1315S-1321S.
    [180]Duchen M R. Roles of mitochondria in health and disease [J]. Diabetes,2004,53 Suppl l(S96-102.
    [181]Ebadi M, Srinivasan S K and Baxi M D. Oxidative stress and antioxidant therapy in parkinson's disease [J]. Prog Neurobiol,1996,48(1):1-19.
    [182]Nedergaard M. Direct signaling from astrocytes to neurons in cultures of mammalian brain cells [J]. Science,1994,263(5154):1768-1771.
    [183]Sagara J, Makino N and Bannai S. Glutathione efflux from cultured astrocytes [J]. J Neurochem, 1996,66(5):1876-1881.
    [184]Naval M V, Gomez-Serranillos M P, Carretero M E, et al. Neuroprotective effect of a ginseng (panax ginseng) root extract on astrocytes primary culture [J]. J Ethnopharmacol,2007,112(2):262-270.
    [185]Keppler D. Export pumps for glutathione s-conjugates [J]. Free Radic Biol Med, 1999,27(9-10):985-991.
    [186]Klegeris A, McGeer E G and McGeer P L. Therapeutic approaches to inflammation in neurodegenerative disease [J]. Curr Opin Neurol,2007,20(3):351-357.
    [187]Tuppo E E and Arias H R. The role of inflammation in alzheimer's disease [J]. Int J Biochem Cell Biol,2005,37(2):289-305.
    [188]Esposito E, Di Matteo V, Benigno A, et al. Non-steroidal anti-inflammatory drugs in parkinson's disease [J]. Exp Neurol,2007,205(2):295-312.
    [189]Lee H, Kim Y O, Kim H, et al. Flavonoid wogonin from medicinal herb is neuroprotective by inhibiting inflammatory activation of microglia [J]. FASEB J,2003,17(13):1943-1944.
    [190]Zhang A, Hao S, Bi J, et al. Effects of catalpol on mitochondrial function and working memory in mice after lipopolysaccharide-induced acute systemic inflammation [J]. Exp Toxicol Pathol, 2009,61(5):461-469.
    [191]Sawa T and Ohshima H. Nitrative DNA damage in inflammation and its possible role in carcinogenesis [J]. Nitric Oxide,2006,14(2):91-100.
    [192]Heales S J and Bolanos J P. Impairment of brain mitochondrial function by reactive nitrogen species: The role of glutathione in dictating susceptibility [J]. Neurochem Int,2002,40(6):469-474.
    [193]Klein J A and Ackerman S L. Oxidative stress, cell cycle, and neurodegeneration [J]. J Clin Invest, 2003,111(6):785-793.
    [194]Bi J, Jiang B, Liu J H, et al. Protective effects of catalpol against h2o2-induced oxidative stress in astrocytes primary cultures [J]. Neurosci Lett,2008,442(3):224-227.
    [195]Li Y, Bao Y, Jiang B, et al. Catalpol protects primary cultured astrocytes from in vitro ischemia-induced damage [J]. Int J Dev Neurosci,2008,26(3-4):309-317.
    [196]Rockwell P, Yuan H, Magnusson R, et al. Proteasome inhibition in neuronal cells induces a proinflammatory response manifested by upregulation of cyclooxygenase-2, its accumulation as ubiquitin conjugates, and production of the prostaglandin pge(2) [J]. Arch Biochem Biophys, 2000,374(2):325-333.
    [197]Takeda K and Akira S. Toll-like receptors in innate immunity [J]. Int Immunol,2005,17(1):1-14.
    [198]Liew F Y, Xu D, Brint E K, et al. Negative regulation of toll-like receptor-mediated immune responses [J]. Nat Rev Immunol,2005,5(6):446-458.
    [199]Baldwin A S. Control of oncogenesis and cancer therapy resistance by the transcription factor nf-kappab [J]. J Clin Invest,2001,107(3):241-246.
    [200]Delhase M, Li N and Karin M. Kinase regulation in inflammatory response [J]. Nature, 2000,406(6794):367-368.
    [201]Karin M and Ben-Neriah Y. Phosphorylation meets ubiquitination:The control of nf-[kappa]b activity [J]. Annu Rev Immunol,2000,18(621-663.
    [202]Choi H J, Lee S Y, Cho Y, et al. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells:Implications for parkinson's disease [J]. Neurochem Int,2006,48(4):255-262.
    [203]Costa C, Belcastro V, Tozzi A, et al. Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex i inhibition [J]. J Neurosci,2008,28(32):8040-8052.
    [204]Biehlmaier O, Alam M and Schmidt W J. A rat model of parkinsonism shows depletion of dopamine in the retina [J]. Neurochem Int,2007,50(1):189-195.
    [205]Radad K, Rausch W D and Gille G. Rotenone induces cell death in primary dopaminergic culture by increasing ros production and inhibiting mitochondrial respiration [J]. Neurochem Int, 2006,49(4):379-386.
    [206]Yu H, Oh-Hashi K, Tanaka T, et al. Rehmannia glutinosa induces glial cell line-derived neurotrophic factor gene expression in astroglial cells via cpkc and erkl/2 pathways independently [J]. Pharmacol Res,2006,54(1):39-45.
    [207]Bashkatova V, Alam M, Vanin A, et al. Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain [J]. Exp Neurol,2004,186(2):235-241.
    [208]Jankovic J. Levodopa strengths and weaknesses [J]. Neurology,2002,58(4 Suppl 1):S19-32.
    [209]Bredt D S. Endogenous nitric oxide synthesis:Biological functions and pathophysiology [J]. Free RadicRes,1999,31(6):577-596.
    [210]Chen C C and Wang J K. P38 but not p44/42 mitogen-activated protein kinase is required for nitric oxide synthase induction mediated by lipopolysaccharide in raw 264.7 macrophages [J]. Mol Pharmacol,1999,55(3):481-488.
    [211]Liang H L, Whelan H T, Eells J T, et al. Near-infrared light via light-emitting diode treatment is therapeutic against rotenone-and l-methyl-4-phenylpyridinium ion-induced neurotoxicity [J]. Neuroscience,2008,153(4):963-974.
    [212]Bodies A M and Barger S W. Secreted beta-amyloid precursor protein activates microglia viajnk and p38-mapk [J]. Neurobiol Aging,2005,26(1):9-l6.
    [2131 Onyango I G, Turtle J B and Bennett J P, Jr. Activation of p38 and n-acetylcysteine-sensitive c-jun nh2-terminal kinase signaling cascades is required for induction of apoptosis in parkinson's disease cybrids [J]. Mol Cell Neurosci,2005,28(3):452-461.
    [214]Pyo H, Jou I, Jung S, et al. Mitogen-activated protein kinases activated by lipopolysaccharide and beta-amyloid in cultured rat microglia [J]. Neuroreport,1998,9(5):871-874.
    [215]Schapira A H. Mitochondrial involvement in parkinson's disease, huntington's disease, hereditary spastic paraplegia and friedreich's ataxia [J]. Biochim Biophys Acta,1999,1410(2):159-170.
    [216]Ben-Shlomo Y and Bhatia K. Using monoamine oxidase type b inhibitors in parkinson's disease [J]. BMJ,2004,329(7466):581-582.
    [217]Yang S C, Johannessen J N and Markey S P. Metabolism of [14c]mptp in mouse and monkey implicates mpp+, and not bound metabolites, as the operative neurotoxin [J]. Chem Res Toxicol, 1988,1(4):228-233.
    [218]Berlin I, Spreux-Varoquaux O and Launay J M. Platelet monoamine oxidase b activity is inversely associated with plasma cotinine concentration [J]. Nicotine Tob Res,2000,2(3):243-246.
    [219]Shih J C and Chen K. Mao-a and-b gene knock-out mice exhibit distinctly different behavior [J]. Neurobiology (Bp),1999,7(2):235-246.
    [220]Smeyne R J and Jackson-Lewis V. The mptp model of parkinson's disease [J]. Brain Res Mol Brain Res,2005,134(1):57-66.
    [221]Keeney P M, Xie J, Capaldi R A, et al. Parkinson's disease brain mitochondrial complex i has oxidatively damaged subunits and is functionally impaired and misassembled [J]. J Neurosci, 2006,26(19):5256-5264.
    [222]Darios F, Corti O, Lucking C B, et al. Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death [J]. Hum Mol Genet,2003,12(5):517-526.
    [223]Armstrong J S. Mitochondrial membrane permeabilization:The sine qua non for cell death [J]. Bioessays,2006,28(3):253-260.
    [224]Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J]. Anal Biochem,1976,72(248-254.
    [225]Menzies F M, Cookson M R, Taylor R W, et al. Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis [J]. Brain,2002,125(Pt 7):1522-1533.
    [226]Schober A. Classic toxin-induced animal models of parkinson's disease:6-ohda and mptp [J]. Cell Tissue Res,2004,318(1):215-224.
    [227]Cadenas E and Davies K J. Mitochondrial free radical generation, oxidative stress, and aging [J]. Free Radic Biol Med,2000,29(3-4):222-230.
    [228]Duchen M R. Mitochondria in health and disease:Perspectives on a new mitochondrial biology [J]. Mol Aspects Med,2004,25(4):365-451.
    [229]Demaurex N and Distelhorst C. Cell biology. Apoptosis--the calcium connection [J]. Science, 2003,300(5616):65-67.
    [230]Cassarino D S, Parks J K, Parker W D, Jr., et al. The parkinsonian neurotoxin mpp+opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism [J]. Biochim Biophys Acta,1999,1453(1):49-62.
    [231]Betarbet R, Sherer T B, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of parkinson's disease [J]. Nat Neurosci,2000,3(12):1301-1306.
    [232]Squires R F. [discovery of monoamine oxidase forms a and b] [J]. Vopr Med Khim, 1997,43(6):433-439.
    [233]Przedborski S, Tieu K, Perier C, et al. Mptp as a mitochondrial neurotoxic model of parkinson's disease [J]. J Bioenerg Biomembr,2004,36(4):375-379.
    [234]Boada J, Cutillas B, Roig T, et al. Mpp(+)-induced mitochondrial dysfunction is potentiated by dopamine [J]. Biochem Biophys Res Commun,2000,268(3):916-920.
    [235]Musser D A and Oseroff A R. The use of tetrazolium salts to determine sites of damage to the mitochondrial electron transport chain in intact cells following in vitro photodynamic therapy with photofrin ii [J]. Photochem Photobiol,1994,59(6):621-626.
    [236]Shearman M S, Hawtin S R and Tailor V J. The intracellular component of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (mtt) reduction is specifically inhibited by beta-amyloid peptides [J]. J Neurochem,1995,65(1):218-227.
    [237]Tretter L, Sipos I and Adam-Vizi V. Initiation of neuronal damage by complex i deficiency and oxidative stress in parkinson's disease [J]. Neurochem Res,2004,29(3):569-577.
    [238]Jellinger K A. Cell death mechanisms in parkinson's disease [J]. J Neural Transm,2000,107(1):1-29.
    [239]Lee W S, Tsai W J, Yeh P H, et al. Divergent role of calcium on abeta-and mptp-induced cell death in sk-n-sh neuroblastoma [J]. Life Sci,2006,78(11):1268-1275.
    [240]Mattson M P, Barger S W, Begley J G, et al. Calcium, free radicals, and excitotoxic neuronal death in primary cell culture [J]. Methods Cell Biol,1995,46(187-216.
    [241]Krieger C and Duchen M R. Mitochondria, ca2+ and neurodegenerative disease [J]. Eur J Pharmacol, 2002,447(2-3):177-188.
    [242]Crompton M. The mitochondrial permeability transition pore and its role in cell death [J]. Biochem J, 1999,341 (Pt 2)(233-249.
    [243]Iverson S L and Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis [J]. Arch Biochem Biophys,2004,423(1):37-46.
    [244]Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics-2008 update:A report from the american heart association statistics committee and stroke statistics subcommittee [J]. Circulation,2008,117(4):e25-146.
    [245]Barber P A, Demchuk A M, Hirt L, et al. Biochemistry of ischemic stroke [J]. Adv Neurol, 2003,92(151-164.
    [246]Lo E H, Dalkara T and Moskowitz M A. Mechanisms, challenges and opportunities in stroke [J]. Nat Rev Neurosci,2003,4(5):399-415.
    [247]Mattiasson G, Shamloo M, Gido G, et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma [J]. Nat Med,2003,9(8):1062-1068.
    [248]Swanson R A, Ying W and Kauppinen T M. Astrocyte influences on ischemic neuronal death [J]. Curr Mol Med,2004,4(2):193-205.
    [249]Xiong Z G, Zhu X M, Chu X P, et al. Neuroprotection in ischemia:Blocking calcium-permeable acid-sensing ion channels [J]. Cell,2004,118(6):687-698.
    [250]Hsu C P, Oka S, Shao D, et al. Nicotinamide phosphoribosyltransferase regulates cell survival through nad+ synthesis in cardiac myocytes [J]. Circ Res,2009,105(5):481-491.
    [251]Liu D, Pitta M and Mattson M P. Preventing nad(+) depletion protects neurons against excitotoxicity: Bioenergetic effects of mild mitochondrial uncoupling and caloric restriction [J]. Ann N Y Acad Sci, 2008,1147(275-282.
    [252]Liu P, Li H, Cepeda J, et al. Regulation of inflammatory cytokine expression in pulmonary epithelial cells by pre-b-cell colony-enhancing factor via a nonenzymatic and ap-1-dependent mechanism [J]. J Biol Chem,2009,284(40):27344-27351.
    [253]Liu D, Gharavi R, Pitta M, et al. Nicotinamide prevents nad+depletion and protects neurons against excitotoxicity and cerebral ischemia:Nad+ consumption by sirtl may endanger energetically compromised neurons [J]. Neuromolecular Med,2009,11(1):28-42.
    [254]Scarpulla R C. Transcriptional paradigms in mammalian mitochondrial biogenesis and function [J]. Physiol Rev,2008,88(2):611-638.
    [255]Erecinska M and Silver I A. Tissue oxygen tension and brain sensitivity to hypoxia [J]. Respir Physiol,2001,128(3):263-276.
    [256]Soane L, Kahraman S, Kristian T, et al. Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders [J]. J Neurosci Res,2007,85(15):3407-3415.
    [257]Wakade C, Khan M M, De Sevilla L M, et al. Tamoxifen neuroprotection in cerebral ischemia involves attenuation of kinase activation and superoxide production and potentiation of mitochondrial superoxide dismutase [J]. Endocrinology,2008,149(1):367-379.
    [258]Brennan A M, Connor J A and Shuttleworth C W. Nad(p)h fluorescence transients after synaptic activity in brain slices:Predominant role of mitochondrial function [J]. J Cereb Blood Flow Metab, 2006,26(11):1389-1406.
    [259]Dirnagl U, Iadecola C and Moskowitz M A. Pathobiology of ischaemic stroke:An integrated view [J]. Trends Neurosci,1999,22(9):391-397.
    [260]Porcu M and Chiarugi A. The emerging therapeutic potential of sirtuin-interacting drugs:From cell death to lifespan extension [J]. Trends Pharmacol Sci,2005,26(2):94-103.
    [261]Viswanathan M, Kim S K, Berdichevsky A, et al. A role for sir-2.1 regulation of er stress response genes in determining c. Elegans life span [J]. Dev Cell,2005,9(5):605-615.
    [262]Beal M F. Mitochondria take center stage in aging and neurodegeneration [J]. Ann Neurol, 2005,58(4):495-505.
    [263]La Piana G, Marzulli D, Consalvo M 1, et al. Cytochrome c-induced cytosolic nicotinamide adenine dinucleotide oxidation, mitochondrial permeability transition, and apoptosis [J]. Arch Biochem Biophys,2003,410(2):201-211.
    [264]Chong Z Z, Lin S H and Maiese K. The nad+precursor nicotinamide governs neuronal survival during oxidative stress through protein kinase b coupled to foxo3a and mitochondrial membrane potential [J]. J Cereb Blood Flow Metab,2004,24(7):728-743.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700