用户名: 密码: 验证码:
西阿拉善地块早前寒武纪变质基底组成、性质、年代格架及归属
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
位于华北克拉通最西端的阿拉善地块,南邻北祁连造山带,西北接塔里木板块,北部为中亚造山带,大地构造位置独特。由于沙漠遍布,地质条件恶劣,加之基岩露头较少,阿拉善地块是中国研究程度最低的地区之一。长期以来,阿拉善地块都被认为是华北克拉通的一部分。然而,华北克拉通本身的演化历史也存在争议,一种观点认为太古代末期(~2.5Ga),由不同的古老微陆块拼贴完成克拉通化,形成具有统一基底的华北克拉通;另一种观点认为华北克拉通是在古元古代末期(~1.85Ga)由各自独立演化的东、西陆块最终碰撞形成。因此,探讨阿拉善地块的起源与归属问题,必须通过对比华北克拉通同时期的地层、构造、岩浆、变质等重要地质事件,才能更深入地了解阿拉善地块在华北克拉通早前寒武纪演化过程中所扮演的角色,从而对整个华北克拉通的形成与演化提供依据。论文通过野外地质、岩石学、矿物学、地球化学、锆石U-Pb年代学和Lu-Hf同位素分析等方法,对西阿拉善地块早前寒武纪基底—龙首山杂岩和北大山杂岩进行综合研究,来追溯阿拉善地块的起源及早前寒武纪的演化历史。
     龙首山杂岩呈NW-SE向展布于阿拉善地块西南缘,岩石组合包括各类正/副片麻岩、混合岩、片岩、变粒岩、斜长角闪岩和大理岩等。变质岩石的矿物组合显示这些岩石普遍经历了角闪岩相变质作用。对龙首山杂岩中变质深成岩和斜长角闪岩的锆石结构、阴极发光(CL)特征及U-Pb测年分析,获得龙首山杂岩三期古元古代岩浆事件(~2.04,~2.17,~2.33Ga)和两期古元古代晚期变质事件(~1.85Ga和1.90~1.95Ga),其中~1.85Ga角闪岩相变质事件代表龙首山变质基底的最终形成;龙首山杂岩中变沉积岩的碎屑锆石207Pb/206Pb年龄集中在2.0~2.2Ga,少量变质锆石边给出~1.95Ga变质作用时代。因此,变沉积岩的沉积时代为1.95~2.0Ga,其碎屑物源可能主要来自龙首山杂岩早期的深成岩。锆石Hf同位素分析表明,~2.17Ga和~2.04Ga变质深成岩中岩浆锆石的εHf(t)值主要为正值(平均2.52),二阶段模式年龄(TDMC)主体介于2.45~2.65Ga(峰值~2.5Ga),说明这些侵入岩主要来自新太古代末-古元古代早期的新生陆壳再造。变沉积岩中碎屑锆石与变质深成岩中岩浆锆石的εHf(t)值和TDMC总体相似,进一步说明碎屑锆石主要来自龙首山杂岩早期的古元古代深成岩。
     北大山杂岩位于龙首山北部,岩石组合主要包括黑云斜长片麻岩、角闪斜长片麻岩、花岗闪长片麻岩、斜长角闪岩、大理岩和少量片岩、变粒岩、石英岩等。矿物学特征显示这些变质岩石普遍经历了角闪岩相变质作用。其中的石榴斜长角闪岩的峰期矿物组合给出的温压条件为P=0.8~0.9Gpa和T=690~721℃。北大山6件正片麻岩的全岩地化分析显示:样品富SiO2(64.35~70.15wt.%),富Na2O(4.35~5.22wt.%),高Mg#值(34.8~51.5),低K20(1.15~3.53wt.%)和K20/Na2O比值(0.22~0.81);高Sr(591~969ppm)和Sr/Y比值(52-134),低Y(6.11~13.9ppm),Yb(0.5~1.61ppm)和Nb(0.41~7.57ppm),表明这些片麻岩为典型的TTG岩石。运用LA-MC-ICP-MS和SHRIMP锆石U-Pb测年方法,获得TTG片麻岩的岩浆结晶年龄为2.5~2.55Ga,变质年龄为2.47~2.53Ga,这种TTG岩浆作用之后又迅速发生高级变质作用的特征,表明二者是同一构造热事件的产物,与广泛分布在华北克拉通东、西部陆块同期的TTG片麻岩类似。TTG片麻岩还记录了另一期~1.85Ga变质年龄,与龙首山杂岩经历的角闪岩相区域变质事件年龄一致。TTG片麻岩中~2.5Ga锆石的εHf(t)值总体介于0.5~5,二阶段模式年龄集中在2.7~3.0Ga。部分eHf(t)值接近亏损地幔线,说明这些~2.5Ga TTG片麻岩主要来自2.7~3.0Ga新生陆壳在新太古代末期的重熔再造,同时也有少量~2.5Ga新生的幔源物质加入。
     综合龙首山杂岩和北大山杂岩的早前寒武纪岩浆-变质事件特征,认为在新太古代末-古元古代晚期,西阿拉善地块与华北克拉通的其他地区具有相同的演化历史,共同经历了2.7~3.0Ga陆壳生长、~2.5Ga TTG岩浆-变质事件,2.0~2.3Ga岩浆事件,以及1.9~1.95Ga和~1.85Ga两期重要的变质事件。因此,在早前寒武纪,阿拉善地块并不是独立的微陆块,而是华北克拉通的一部分。综合前人资料,认为阿拉善地块不是阴山陆块的西延,而是古元古代孔兹岩带的西延。论文尝试性提出,孔兹岩带可能向西经千里山和贺兰山,到东阿拉善的巴彦乌拉山,再向西延伸到西阿拉善的北大山及龙首山。假如如此,阴山陆块可能比原来认为的要小得多。此外,阿拉善地块的早前寒武纪岩浆-变质事件特征与敦煌地块新发现的~2.5Ga TTG岩浆-变质事件、~1.85Ga高压麻粒岩相变质事件非常一致,推测敦煌地块与阿拉善地块在新太古代到古元古代是统一的陆块,之后被阿尔金断层切割。因此,古元古代孔兹岩带很可能向西北经阿尔金断层延伸到敦煌地块。
The westernmost North China Craton (NCC), termed the Alxa block, is bounded by the North-Qilian Orogen to the south, the Tarim Block to the northwest, and the Central Asian Orogenic Belt to the north. The Alxa block is largely covered by deserts, with Precambrian basement rocks being sporadically exposed, and it remains the least studied area in China. The Alxa Block was traditionally considered as part of the NCC. However, the geological evolutionary history of the NCC remains controversy. Some workers proposed that the NCC was amalgamated by a number of micro-continental blocks and the cratonization was completed at ca.2.5Ga, while the other workers proposed that the NCC was formed by accretion and amalgamation of the western block and eastern block at ca.1.85Ga. To understand the origin and affinity of the Alxa block, consequently, it is of great importance to compare contemporary stratigraphy, tectonics, magmatism and metamorphism of the Alxa block with those of the NCC. Based on these, we can further understand the role of the Alxa block in the early Precambrian evolution of NCC and provide the evidences for the accretion and amalgamation history of the entire NCC. In the present thesis, we present field geology, petrology, geochemistry, U-Pb zircon dating and Hf isotope data on the metamorphic basement rocks of the Longshoushan complex and Beidashan complex in the western Alxa block, aiming to explore the origination and early Precambrian evolution history of the Alxa block.
     The NW-SE trending Longshoushan complex, which locate in the southwest verge of the Alxa block, are composed of para/orthogneisses, migmatites, schists, leptynites, amphibolites and marbles. All these metamorphic basement rocks experienced amphibolite-facies metamorphism. Based on the zircon textures shown by CL images, U-Pb dating reveals that three Paleoproterozoic magmatic episodes (~2.04,~2.17and~2.33Ga) and two subsequent regional metamorphism events (~1.85and1.90~1.95Ga) for metamorphic plutonic rocks and ampibolite in Longshoushan complex.~1.85Ga amphibolite-facies metamorphism represents the formation time of metamorphic basement of the Alxa block. U-Pb dating of the detrital zircons from metasedimentary rocks in Longshoushan complex yields207Pb/206Pb ages between2.0Ga and2.2Ga, and a few metamorphic zircon rims give~1.95Ga metamorphic age, suggesting a sedimentary time between1.95~2.0Ga, and the sedimentary provenance most probably derived from the plutonic rocks in Longshoushan complex. In situ zircon Lu-Hf isotopic analyses show that most magmatic zircons with ages of~2.0Ga and-2.17Ga yield positive εHf(t) values (Avg.2.52) with two-stage Hf model ages (TDMC) between2.45~2.65Ga (with a peak at~2.5Ga), indicating that these Paleoproterozoic plutonic rocks were derived from the reworking of~2.5Ga juvenile crust. Zircons from the plutonic rocks and metasedimentary rocks yielded similar εHf(t) and TDMC values, further indicating the sedimentary provenance most probably derived from the plutonic rocks in Longshoushan complex.
     The Beidashan complex, which lie to the north of Longshoushan, are mainly composed of biotite-plagioclase gneiss, amphibole-plagioclase gneiss, granodioritic gneiss, amphibolites, marbles and minor micaschists, leptynites, quartzite. Mineralogical features show these metamorphic rocks underwent amphibolite-facies metamorphism. Peak metamorphic assemblage (garnet+amphibolite+plagioclase+quartz) in a Garnet-bearing amphibolite in the Beidashan complex gives a metamorphic condition of0.8-0.9Gpa and690~721℃. Six orthogneisses collected from the Beidashan complex contain high SiO2(64.35~70.15wt.%), high Na2O (4.35~5.22wt.%), high Mg#(34.8~51.5), low K2O (1.15~3.53wt.%) and K2O/Na2O ratios (0.22~0.81), with high Sr (591~969ppm) content and Sr/Y rations (52~134), low Y (6.11~13.9ppm), low Yb (0.5~1.61ppm), low Nb (0.41~7.57ppm) content, showing a similar geochemical character with typical Neoarchean TTG. LA-MC-ICPMS and SHRIMP zircon U-Pb dating yielded the emplacement ages of the Beidashan TTG between2.50~2.55Ga and subsequent high-grade metamorphic event between2.47~2.53Ga. The short time interval~(10-50Ma) between initial magmatism and high-grade regional metamorphism signifies that they were related to the same tectonothermal event, similar to the~2.5Ga TTG magmatism and subsequent high-grade regional metamorphism reported in western and eastern block of NCC. The Beidashan TTG also recorded another~1.85Ga metamorphism, coincided with the amphibolite-facies metamorphism in Longshoushan complex, indicating that the~1.85Ga metamorphism was widely distributed in western Alxa block and it might represent the time of the cratonization of entire western Alxa block. Hf isotopic analyses revealed that the~2.5Ga zircons from TTG gneisses contain εHf(t) values mainly between0.8and5.0, with TDMC mainly between2.7~3.0Ga. A few~2.5Ga zircons have values of εHf(t) close to the depleted mantle evolutionary line. These data indicate a main Mesoarchean-Neoarchean (2.7-3.0Ga) crust growth and a minor~2.5Ga juvenile crust formation in western Alxa block.
     In combination with early Precambrian magmatic-metamorphic events in the Longshoushan and Beidashan complex, the western Alxa block show very similar sequence of events to those of the other part of the NCC, and they both experienced main2.7~3.0Ga crust growth,~2.5Ga TTG magmatic-metamorphic event,2.0~2.3Ga magmatic events,1.9~1.95Ga and~1.85Ga high-grade metamorphic events. The western Alxa block is not a separated Paleoproterozoic terrane from the NCC but an integrated part of the NCC from Neoarchean to Paleoproterozoic, and it is most possibly constitute the western extension of the Paleoproterozoic Khondalite Belt, rather than the Yinshan Block. We tentatively propose the Khondalite Belt would extend westward from the Qianlishan-Helanshan, through the Bayanwulashan in the eastern Alxa block, to the Beidashan and Longshoushan in the western Alxa block. This model also implies that the Yinshan block is much smaller than that previously recognized. Moreover, The Dunhuang block, where the~2.5Ga TTG magmatic-metaorphism and~1.85Ga HP granulite-facies metamorphism had been recently identified, show similar early-Precambrian magmatic-metamorphic events with the Alxa block, indicating the Dunhuang block and the western Alxa block might exist as a single block during the Neoarchean to Paleoproterozoic and they were dissected later by the Altyn Tagh fault. The Paleoproterozoic Khondalite Belt possibly extends through the Altyn Tagh fault to the Dunhuang block.
引文
Amelin Y V. Geochronology of the Jack Hills detrital zircons by precise U-Pb isotope dilution analysis of crystal fragments[J]. Chemical Geology,1998,146(1):25-38.
    Amelin Y, Lee D C, Halliday A N, et al. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons[J]. Nature,1999,399(6733):252-255.
    Amelin Y, Lee D C, Halliday A N. Early-middle Archaean crustal evolution deduced from Lu-Hf and U-Pb isotopic studies of single zircon grains[J]. Geochimica et Cosmochimica Acta,2000,64(24): 4205-4225.
    Andersen T. Correction of common lead in U-Pb analyses that do not report 204Pb[J]. Chemical geology,2002,192(1):59-79.
    Armstrong R L. Radiogenic isotopes:the case for crustal recycling on a near-steady-state no-continental-growth Earth, The Origin and Evolution of the Earth's Continental Crust S. Moorbath, BF Windley,259-287[J]. The Royal Society, London,1981.
    Barker F. Trondhjemite:definition, environment and hypotheses of origin[J]. In:Barker, F. (Ed.), Trondhjemites, Dacites and Related Rocks. Elsevier, Amsterdam,1979:1-12.
    Barnes S J, Zhong-Li T. Chrome spinels from the Jinchuan Ni-Cu sulfide deposit, Gansu province, People's Republic of China[J]. Economic Geology,1999,94(3):343-356.
    Batchelor R A, Bowden P. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chemical geology,1985,48(1):43-55.
    Bateman P, Dudek A, Keller J, et al. A classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks[M]. Oxford:Blackwell,1989.
    Bates R L, Jackson J A. Glossary of Geology,2nd[J]. American Geological Institute,1980,751.
    Belousova E A, Kostitsyn Y A, Griffin W L, et al. The growth of the continental crust:Constraints from zircon Hf-isotope data[J]. Lithos,2010,119(3):457-466.
    Benn K, Peschler A P. A detachment fold model for fault zones in the Late Archean Abitibi greenstone belt[J]. Tectonophysics,2005,400(1):85-104.
    Biczok J, Hollings P, Klipfel P, et al. Geochronology of the North Caribou greenstone belt, Superior Province Canada:Implications for tectonic history and gold mineralization at the Musselwhite mine[J]. Precambrian Research,2012,192:209-230.
    Black L P, Kamo S L, Allen C M, et al. TEMORA 1:a new zircon standard for Phanerozoic U-Pb geochronology [J]. Chem Geol,2003,200:155-170.
    Black L P, Sheraton J W, James P R. Late Archaean granites of the Napier Complex, Enderby Land, Antarctica:a comparison of Rb-Sr, Sm-Nd and U-Pb isotopic systematics in a complex terrain[J]. Precambrian research,1986,32(4):343-368.
    Blake T S, Groves D I. Continental rifting and the Archean-Proterozoic transition[J]. Geology,1987, 15(3):229-232.
    Bleeker W. The late Archean record:a puzzle in ca.35 pieces[J]. Lithos,2003,71(2):99-134.
    Bowring S A, Williams I S, Compston W.3.96 Ga gneisses from the Slave province, Northwest Territories, Canada[J]. Geology,1989,17(11):971-975.
    Bowring S A, Williams I S. Priscoan (4.00-4.03 Ga) orthogneisses from northwestern Canada[J]. Contributions to Mineralogy and Petrology,1999,134(1):3-16.
    Bradley D C. Passive margins through earth history[J]. Earth-Science Reviews,2008,91(1):1-26.
    Bradley D C. Secular trends in the geologic record and the supercontinent cycle[J]. Earth-Science Reviews,2011,108(1):16-33.
    Brown G C. The changing pattern of batholith emplacement during earth history[M]//Origin of Granite Batholiths. Birkhauser Boston,1980:106-115.
    Burke K, Dewey J F, Kidd W S F. Dominance of horizontal movements, arc and microcontinental collisions during the later permobile regime[J]. The Early History of the Earth,1976,113-129.
    Cai, J.H., Yan, G.H.,Mu, B.L., Xu, B.L., Shao,H.X., Xu, R.H.,2002.U-Pb and Sm-Nd isotopic ages of an alkaline syenite complex body in Liangtun-Kuangdongguo, Gai County, Liaoning Province, China and their geological significance. Acta Petrologica Sinica 18,349-354.
    Campbell I H, Hill R I. A two-stage model for the formation of the granite-greenstone terrains of the Kalgoorlie-Norseman area, Western Australia[J]. Earth and Planetary Science Letters,1988,90(1):11-25.
    Cavosie A J, Wilde S A, Liu D, et al. Internal zoning and U-Th-Pb chemistry of Jack Hills detrital zircons:a mineral record of early Archean to Mesoproterozoic (4348-1576Ma) magmatism[J]. Precambrian Research,2004,135(4):251-279.
    Chai G, Naldrett A J. Characteristics of Ni-Cu-PGE mineralization and genesis of the Jinchuan deposit, northwest China[J]. Economic Geology,1992,87(6):1475-1495.
    Condie K C, Aster R C. Episodic zircon age spectra of orogenic granitoids:The supercontinent connection and continental growth[J]. Precambrian Research,2010,180(3):227-236.
    Condie K C, Belousova E, Griffin W L, et al. Granitoid events in space and time:constraints from igneous and detrital zircon age spectra[J]. Gondwana Research,2009,15(3):228-242.
    Condie K C. Continental growth during a 1.9-Ga superplume event[J]. Journal of Geodynamics,2002, 34(2):249-264.
    Condie K C. Episodic continental growth and supercontinents:a mantle avalanche connection?[J]. Earth and Planetary Science Letters,1998,163(1):97-108.
    Condie K C. The supercontinent cycle:are there two patterns of cyclicity?[J]. Journal of African Earth Sciences,2002,35(2):179-183.
    Condie K C. TTGs and adakites:are they both slab melts?[J]. Lithos,2005,80(1):33-44.
    Crowley J L, Myers J S, Sylvester P J, et al. Detrital zircon from the Jack Hills and Mount Narryer, Western Australia:evidence for diverse> 4.0 Ga source rocks[J]. The Journal of geology,2005,113(3): 239-263.
    Dall'Agnol R, Oliveira M A, Almeida J A C, et al. Archean and Paleoproterozoic granitoids of the Carajas metallogenetic province, eastern Amazonian craton[C]//Symposium on magmatism, crustal evolution, and metallogenesis of the Amazonian craton. Abstracts volume and field trips guide, Belem, PRONEX-UFPA/SBG-NO.2006:99-150.
    Dale J, Holland T, Powell R. Hornblende-garnet-plagioclase thermobarometry:a natural assemblage calibration of the thermodynamics of hornblende[J]. Contributions to Mineralogy and Petrology,2000, 140(3):353-362.
    Dan W, Li X H, Guo J, et al. Integrated in situ zircon U-Pb age and Hf-O isotopes for the Helanshan khondalites in North China Craton:Juvenile crustal materials deposited in active or passive continental margin?[J]. Precambrian Research,2012.222-223:143-158.
    Dan W, Li X H, Guo J, et al. Paleoproterozoic evolution of the eastern Alxa Block, westernmost North China:Evidence from in situ zircon U-Pb dating and Hf-O isotopes[J]. Gondwana Research,2012. 21(4):838-864.
    Darby B J, Gehrels G. Detrital zircon reference for the North China block[J]. Journal of Asian Earth Sciences,2006,26(6):637-648.
    de Arimateia Costa de Almeida J, Dall' Agnol R, Antonio da Silva Leite A. Geochemistry and zircon geochronology of the Archean granite suites of the Rio Maria granite-greenstone terrane, Carajas Province, Brazil[J]. Journal of South American Earth Sciences,2013,42:103-126
    Dewey J F, Windley B F. Growth and differentiation of the continental crust[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1981, 301(1461):189-206.
    Dey S. Evolution of Archaean crust in the Dharwar craton:The Nd isotope record[J]. Precambrian Research,2013,227:227-246.
    Diwu C, Sun Y, Guo A, et al. Crustal growth in the North China Craton at-2.5 Ga:Evidence from in situ zircon U-Pb ages, Hf isotopes and whole-rock geochemistry of the Dengfeng complex[J]. Gondwana Research,2011,20(1):149-170.
    Dong C Y, Wan Y S, Xu Z Y, et al. Kondalites of the late Paleoproterozoic in the Daqingshan area, North China Craton:SHRIMP zircon U-Pb dating[J]. Science China-Earth Sciences,2011,54:1034-1042.
    Dziggel A, Stevens G, Poujol M, et al. Metamorphism of the granite-greenstone terrane south of the Barberton greenstone belt, South Africa:an insight into the tectono-thermal evolution of the 'lower'portions of the Onverwacht Group[J], Precambrian Research,2002,114(3):221-247.
    Faure M, Trap P, Lin W, et al. Polyorogenic evolution of the paleoproterozoic trans-north china belt[J]. Episodes,2007a,30:96-107.
    Faure M, Trap P, Lin W. et al. The formation of the North China Craton by two Palaeoproterozoic continental collisions in Liiliang-Hengshan-Wutaishan-Fuping massifs[J]. Episodes,2007b,30:1-12.
    Feio G R L, Dall' Agnol R, Dantas E L, et al. Archean granitoid magmatism in the Canaa dos Carajas area:Implications for crustal evolution of the Carajas province, Amazonian craton, Brazil[J]. Precambrian Research,2013,227:157-185.
    Froude D O, Ireland T R, Kinny P D, et al. Ion microprobe identification of 4,100-4,200 Myr-old terrestrial zircons[J]. Nature,1983,304(5927):616-618.
    Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton[J]. Nature,2004,432:892-897
    Geng Y, Du L, Ren L. Growth and reworking of the early Precambrian continental crust in the North China Craton:Constraints from zircon Hf isotopes[J]. Gondwana Research,2012,21(2):517-529.
    Gerdes A, Zeh A. Zircon formation versus zircon alteration-new insights from combined U-Pb and Lu-Hf in-situ LA-ICP-MS analyses, and consequences for the interpretation of Archean zircon from the Central Zone of the Limpopo Belt[J]. Chemical Geology,2009,261(3):230-243.
    Gong S, Chen N, Wang Q, et al. Early Paleoproterozoic magmatism in the Quanji Massif, northeastern margin of the Qinghai-Tibet Plateau and its tectonic significance:LA-ICPMS U-Pb zircon geochronology and geochemistry [J]. Gondwana Research,2012,21(1):152-166.
    Goodwin A M, Ridler R H. The Abitibi orogenic belt[C]//Symposium on basins and geosynclines of the Canadian Shield, AJ Baer (ed). Geological Survey of Canada, Paper.1970:70-40.
    Goodwin A M. Precambrian geology:the dynamic evolution of the continental crust[M]. Academic Press,1991.
    Grant M L. Wilde S A, Wu F, et al. The application of zircon cathodoluminescence imaging, Th-U-Pb chemistry and U-Pb ages in interpreting discrete magmatic and high-grade metamorphic events in the North China Craton at the Archean/Proterozoic boundary[J]. Chemical Geology,2009,261(1): 155-171.
    Green D H. Archaean greenstone belts may include terrestrial equivalents of lunar maria?[J]. Earth and Planetary Science Letters,1972,15(3):263-270.
    Grosch E G, Kosler J, McLoughlin N, et al. Paleoarchean detrital zircon ages from the earliest tectonic basin in the Barberton Greenstone Belt, Kaapvaal craton, South Africa[J]. Precambrian Research, 2011,191(1):85-99.
    Guan H, Sun M, Wilde S A, et al. SHRIMP U-Pb zircon geochronology of the Fuping Complex: implications for formation and assembly of the North China Craton[J]. Precambrian Research,2002, 113(1):1-18.
    Guo J H, Peng P, Chen Y, et al. UHT sapphirine granulite metamorphism at 1.93-1.92 Ga caused by gabbronorite intrusions:Implications for tectonic evolution of the northern margin of the North China Craton[J]. Precambrian Research,2011,222-223:124-142.
    Harley S L, Black A P. A revised Archaen chronology for the Napier Complex, Enderby Land, from SHRIMP ion-microprobe studies[J]. Antarctic Science,1997,9:74-91.
    Harrison T M, Blichert-Toft J, Miiller W, et al. Heterogeneous Hadean hafnium:Evidence of continental crust at 4.4 to 4.5 Ga[J]. Science,2005,310(5756):1947-1950.
    Hawkesworth C J, Dhuime B, Pietranik A B, et al. The generation and evolution of the continental crust[J]. Journal of the Geological Society,2010,167(2):229-248.
    Holdaway M J. Application of new experimental and garnet Margules data to the garnet-biotite geothermometer[J]. American Mineralogist,2000,85(7-8):881-892.
    Holland T, Blundy J. Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry[J]. Contributions to Mineralogy and Petrology,1994,116(4): 433-447.
    Hou G, Santosh M, Qian X, et al. Configuration of the Late Paleoproterozoic supercontinent Columbia:insights from radiating mafic dyke swarms[J]. Gondwana Research,2008,14(3):395-409.
    Huang X L, Wilde S A, Yang Q J, et al. Geochronology and petrogenesis of gray gneisses from the Taihua Complex at Xiong'er in the southern segment of the Trans-North China Orogen:Implications for tectonic transformation in the Early Paleoproterozoic[J]. Lithos,2012,134:236-252.
    Iizuka T, Horie K, Komiya T, et al.4.2 Ga zircon xenocryst in an Acasta gneiss from northwestern Canada:Evidence for early continental crust[J]. Geology,2006,34(4):245-248.
    Iizuka T, Komiya T, Johnson S P, et al. Reworking of Hadean crust in the Acasta gneisses, northwestern Canada:Evidence from in-situ Lu-Hf isotope analysis of zircon[J]. Chemical Geology,2009, 259(3):230-239.
    Iizuka T, Komiya T, Ueno Y, et al. Geology and zircon geochronology of the Acasta Gneiss Complex, northwestern Canada:new constraints on its tectonothermal history [J]. Precambrian Research,2007, 153(3):179-208.
    Jayananda M, Peucat J J, Chardon D, et al. Neoarchean greenstone volcanism and continental growth, Dharwar craton, southern India:Constraints from SIMS U-Pb zircon geochronology and Nd isotopes[J]. Precambrian Research,2013,227:55-76.
    Jian P, Kroner A, Windley B F, et al. Episodic mantle melting-crustal reworking in the late Neoarchean of the northwestern North China Craton:Zircon ages of magmatic and metamorphic rocks from the Yinshan Block[J]. Precambrian Research,2012,222-223:230-254
    Jiang N, Guo J, Zhai M, et al.□12.7 Ga crust growth in the North China craton[J]. Precambrian Research,2010,179(1):37-49.
    Joly A, Miller J, McCuaig T C. Archean polyphase deformation in the Lake Johnston Greenstone Belt area:Implications for the understanding of ore systems of the Yilgarn Craton[J]. Precambrian Research, 2010,177(1):181-198.
    Jose M, Macambira B, Lancelot J R. Time constraints for the formation of the Archean Rio Maria crust, southeastern Amazonian Craton, Brazil[J]. International Geology Review,1996,38(12):1134-1142.
    Kinny P D, Wijbrans J R, Froude D O, et al. Age constraints on the geological evolution of the Narryer Gneiss Complex, Western Australia[J]. Australian Journal of Earth Sciences,1990,37(1):51-69.
    Kohn M J, Spear F S. Two new geobarometers for garnet amphibolites, with applications to southeastern Vermont[J]. American Mineralogist,1990,75(1-2):89-96.
    Kroner A, Hegner E, Wendt J I, et al. The oldest part of the Barberton granitoid-greenstone terrain, South Africa:evidence for crust formation between 3.5 and 3.7 Ga[J]. Precambrian Research,1996,78(1): 105-124.
    Kroner A, Wilde S A, Li J H, et al. Age and evolution of a late Archean to Paleoproterozoic upper to lower crustal section in the Wutaishan/Hengshan/Fuping terrain of northern China[J]. Journal of Asian Earth Sciences,2005,24(5):577-595.
    Kroner A, Wilde S A, Zhao G C, et al. Zircon geochronology and metamorphic evolution of mafic dykes in the Hengshan Complex of northern China:Evidence for late Palaeoproterozoic extension and subsequent high-pressure metamorphism in the North China CratonfJ]. Precambrian Research,2006, 146(1):45-67.
    Kusky T M, Li J H, Tucker R D. The Archean Dongwanzi ophiolite complex, North China craton: 2.505-billion-year-old oceanic crust and mantle[J]. Science,2001,292(5519):1142-1145.
    Kusky T M, Li J. Paleoproterozoic tectonic evolution of the North China Craton[J]. Journal of Asian Earth Sciences,2003,22(4):383-397.
    Kusky T M, Windley B F, Zhai M G. Tectonic evolution of the North China Block:from orogen to craton to orogen[J]. Geological Society, London, Special Publications,2007,280(1):1-34.
    Kusky T M. Geophysical and geological tests of tectonic models of the North China Craton[J], Gondwana Research,2011,20(1):26-35.
    Kusky T M. Tectonic setting and terrane accretion of the Archean Zimbabwe craton[J]. Geology, 1998,26(2):163-166.
    Kusky T, Li J, Santosh M. The Paleoproterozoic north Hebei orogen:North China Craton's collisional suture with the Columbia supercontinent[J]. Gondwana Research,2007,12(1):4-28.
    Lehmann J, Arndt N, Windley B, et al. Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China[J]. Economic Geology,2007,102(1):75-94.
    Li Q L, Chen F, Guo J H, et al. Zircon ages and Nd-Hf isotopic composition of the Zhaertai Group (Inner Mongolia):evidence for early Proterozoic evolution of the northern North China Craton[J]. Journal of Asian Earth Sciences,2007,30(3):573-590.
    Li S, Zhao G, Sun M, et al. Are the south and north Liaohe Groups of North China Craton different exotic terranes? Nd isotope constraints[J]. Gondwana Research,2006,9(1):198-208.
    Li S, Zhao G, Sun M, et al. Deformation history of the Paleoproterozoic Liaohe assemblage in the Eastern Block of the North China Craton[J]. Journal of Asian Earth Sciences,2005,24(5):659-674.
    Li S, Zhao G, Sun M, et al. Mesozoic, not Paleoproterozoic SHRIMP U-Pb zircon ages of two Liaoji granites, eastern block, north China craton[J]. International Geology Review,2004,46(2):162-176.
    Li S, Zhao G. SHRIMP U-Pb zircon geochronology of the Liaoji granitoids:constraints on the evolution of the Paleoproterozoic Jiao-Liao-Ji belt in the Eastern Block of the North China Craton[J]. Precambrian Research,2007,158(1):1-16.
    Li X, Su L, Chung S L, et al. Formation of the Jinchuan ultramafic intrusion and the world's third largest Ni-Cu sulfide deposit:Associated with the□825 Ma south China mantle plume?[J]. Geochemistry, Geophysics, Geosystems,2005,6(11):1-16.
    Li X, Su L, Song B, et al. SHRIMP U-Pb zircon age of the Jinchuan ultramafic intrusion and its geological significance[J]. Chinese Science Bulletin,2004,49(4):420-422.
    Liu D Y, Nutman A P, Compston W, et al. Remnants of≥3800 crust in the Chinese part of the Sino-Korean craton[J]. Geology,1992,20:339-342.
    Liu F, Guo J H, Peng P, et al. Zircon U-Pb ages and geochemistry of the Huai'an TTG gneisses terrane:Petrogenesis and implications for□2.5 Ga crustal growth in the North China Craton[J]. Precambrian Research,2012.212-213:225-244.
    Liu S, Pan Y, Li J, et al. Geological and isotopic geochemical constraints on the evolution of the Fuping Complex, North China Craton[J]. Precambrian Research,2002,117(1):41-56.
    Liu S, Pan Y, Xie Q, et al. Archean geodynamics in the Central Zone, North China Craton:constraints from geochemistry of two contrasting series of granitoids in the Fuping and Wutai complexes[J]. Precambrian Research,2004,130(1):229-249.
    Liu S, Pan Y, Xie Q, et al. Geochemistry of the Paleoproterozonic Nanying granitic gneisses in the Fuping Complex:implications for the tectonic evolution of the Central Zone, North China Craton[J]. Journal of Asian Earth Sciences,2005,24(5):643-658.
    Liu S, Santosh M, Wang W, et al. Zircon U-Pb chronology of the Jianping Complex:implications for the Precambrian crustal evolution history of the northern margin of North China Craton[J]. Gondwana Research,2011,20(1):48-63.
    Liu S, Zhang J, Li Q, et al. Geochemistry and U-Pb zircon ages of metamorphic volcanic rocks of the Paleoproterozoic Luliang Complex and constraints on the evolution of the Trans-North China Orogen, North China Craton[J]. Precambrian Research,2012,222-223:173-190.
    Liu S, Zhao G, Wilde S A, et al. Th-U-Pb monazite geochronology of the Luliang and Wutai Complexes:constraints on the tectonothermal evolution of the Trans-North China Orogen[J]. Precambrian Research,2006,148(3):205-224.
    Liu Y S, Hu Z C, Zong K Q, et al. Reappraisement and refinement of zircon U-Pb isotope and trace element analyses by LA-ICP-MS[J]. Chinese Science Bulletin,2010,55(15):1535-1546.
    Long X, Yuan C, Sun M, et al. Archean crustal evolution of the northern Tarim craton, NW China: Zircon U-Pb and Hf isotopic constraints[J]. Precambrian Research,2010,180(3):272-284.
    Lu S, Li H, Zhang C, et al. Geological and geochronological evidence for the Precambrian evolution of the Tarim Craton and surrounding continental fragments[J]. Precambrian Research,2008,160(1): 94-107.
    Ludwig K R. SQUID 1.12 A User's Manual. A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication,2005:1-22.
    Luo Y, Sun M, Zhao G, et al. A comparison of U-Pb and Hf isotopic compositions of detrital zircons from the North and South Liaohe Groups:Constraints on the evolution of the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research,2008,163(3):279-306.
    Luo Y, Sun M, Zhao G, et al. LA-ICP-MS U-Pb zircon ages of the Liaohe Group in the Eastern Block of the North China Craton:constraints on the evolution of the Jiao-Liao-Ji Belt[J]. Precambrian Research,2004,134(3):349-371.
    Ma M, Wan Y, Santosh M, et al. Decoding multiple tectonothermal events in zircons from single rock samples:SHRIMP zircon U-Pb data from the late Neoarchean rocks of Daqingshan, North China Craton[J]. Gondwana Research,2012,22:810-827.
    Maas R, Kinny P D, Williams I S, et al. The Earth's oldest known crust:a geochronological and geochemical study of 3900-4200 Ma old detrital zircons from Mt. Narryer and Jack Hills, Western Australia[J]. Geochimica et Cosmochimica Acta,1992,56(3):1281-1300.
    Maniar P D, Piccoli P M. Tectonic discrimination of granitoids[J]. Geological society of America bulletin,1989,101(5):635-643.
    Manya S, Maboko M A H. Geochemistry and geochronology of Neoarchaean volcanic rocks of the Iramba-Sekenke greenstone belt, central Tanzania[J]. Precambrian Research,2008,163(3):265-278.
    Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid:relationships and some implications for crustal evolution[J]. Lithos,2005,79(1): 1-24.
    McLennan S M, Taylor S R. Geochemical constraints on the growth of the continental crust[J]. The Journal of Geology,1982,90:347-361.
    Mclennan S M, Taylor S. R. Continental freeboard sedimentation rates and growth of continental crust[J], Nature,1983,306:169-172.
    Middlemost E A K. Naming materials in the magma/igneous rock system[J]. Earth-Science Reviews, 1994,37(3):215-224.
    Mojzsis S J, Harrison T M. Establishment of a 3.83-Ga magmatic age for the Akilia tonalite (southern West Greenland)[J]. Earth and Planetary Science Letters,2002,202(3):563-576.
    Mueller W U, Friedman R, Daigneault R, et al. Timing and characteristics of the Archean subaqueous Blake River Megacaldera Complex, Abitibi greenstone belt, Canada[J]. Precambrian Research,2012,214: 1-27.
    Naldrett A J. World-class Ni-Cu-PGE deposits:key factors in their genesis[J]. Mineralium deposita, 1999,34(3):227-240.
    Nasdala L, Hofmeister W, Norberg N, et al. Zircon M257-a Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon[J]. Geostandards and Geoanalytical Research, 2008,32(3):247-265.
    Nemchin A A, Pidgeon R T, Whitehouse M J. Re-evaluation of the origin and evolution of> 4.2 Ga zircons from the Jack Hills metasedimentary rocks[J]. Earth and Planetary Science Letters,2006,244(1): 218-233.
    Nutman A P, Friend C R L, Paxton S. Detrital zircon sedimentary provenance ages for the Eoarchaean Isua supracrustal belt southern West Greenland:Juxtaposition of an imbricated ca.3700Ma juvenile arc against an older complex with 3920-3760Ma components[J]. Precambrian Research,2009a, 172(3):212-233.
    Nutman A P, Friend C R L. New 1:20,000 scale geological maps, synthesis and history of investigation of the Isua supracrustal belt and adjacent orthogneisses, southern West Greenland:a glimpse of Eoarchaean crust formation and orogeny[J]. Precambrian Research,2009b,172(3):189-211.
    Nutman A P, McGregor V R, Friend C R L, et al. The Itsaq Gneiss Complex of southern West Greenland; the world's most extensive record of early crustal evolution (3900-3600 Ma)[J]. Precambrian Research,1996,78(1):1-39.
    Nutman A P, Wan Y, Liu D. Integrated field geological and zircon morphology evidence for ca.3.8 Ga rocks at Anshan:Comment on" Zircon U-Pb and Hf isotopic constraints on the Early Archean crustal evolution in Anshan of the North China Craton" by Wu et al.[Precambrian Res.167 (2008) 339-362][J]. 2009c.172:357-360.
    O' Neil J, Carlson R W, Paquette J L, et al. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt[J]. Precambrian Research,2012,220-221:23-44.
    O' Neil J, Francis D, Carlson R W. Implications of the Nuwuagittuq greenstone belt for the formation of Earth's early crust[J]. Journal of Petrology,2011,52(5):985-1009.
    Pidgeon R T, Nemchin A A. High abundance of early Archaean grains and the age distribution of detrital zircons in a sillimanite-bearing quartzite from Mt Narryer, Western Australia[J]. Precambrian Research,2006,150(3):201-220.
    Pidgeon R T.3450-my-old volcanics in the Archaean layered greenstone succession of the Pilbara Block, Western Australia[J]. Earth and Planetary Science Letters,1978,37(3):421-428.
    Piper J D A, Beckmann G E J, Badham J P N. Palaeomagnetic Evidence for a Proterozoic Super-Continent [J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1976,280(1298):469-490.
    Polat A, Li J, Fryer B, et al. Geochemical characteristics of the Neoarchean (2800-2700 Ma) Taishan greenstone belt, North China Craton:evidence for plume-craton interaction[J]. Chemical geology,2006, 230(1):60-87.
    Puchtel I S, Blichert-Toft J, Touboul M, et al. Insights into early Earth from Barberton komatiites: Evidence from lithophile isotope and trace element systematics[J]. Geochimica et Cosmochimica Acta, 2013.108:63-90.
    Reymer A, Schubert G. Phanerozoic addition rates to the continental crust and crustal growth[J]. Tectonics,1984,3(1):63-77.
    Rino S, Kon Y, Sato W, et al. The Grenvillian and Pan-African orogens:world's largest orogenies through geologic time, and their implications on the origin of superplume[J]. Gondwana Research,2008, 14(1):51-72.
    Rogers J J W, Santosh M. Configuration of Columbia, a Mesoproterozoic supercontinent[J]. Gondwana Research,2002,5(1):5-22.
    Rogers J J W, Santosh M. Supercontinents in Earth history[J]. Gondwana Research,2003,6(3): 357-368.
    Rogers J J W. A history of continents in the past three billion years[J]. The journal of geology,1996, 104:91-107.
    Rollinson H R, Whitehouse M. The growth of the Zimbabwe Craton during the late Archaean:an ion microprobe U-Pb zircon study[J]. Journal of the Geological Society,2011,168(4):941-952.
    Sano Y, Terada K, Hidaka H, et al. Palaeoproterozoic thermal events recorded in the□ 4.0 Ga Acasta gneiss, Canada:Evidence from SHRIMP U-Pb dating of apatite and zircon[J]. Geochimica et cosmochimica acta,1999,63(6):899-905.
    Santosh M, Liu S J, Tsunogae T, et al. Paleoproterozoic ultrahigh-temperature granulites in the North China Craton:implications for tectonic models on extreme crustal metamorphism[J]. Precambrian Research,2012,222-223:77-106.
    Santosh M, Sajeev K, Li J H, et al. Counterclockwise exhumation of a hot orogen:The Paleoproterozoic ultrahigh-temperature granulites in the North China Craton[J]. Lithos,2009a,110(1): 140-152.
    Santosh M, Tsunogae T, Li J H, et al. Discovery of sapphirine-bearing Mg-Al granulites in the North China Craton:implications for Paleoproterozoic ultrahigh temperature metamorphism[J]. Gondwana Research,2007a,11(3):263-285.
    Santosh M, Tsunogae T, Ohyama H, et al. Carbonic metamorphism at ultrahigh-temperatures: evidence from North China Craton[J]. Earth and Planetary Science Letters,2008,266(1):149-165.
    Santosh M, Wan Y, Liu D, et al. Anatomy of zircons from an ultrahot orogen:the amalgamation of the North China craton within the supercontinent Columbia[J]. The Journal of Geology,2009b,117(4): 429-443.
    Santosh M, Wilde S A, Li J H. Timing of Paleoproterozoic ultrahigh-temperature metamorphism in the North China Craton:evidence from SHRIMP U-Pb zircon geochronology[J]. Precambrian Research, 2007b,159(3):178-196.
    Santosh M, Zhao D, Kusky T. Mantle dynamics of the Paleoproterozoic North China Craton:a perspective based on seismic tomography[J]. Journal of Geodynamics,2010b,49(1):39-53.
    Santosh M. Assembling North China Craton within the Columbia supercontinent:the role of double-sided subduction[J]. Precambrian Research,2010a,178(1):149-167.
    Shang C K, Siebel W, Satir M, et al. Zircon Pb-Pb and U-Pb systematics of TTG rocks in the Congo Craton:Constraints on crust formation, magmatism, and Pan-African lead loss[J]. Bulletin of Geosciences, 2004,79(4):205-219.
    Smelov A P, Shatsky V S, Ragozin A L, et al. Diamondiferous Archean rocks of the Olondo greenstone belt (western Aldan-Stanovoy shield)[J]. Russian Geology and Geophysics,2012,53(10): 1012-1022.
    Sobotovich E V, Kamenev V N, Kornanstyy A A, et al. The oldest rocks of Antarctica (Enderby Land)[J]. International Geology Review,1976,18(4):371-388.
    Song B, Nutman A P, Liu D, et al.3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China[J]. Precambrian Research,1996,78(1):79-94.
    Song X Y, Keays R R, Zhou M F, et al. Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China[J]. Geochimica et Cosmochimica A eta, 2009,73(2):404-424.
    Souza Z S, Potrel A, Lafon J M, et al. Nd, Pb and Sr isotopes in the Identidade belt, an Archaean greenstone belt of the Rio Maria region (Carajas Province, Brazil):implications for the Archaean geodynamic evolution of the Amazonian Craton[J]. Precambrian Research,2001,109:293-315.
    Steiger R H, Jager E. Subcommission on geochronology:convention on the use of decay constants in geo-and cosmochronology[J]. Earth and planetary science letters,1977,36(3):359-362.
    Stein M, Hofmann A W. Mantle plumes and episodic crustal growth[J]. Nature,1994,372:63-68.
    Stern R A, Bleeker W. Age of the world's oldest rocks refined using Canada's SHRIMP:the Acasta gneiss complex, Northwest Territories, Canada[J]. Geoscience Canada,1998,25(1):27-31.
    Sun S S, McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society, London, Special Publications,1989,42(1): 313-345.
    Tam P Y, Zhao G, Liu F, et al. Timing of metamorphism in the Paleoproterozoic Jiao-Liao-Ji Belt: new SHRIMP U-Pb zircon dating of granulites, gneisses and marbles of the Jiaobei massif in the North China Craton[J]. Gondwana Research,2011,19(1):150-162.
    Tam P Y, Zhao G, Sun M, et al. Metamorphic PT path and tectonic implications of medium-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton[J]. Precambrian Research,2012b,220:177-191.
    Tam P Y, Zhao G, Sun M, et al. Petrology and metamorphic PT path of high-pressure mafic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton[J]. Lithos,2012c,155: 94-109.
    Tam P Y, Zhao G, Zhou X, et al. Metamorphic P-T path and implications of high-pressure pelitic granulites from the Jiaobei massif in the Jiao-Liao-Ji Belt, North China Craton[J]. Gondwana Research, 2012a,22(1):104-117.
    Tang H, Chen Y. Global glaciations and atmospheric change at ca.2.3 Ga[J]. Geoscience Frontiers, 2013,1-14.
    Trap P, Faure M, Lin W, et al. Contrasted tectonic styles for the Paleoproterozoic evolution of the North China Craton. Evidence for a~2.1 Ga thermal and tectonic event in the Fuping Massif[J]. Journal of Structural Geology,2008,30(9):1109-1125.
    Trap P, Faure M, Lin W, et al. Late Paleoproterozoic (1900-1800Ma) nappe stacking and polyphase deformation in the Hengshan-Wutaishan area:Implications for the understanding of the Trans-North-China Belt, North China Craton[J]. Precambrian Research,2007,156(1):85-106.
    Trap P, Faure M, Lin W, et al. Syn-collisional channel flow and exhumation of paleoproterozoic High Pressure rocks in the Trans-North China Orogen:the critical role of partial-melting and orogenic bending[J]. Gondwana Research,2011,20(2):498-515.
    Trap P, Faure M, Lin W, et al. The Liiliang Massif:a key area for the understanding of the Palaeoproterozoic Trans-North China Belt, North China Craton[J]. Geological Society, London, Special Publications,2009,323(1):99-125.
    Trap P, Faure M, Lin W, et al. The Paleoproterozoic evolution of the Trans-North China Orogen: toward a synthetic tectonic model[J]. Precambrian Research,2012:222-223.
    Van Kranendonk M J, Hickman A H, Smithies R H, et al. Geology and tectonic evolution of the archean North Pilbara terrain, Pilbara Craton, Western Australia[J]. Economic Geology,2002,97(4): 695-732.
    Van Kranendonk M J, Ivanic T J, Wingate M T D, et al. Long-lived, autochthonous development of the Archean Murchison Domain, and implications for Yilgarn Craton tectonics[J]. Precambrian Research, 2013,229:49-92.
    Viljoen M J, Viljoen R P. Archaean vulcanicity and continental evolution in the Barberton region, Transvaal[J]. African Magmatism and Tectonics, Oliver and Boyd, Edinburgh,1970:27-49.
    Wan Y, Liu D, Wang S, et al.~2.7 Ga juvenile crust formation in the North China Craton (Taishan-Xintai area, western Shandong Province):Further evidence of an understated event from U-Pb dating and Hf isotopic composition of zircon[J]. Precambrian Research,2011,186(1):169-180.
    Wan Y, Song B, Liu D, et al. SHRIMP U-Pb zircon geochronology of Palaeoproterozoic metasedimentary rocks in the North China Craton:evidence for a major Late Palaeoproterozoic tectonothermal event[J]. Precambrian Research,2006,149(3):249-271.
    Wang A, Liu Y. Neoarchean (2.5-2.8 Ga) crustal growth of the North China Craton revealed by zircon Hf isotope:A synthesis[J]. Geoscience Frontiers,2012,3(2):147-173.
    Wang H, Mo X. An outline of the tectonic evolution of China[J]. Episodes-Newsmagazine of the International Union of Geological Sciences,1995,18(1):6-16.
    Wang W, Liu S, Santosh M, et al. Zircon U-Pb-Hf isotopes and whole rock geochemistry of granitoid gneisses in the Jianping gneissic terrane, Western Liaoning Province:Constraints on the Neoarchean crustal evolution of the North China Craton[J]. Precambrian Research,2013,224:184-221.
    Wang W, Yang E X, Zhai M G, et al. Geochemistry of□2.7 Ga basalts from Taishan area:Constraints on the evolution of early Neoarchean granite-greenstone belt in western Shandong Province, ChinafJ]. Precambrian Research,2013,224:94-109.
    Wang Z, Wilde S A, Wan J. Tectonic setting and significance of 2.3-2.1 Ga magmatic events in the Trans-North China Orogen:New constraints from the Yanmenguan mafic-ultramafic intrusion in the Hengshan-Wutai-Fuping area[J]. Precambrian Research,2010,178(1):27-42.
    Wang Z, Wilde S A, Wang K, et al. A MORB-arc basalt-adakite association in the 2.5 Ga Wutai greenstone belt:late Archean magmatism and crustal growth in the North China Craton[J]. Precambrian Research,2004,131(3):323-343.
    Wang Z. Tectonic evolution of the Hengshan-Wutai-Fuping complexes and its implication for the Trans-North China Orogen[J]. Precambrian Research,2009,170(1):73-87.
    Whitney D L, Evans B W. Abbreviations for names of rock-forming minerals[J]. American mineralogist,2010,95(1):185-187.
    Wilde S A, Cawood P A, Wang K, et al. Granitoid evolution in the Late Archean Wutai Complex, North China Craton[J]. Journal of Asian Earth Sciences,2005,24(5):597-613.
    Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago[J]. Nature,2001,409(6817):175-178.
    Wilde S A, Zhao G, Sun M. Development of the North China Craton during the late Archaean and its final amalgamation at 1.8 Ga:Some speculations on its position within a global Palaeoproterozoic supercontinent[J]. Gondwana Research,2002,5(1):85-94.
    Wilde S A,赵国春,王凯怡,等.五台山滹沱群SHRIMP锆石U-Pb年龄:华北克拉通早元古代拼合新证据[J].科学通报,2003,48(20):2180-2186.
    Williams H, Hoffman P F, Lewry J F, et al. Anatomy of North America:thematic geologic portrayals of the continent[J]. Tectonophysics,1991,187(1):117-134.
    Williams I S, Collins W J. Granite-greenstone terranes in the Pilbara Block, Australia, as coeval volcano-plutonic complexes; evidence from U-Pb zircon dating of the Mount Edgar Batholith[J]. Earth and planetary science letters,1990,97(1):41-53.
    Windley B F. Crustal development in the Precambrian[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,1973,273(1235):321-341.
    Windley B F. The evolving continents [J]. Chichester, England and New York, John Wiley and Sons, 1984,416 p.1.
    Wu C M, Zhang J, Ren L D. Empirical garnet-biotite-plagioclase-quartz (GBPQ) geobarometry in medium-to high-grade metapelites[J].Journal of Petrology,2004,45(9):1907-1921.
    Wu F, Zhao G, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton[J]. Journal of Asian Earth Sciences,2005,24(5):523-545.
    Wu M, Zhao G, Sun M, et al. Zircon U-Pb geochronology and Hf isotopes of major lithologies from the Yishui Terrane:Implications for the crustal evolution of the Eastern Block, North China Craton[J]. Lithos,2013,170-171:164-178.
    Xia Q X, Zheng Y F, Yuan H, et al. Contrasting Lu-Hf and U-Th-Pb isotope systematics between metamorphic growth and recrystallization of zircon from eclogite-facies metagranites in the Dabie orogen, China[J]. Lithos,2009,112(3):477-496.
    Xia X, Sun M, Zhao G, et al. LA-ICP-MS U-Pb geochronology of detrital zircons from the Jining Complex, North China Craton and its tectonic significance[J]. Precambrian Research,2006a,144(3): 199-212.
    Xia X, Sun M, Zhao G, et al. U-Pb and Hf isotopic study of detrital zircons from the Wulashan khondalites:constraints on the evolution of the Ordos Terrane, Western Block of the North China Craton[J]. Earth and Planetary Science Letters,2006b,241(3):581-593.
    Xie L W, Yang J H, Wu F Y, et al. PbSL dating of garnet and staurolite:Constraints on the Paleoproterozoic crustal evolution of the Eastern Block, North China Craton[J]. Journal of Asian Earth Sciences,2011,42(1):142-154.
    Yang C, Du L, Ren L, et al. Delineation of the ca.2.7 Ga TTG gneisses in the Zanhuang Complex, North China Craton and its geological implications[J]. Journal of Asian Earth Sciences,2012, in press.
    Yang J, Xu Z, Zhang J, et al. Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains, northwest China[J]. MEMOIRS-GEOLOGICAL SOCIETY OF AMERICA,2001:151-170.
    Yang K F, Fan H R, Santosh M, et al. Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China:Constraints for the mechanism of super accumulation of rare earth elements[J]. Ore Geology Reviews,2011,40(1):122-131.
    Yin C, Zhao G, Guo J, et al. U-Pb and Hf isotopic study of zircons of the Helanshan Complex: constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Lithos,2011,122(1):25-38.
    Yin C, Zhao G, Sun M, et al. LA-ICP-MS U-Pb zircon ages of the Qianlishan Complex:constrains on the evolution of the Khondalite Belt in the Western Block of the North China Craton[J]. Precambrian Research,2009,174(1):78-94.
    Zeh A, Gerdes A, Barton Jr J, et al. U-Th-Pb and Lu-Hf systematics of zircon from TTG's, leucosomes, meta-anorthosites and quartzites of the Limpopo Belt (South Africa):Constraints for the formation, recycling and metamorphism of Palaeoarchaean crustfJ]. Precambrian Research,2010a,179(1): 50-68.
    Zeh A, Gerdes A, Will T M, et al. Hafnium isotope homogenization during metamorphic zircon growth in amphibolite-facies rocks:Examples from the Shackleton Range (Antarctica)[J]. Geochimica et Cosmochimica Acta,2010b,74(16):4740-4758.
    Zhai M G, Santosh M. The early Precambrian odyssey of the North China Craton:a synoptic overview[J]. Gondwana Research,2011,20(1):6-25.
    Zhai M, Bian A, Zhao T. The amalgamation of the supercontinent of North China Craton at the end of Neo-Archaean and its breakup during late Palaeoproterozoic and Meso-Proterozoic[J]. Science in China Series D:Earth Sciences,2000,43(1):219-232.
    Zhai M, Guo J, Li Y, et al. Two linear granite belts in the central-western North China Craton and their implication for Late Neoarchaean-Palaeoproterozoic continental evolution[J]. Precambrian Research, 2003,127(1):267-283.
    Zhai M, Guo J, Liu W. Neoarchean to Paleoproterozoic continental evolution and tectonic history of the North China Craton:a review[J]. Journal of Asian Earth Sciences,2005,24(5):547-561.
    Zhai M, Li T S, Peng P, et al. Precambrian key tectonic events and evolution of the North China Craton[J]. Geological Society, London, Special Publications,2010,338(1):235-262.
    Zhai M, Liu W. Palaeoproterozoic tectonic history of the North China craton:a review[J]. Precambrian Research,2003,122(1):183-199.
    Zhai M, Yang R, Lu W, et al. Geochemistry and evolution of the Qingyuan Archaean granite-greenstone terrain, NE China[J]. Precambrian research,1985,27(1):37-62.
    Zhai M. Precambrian tectonic evolution of the North China Craton[J]. Geological Society, London, Special Publications,2004,226(1):57-72.
    Zhang J, Gong J, Yu S. c.1.85 Ga HP granulite-facies metamorphism in the Dunhuang block of the Tarim Craton, NW China:evidence from U-Pb zircon dating of mafic granulites[J]. Journal of the Geological Society,2012,169(5):511-514.
    Zhang J, Yu S, Gong J, et al. The latest Neoarchean-Paleoproterozoic evolution of the Dunhuang block, eastern Tarim craton, northwestern China:evidence from zircon U-Pb dating and Hf isotopic analyses[J]. Precambrian Research,2012,226:21-42.
    Zhang J, Zhao G, Li S, et al. Polyphase deformation of the Fuping Complex, Trans-North China Orogen:structures, SHRIMP U-Pb zircon ages and tectonic implications[J]. Journal of Structural Geology, 2009,31(2):177-193.
    Zhang J, Zhao G, Li S, et al. Structural pattern of the Wutai Complex and its constraints on the tectonic framework of the Trans-North China Orogen[J]. Precambrian Research,2012,222-223:212-229.
    Zhang L, Zhai M, Zhang X, et al. Formation age and tectonic setting of the Shirengou Neoarchean banded iron deposit in eastern Hebei Province:Constraints from geochemistry and SIMS zircon U-Pb dating[J]. Precambrian Research,2012,222-223:325-338.
    Zhang M, Tang Q, Hu P, et al. Noble gas isotopic constraints on the origin and evolution of the Jinchuan Ni-Cu-(PGE) sulfide ore-bearing ultramafic intrusion, western China[J]. Chemical Geology, 2013,339:301-312.
    Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remnant and episodic reworking of Archean crust in South China[J]. Earth and Planetary Science Letters, 2006,252(1):56-71.
    Zhang X, Zhang L, Xiang P, et al. Zircon U-Pb age, Hf isotopes and geochemistry of Shuichang Algoma-type banded iron-formation, North China Craton:Constraints on the ore-forming age and tectonic setting[J]. Gondwana Research,2011,20(1):137-148.
    Zhao G, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton:implications for Paleoproterozoic tectonic evolution[J]. Precambrian Research,2000, 103(1):55-88.
    Zhao G, He Y, Sun M. The Xiong'er volcanic belt at the southern margin of the North China Craton: Petrographic and geochemical evidence for its outboard position in the Paleo-Mesoproterozoic Columbia Supercontinent[J]. Gondwana research,2009,16(2):170-181.
    Zhao G, Kroner A, Wilde S A, et al. Lithotectonic elements and geological events in the Hengshan-Wutai-Fuping belt:A synthesis and implications for the evolution of the Trans-North China Orogen[J]. Geological Magazine,London,2007,144(5):753-775.
    Zhao G, Sun M, Wilde S A, et al. A Paleo-Mesoproterozoic supercontinent:assembly, growth and breakup[J]. Earth-Science Reviews,2004,67(1):91-123.
    Zhao G, Sun M, Wilde S A, et al. Late Archean to Paleoproterozoic evolution of the North China Craton:key issues revisited[J]. Precambrian Research,2005,136(2):177-202.
    Zhao G, Sun M, Wilde S A, et al. Some key issues in reconstructions of Proterozoic supercontinents[J]. Journal of Asian Earth Sciences,2006,28(1):3-19.
    Zhao G, Sun M, Wilde S A. Reconstruction of a pre-Rodinia supercontinent:New advances and perspectives[J]. Chinese Science Bulletin,2002,47(19):1585-1588.
    Zhao G, Wilde S A, A Cawood P, et al. Tectonothermal history of the basement rocks in the western zone of the North China Craton and its tectonic implications[J]. Tectonophysics,1999,310(1):37-53.
    Zhao G, Wilde S A, Cawood P A, et al. Archean blocks and their boundaries in the North China Craton:lithological, geochemical, structural andP-T path constraints and tectonic evolution[J]. Precambrian Research,2001,107(1):45-73.
    Zhao G, Wilde S A, Cawood P A, et al. SHRIMP U-Pb zircon ages of the Fuping Complex: implications for late Archean to Paleoproterozoic accretion and assembly of the North China Craton[J]. American Journal of Science,2002,302(3):191-226.
    Zhao G, Wilde S A, Cawood P A, et al. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting[J]. International Geology Review, 1998,40(8):706-721.
    Zhao G, Wilde S A, Sun M, et al. SHRIMP U-Pb zircon ages of granitoid rocks in the Luliang Complex:implications for the accretion and evolution of the Trans-North China Orogen[J]. Precambrian Research,2008,160(3):213-226.
    Zhao G, Wilde S A, Sun M, et al. SHRIMP U-Pb zircon geochronology of the Huai'an Complex: Constraints on late Archean to Paleoproterozoic magmatic and metamorphic events in the Trans-North China Orogen[J]. American Journal of Science,2008,308(3):270-303.
    Zheng J P, Griffin W L, O'Reilly S Y.3.6 Ga lower crust in central China:New evidence on the assembly of the NCC[J]. Geology,2004,32:229-232.
    Zheng Y F, Wu Y B, Zhao Z F, et al. Metamorphic effect on zircon Lu-Hf and U-Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasite[J]. Earth and Planetary Science Letters, 2005,240(2):378-400.
    Zhou J B, Wilde S A, Zhao G C, et al. SHRIMP U-Pb zircon dating of the Neoproterozoic Penglai Group and Archean gneisses from the Jiaobei Terrane, North China, and their tectonic implications[J]. Precambrian Research,2008,160(3):323-340.
    陈志勇,杨帅师,孟二根,等.内蒙古阿拉善左旗巴音诺日公地区前寒武系的厘定[J].地质通报,2004,23(4):345-351.
    陈志勇,郑翻身,王忠,等.内蒙古中西部色尔腾山岩群的厘定及其地质意义[J].地质与资源,2007,16(1):1-6.
    戴薪义,刘劲鸿,邵建波.吉林省夹皮沟花岗岩—绿岩带成因模式探讨[J].吉林地质,1990,3:003.
    邓晋福,吴宗絮,赵国春,等.华北地台前寒武花岗岩类,陆壳演化与克拉通形成[J].岩石学报,1999,15(2):190-198.
    第五春荣,孙勇,董增产,等.北秦岭西段冥古宙锆石(4.1-3.9Ga)年代学新进展[J].岩石学报,2010,26(04):1171-1174.
    第五春荣,孙勇,林慈銮,等.豫西宜阳地区TTG质片麻岩锆石U-Pb定年和Hf同位素地质学[J].岩石学报,2007,23(2):253-262.
    第五春荣,孙勇,王倩.华北克拉通地壳生长和演化:来自现代河流碎屑锆石Hf同位素组成的启示[J].岩石学报,2012,28(11):3520-3530.
    董春艳,刘敦一,李俊建,等.华北克拉通西部孔兹岩带形成时代新证据:巴彦乌拉-贺兰山地区锆石SHRIMP定年和Hf同位素组成[J].科学通报,2007,52(16):1913-1922.
    董国安,杨宏仪,刘敦一,等.龙首山岩群碎屑锆石SHRIMP U-Pb年代学及其地质意义[J].科学通报,2007,52(6):688-697.
    董显扬,曾河清.龙首山西段发现科马提岩[J].中国地质科学院西安地质矿产研究所所刊,1990(30):136-139.
    董晓杰,徐仲元,刘正宏,等.内蒙古中部西乌兰不浪地区太古宙高级变质岩锆石U-Pb年代学研究[J].中国科学:地球科学,2012,42(7):1001-1010.
    董昕,张泽明,唐伟.塔里木克拉通北缘的前寒武纪构造热事件——新疆库尔勒铁门关高级变质岩的锆石U-Pb年代学限定[J].岩石学报,2011(1):47-58.
    段吉业,葛肖虹.中国西北地区各构造单元之间地层和生物古地理的亲缘关系兼论西北地区构造格局[J].地质通报,2005,24(6):558-563.
    多吉,温春齐,郭建慈,等.西藏4.1 Ga碎屑锆石年龄的发现[J].科学通报,2007,52(1):19-22.
    范宏瑞,杨奎锋,胡芳芳,等.内蒙古白云鄂博地区基底岩石锆石年代学及对构造背景的指示[J].岩石学报,2010,26(5):1342-1350.
    方同辉,王崇礼.河西堡花岗岩体中闪长质包体与岩浆混合作用[J].西安地质学院学报,1997,19(4):53-61.
    冯益民,吴汉泉.北祁连山及其邻区古生代以来的大地构造演化初探[J].西北地质科学,1992,13(2):61-74.
    甘肃省地质矿产局.1989.甘肃省区域地质志.北京:地质出版社,10-12.
    甘肃省地质矿产局.1997.甘肃省岩石地层.武汉:中国地质大学出版社,62-64.
    葛肖虹,刘俊来.被肢解的西域克拉通[J].岩石学报,2000,16(1):59-66.
    耿元生,沈其韩,任留东.华北克拉通晚太古代末-古元古代初的岩浆事件及构造热体制[J].岩石学报,2010,26(7):1945-1966.
    耿元生,王新社,沈其韩,等.阿拉善地区新元古代晋宁期变形花岗岩的发现及其地质意义[J].岩石矿物学杂志,2002,21(4):412-420.
    耿元生,王新社,沈其韩,等.内蒙古阿拉善地区前寒武纪变质基底阿拉善群的再厘定[J].中国地质,2006,33(1):138-145.
    耿元生,王新社,沈其韩,等.内蒙古阿拉善地区前寒武纪变质岩系形成时代的初步研究[J].中国地质,2007,34(2):251-260.
    耿元生,王新社,吴春明,等.阿拉善变质基底古元古代晚期的构造热事件[J].岩石学报,2010,26(4):1159-1170.
    耿元生,杨崇辉,万渝生.吕梁地区古元古代花岗岩浆作用—来自同位素年代学的证据[J].岩石学报,2006,22(2):305-314.
    耿元生,周喜文,王新社,等.内蒙古贺兰山地区古元古代晚期的花岗岩浆事件及其地质意义:同位素年代学的证据[J].岩石学报,2009(8):1830-1842.
    耿元生,周喜文.阿拉善地区新元古代岩浆事件及其地质意义[J].岩石矿物学杂志,2010,29(006):779-795.
    耿元生,周喜文.阿拉善地区新元古代早期花岗岩的地球化学和锆石Hf同位素特征[J].岩石学报,2011,27(4):897-908.
    宫江华,张建新,于胜尧.阿拉善地块南缘龙首山东段“龙首山岩群”的再厘定—来自碎屑锆石U-Pb定年的证据[J].岩石矿物学杂志,2013,32(1):]-22.
    郭安林,周鼎武.河南中部太古宙登封花岗-绿岩带[J].河南国土资源,1990,2:004.
    郭进京,陆松年.中国新元古代大陆拼合与Rodinia超大陆[J].高校地质学报,1999,5(2):148-156.
    郭召杰,张志诚,刘树文,等.塔里木克拉通早前寒武纪基底层序与组合:颗粒锆石U.Pb年龄新证据[J]Acta Petrologica Sinica,2003,19(3):537-542.
    何艳红,孙勇,陈亮,等.陇山杂岩的LA-ICP-MS锆石U-Pb年龄及其地质意义[J].岩石学报,2005,21(1):125-134.
    侯可军,李延河,田有荣LA-MC-ICP-MS锆石微区原位U-Pb定年技术[J].矿床地质,2009,28(4):481-492.
    侯可军,李延河,邹天人,等LA-MC-ICP-MS锆石Hf同位素的分析方法及地质应用[J].岩石学报,2007,23(10):2595-2604.
    胡健民,刘新社,李振宏,等.鄂尔多斯盆地基底变质岩与花岗岩锆石SHRIMP U-Pb定年[J].科学通报,2012,57(26):2482-2491.
    黄宝春,Otofuji Y I,杨振宇,等.河西走廊和阿拉善东缘地区中寒武世古地磁研究的初步结果.地球物理学报,2000,43:393-401
    黄道袤,张德会,王世炎,等.华北克拉通南缘豫西下汤地区2.3 Ga岩浆作用和1.94 Ga变质作用—锆石U-Pb定年和Hf同位素组成及全岩地球化学研究[J].地质论评,2012,58(3):565-576.
    黄汲清,任纪舜,姜春发,等.中国大地构造基本轮廓[J].地质学报,1977,51(2):117-135.
    黄汲清,任纪舜.中国大地构造及其演化[M].科学出版社,1980.
    黄汲清.中国大地构造的基本特征[J].地质专报(北京:地质出版社),1977.
    霍福臣,曹景轩,董燕生,等.贺兰山—阿拉善地区下,中前寒武系的划分对比及其变质,成矿作用特征[J].吉林大学学报(地球科学版),1987,17(10):35-46.
    贾恩环.甘肃金川硫化铜镍矿床地质特征[J].矿床地质,1986,5(1):27-38.
    简平,张旗,刘敦一,等.内蒙古固阳晚太古代赞岐岩(sanuldte)角闪花岗岩的SHRIMP定年及其意义[J]. Acta Petrologica Sinica,2005,21(1):151-157.
    解广轰,汪云亮,范彩云,等.金川超镁铁岩侵入体及超大型硫化物矿床的成岩成矿机制[J].中国科学D辑,1998,28(增刊):31-36.
    金文山,王汝铮等.1996.中国地层典:古元古界[M].北京:地质出版社.
    靳是琴.不同区域变质相中钙质角闪石的成分特征[J].科学通报,1991,11:851-852.
    李江海,侯贵廷,黄雄南,等.华北克拉通对前寒武纪超大陆旋回的基本制约[J].岩石学报,2001,17(2):177-186.
    李江海,牛向龙,程素华,等.大陆克拉通早期构造演化历史探讨:以华北为例[J].地球科学,2006,31(3):285-293.
    李江海,钱祥麟,刘树文.华北克拉通中部孔兹岩系的地球化学特征及其大陆克拉通化意义[J].中国科学:D辑,1999,29(3):193-203.
    李江海.早前寒武纪地质及深成构造作用研究进展[J].高校地质学报,1998,4(3):303-312.
    李锦轶,张进,曲军峰.华北与阿拉善两个古陆在早古生代晚期拼合—来自宁夏牛首山沉积岩系的证据[J].地质论评,2012,58(2):208-214.
    李锦轶,张进,杨天南,等.北亚造山区南部及其毗邻地区地壳构造分区与构造演化[J].吉林大学学报:地球科学版,2009,39(4):584-605.
    李锦轶.中国大陆地壳“镶嵌与叠覆”的结构特征及其演化[J].地质通报,2004,23(9):986-1004.
    李景春,赵爱林,王力,等.内蒙古色尔腾地区白彦花斜长花岗岩锆石U-Pb年龄[J].岩石矿物学杂志,2003,22(3):225-228.
    李俊建,沈保丰,李惠民,等.内蒙古西部巴彦乌拉山地区花岗闪长岩质片麻岩的单颗粒锆石U-Pb法年龄[J].地质通报,2004,23(12):1243-1245.
    李俊建.太古宙绿岩带研究现状[J].地质调查与研究,1992,3:50-63.
    李俊健.内蒙古阿拉善地块区域成矿系统.博士学位论文.北京:中国地质大学(北京),2006.
    李文渊,汤中立,郭周平,等.阿拉善地块南缘镁铁—超镁铁岩形成时代及地球化学特征[J].岩石矿物学杂志,2004,23(2).
    李文渊.龙首山地区的震旦系[J].西北地质,1992,2:81-88.
    李献华,苏犁,宋彪,等.金川超镁铁侵入岩SHRIMP锆石U-Pb年龄及地质意义[J].科学通报,2004,49(4):401-402.
    李志琛.敦煌地块变质岩系时代新认识[J].中国区域地质,1994(2):131-134.
    刘敦一,万渝生,伍家善,等.华北克拉通太古宙地壳演化和最古老的岩石[J].地质通报,2007,26(9):1131-1138.
    刘富,郭敬辉,路孝平.华北克拉通2.5 Ga地壳生长事件的Nd-Hf同位素证据:以怀安片麻岩地体为例[J].科学通报,2009(17):2517-2526.
    刘建辉,刘福来,刘平华,等.胶北早前寒武纪变质基底多期岩浆-变质热事件:来自TTG片麻岩和花岗质片麻岩中锆石U-Pb定年的证据[J].岩石学报,2011,27(4):943-960.
    刘建忠,张福勤,欧阳自远,等.内蒙古色尔腾山绿岩的地球化学,年代学研究[J].长春科技大学学报,2001,31(3):236-241.
    刘健,李印,凌明星,等.白云鄂博矿床基底岩石的年代学研究及其地质意义[J].地球化学,2011,40(3):209-222.
    刘树文,吕勇军,凤永刚,等.冀北单塔子杂岩的地质学和锆石U-Pb年代学[J].高校地质学报,2007,13(3):484-497.
    刘雪亚,王荃.龙首山古裂谷带及河西走廊的大地构造[J].中国地质科学院院报,1993,第27、28号:1-14.
    刘勇.甘肃金川古元古代花岗岩的特征及地质意义.硕士学位论文.北京:中国地质大学(北京),2008.
    龙晓平,袁超,孙敏,等.库鲁克塔格地区最古老岩石的发现及其地质意义[J].中国科学:地球科学,2011,41(3):291-298.
    卢良兆,徐学纯.中国北方早前寒武纪孔兹岩系[J].地质科技通报,1996(9):60-62.
    陆松年,陈志宏,相振群.泰山世界地质公园古老侵入岩系年代格架[M].地质出版社,2008.
    陆松年,王惠初,李怀坤,等.柴达木盆地北缘“达肯大坂群”的再厘定[J].地质通报,2002,21(1):19-23.
    陆松年,于海峰,金巍.2002.塔里木古大陆东缘的微大陆块体群[J].岩石矿物学杂志,21(4):317-326.
    陆松年,袁桂邦.阿尔金山阿克塔什塔格早前寒武纪岩浆活动的年代学证据[J].地质学报,2003,77(1):61-68.
    马铭株,徐仲元,张连昌,等.内蒙古武川西乌兰不浪地区早前寒武纪变质基底锆石SHRIMP定年及Hf同位素组成[J].岩石学报,2013,29(2):501-516.
    马旭东,郭敬辉,陈亮,等.内蒙固阳晚太古代绿岩带中科马提岩的Re-Os同位素研究[J].科学通报,2010(19):1900-1907.
    梅华林,于海峰,陆松年,等.甘肃敦煌太古宙英云闪长岩:单颗粒锆石U-Pb年龄和Nd同位素[J].前寒武纪研究进展,1998,21(2):41-45.
    梅华林.阴山地区早前寒武纪岩石构造分区及古元古地壳碰撞—伸展构造机制[J].前寒武纪研究进展,1997,20(1):51-56.
    潘桂棠,肖庆辉,陆松年,等.中国大地构造单元划分[J].中国地质,2009,36(1):1-28.
    潘杨杨.阿拉善断块的太古代绿岩带[J].地质科学,1986,2:012.
    钱祥麟,李江海.华北克拉通新太古代不整合事件的确定及其大陆克拉通构造演化意义[J].中国科学D辑,1999,29(1):1-8.
    任纪舜,姜春发,张正坤,等.中国大地构造及其演化[M].北京:科学出版社,1980.1-124.
    沈保丰,彭晓亮.中国太古宙绿岩带[J].地质学报,1993,67(3):208-220.
    沈其韩,耿元生,宋彪,等.华北和扬子陆块及秦岭一大别造山带地表和深部太古宙基底的新信息[J].地质学报,2005,79(5):616-627.
    沈其韩,耿元生,王新社,等.阿拉善地区前寒武纪斜长角闪岩的岩石学,地球化学,形成环境和年代学[J].岩石矿物学杂志,2005,24(1):21-31.
    沈其韩,刘敦一,王平,等.内蒙集宁群变质岩系U-Pb和Rb-Sr同位素年龄的讨论[J].中国地质科学院院报,1987,16:165-178.
    沈其韩,徐惠芬,张宗清,等.中国早前寒武纪麻粒岩[M].地质出版社,1992.
    宋彪,张玉海,万渝生,等.锆石SHRIMP样品靶制作,年龄测定及有关现象讨论[J].地质论评,2002,48(1):26-30.
    汤中立,白云来.华北古大陆西南边缘构造格架与成矿系统[J].地学前缘,1999,6(2):271-283.
    汤中立,杨杰东,徐士进,等.金川含矿超铁镁岩的Sm-Nd定年[J].科学通报,1992,37(10):918-920.
    汤中立,李文渊,等.金川铜镍硫化物(含铂)矿床成矿模式及地质对比[M].地质出版社,1995.
    汤中立.金川硫化铜镍矿床成矿模式[J].现代地质,1990,4(4):55-64.
    汤中立.中国岩浆硫化物矿床的主要成矿机制[J].地质学报,1996,70(3):237-243.
    陶继雄.内蒙固阳地区新太古代变质侵入岩特征及与成矿关系[J].地质调查与研究,2003,26(1):21-25.
    陶仙聪,杨杰东,徐士进.内蒙古野及里辉长岩的Sm-Nd定年[J].科学通报,1994,39(15):1413-1415.
    万渝生,耿元生,沈其韩,等.孔兹岩系—山西吕梁地区界河口群的年代学和地球化学[J].岩石学报,2000,16(1):49-58.
    万渝生,刘敦一,董春艳,等.高级变质作用对锆石U-Pb同位素体系的影响:胶东栖霞地区变质闪长岩锆石定年[J].地学前缘,2011,18(2):17-25.
    万渝生,刘敦一,董春艳,等.中国最老岩石和锆石[J].岩石学报,2009,25(8):1793-1807.
    万渝生,宋彪,杨淳,等.辽宁抚顺-清原地区太古宙岩石SHRIMP锆石U-Pb年代学及其地质意义[J].地质学报,2005,79(1):78-87.
    万渝生,许志琴,杨经绥,等.祁连造山带及邻区前寒武纪深变质基底的时代和组成[J].地球学报,2003,24(4):319-324.
    王洪亮,陈亮,孙勇,等.北秦岭西段奥陶纪火山岩中发现近4.1 Ga的捕虏锆石[J].科学通报,2007,52(14):1685-1693.
    王惠初,陆松年,赵风清,等.华北克拉通古元古代地质记录及其构造意义[J].地质调查与研究,2005,28(3):129-143.
    王洛娟,郭敬辉,彭澎,等.华北克拉通孔兹岩带东端孤山剖面石榴石基性麻粒岩的变质作用及年代学研究[J].岩石学报,2011,27(12):3689-3700.
    王萍,王增光.阿拉善活动块体的划分及归宿[J].地震,1997,17(1):103-112.
    王世进,万渝生,王伟,等.鲁西地区石门山—凤仙山岩体的锆石SHRIMP U-Pb定年及形成时代[J].山东国土资源,2010,26(009):1-6.
    王廷印,张铭杰.早前寒武纪地质研究进展评述[J].兰州大学学报(自然科学版),1999,35(3):164-171.
    吴昌华,孙敏,李惠民,等.乌拉山-集宁孔兹岩锆石激光探针等离子质谱年龄-孔兹岩沉积时限的年代学研究[J]. Acta Petrologica Sinica,2006,22(11):2639-2654.
    吴昌华,钟长汀,陈强安.晋蒙高级地体孔兹岩系的时代[J].岩石学报,1997,13(3):289-302.
    吴昌华.华北克拉通的变质沉积岩及其克拉通的构造划分[J].高校地质学报,2007,13(3):442-457.
    吴昌华,钟长汀.华北陆台中段吕梁期的SW-NE向碰撞[J].前寒武纪研究进展,1998,21(3):28-50.
    吴福元,李献华,郑永飞,等Lu-Hf同位素体系及其岩石学应用[J].岩石学报,2007,23(2):185-220.
    吴福元,杨进辉,柳小明,等.冀东3.8 Ga锆石Hf同位素特征与华北克拉通早期地壳时代[J].科学通报,2005,50(18):1996-2003.
    吴泰然,何国琦.阿拉善地块北缘的蛇绿混杂岩带及其大地构造意义[J].现代地质,1992,6(3):69-78.
    吴泰然,何国琦.内蒙古阿拉善地块北缘的构造单元划分及各单元的基本特征[J].地质学报,1993,67(2):97-108.
    伍家善.中朝古大陆太古宙地质特征及构造演化[M].北京:地质出版社,1998.
    校培喜,由伟丰,曹宣铎,等.甘肃中西部龙首山一带“韩母山群”的重新厘定[J].地质通报,2011,30(8):1228-1232.
    校培喜,由伟丰,谢从瑞,等.贺兰山北段贺兰山岩群富铝片麻岩碎屑锆石LA-ICP-MS U-Pb定年及区域对比[J].地质通报,2011,31(001):26-36.
    修群业,陆松年,于海峰,等.龙首山岩群主体划归古元古代的同位素年龄证据[J].前寒武纪研究进展,2002,25(2):93-96.
    修群业,于海峰,李铨,等.龙首山岩群成岩时代探讨[J].地质学报,2004,78(3):366-373.
    徐亚军,杜远生,黄宏伟,等.华南发现4.1 Ga的碎屑锆石[J].科学通报,2013,58(3):240-246.
    许安东,姜修道.华北地台西缘中元古界蓟县系墩子沟群特征及其地质意义[J].长安大学学报:地球科学版,2003,25(4):27-31.
    许敬龙,孟易辰.敦煌群研究新进展[J].甘肃地质学报,1997,6(A00):1-5.
    许志琴,杨经绥.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999,73(3):193-205.
    闫海卿,苏尚国,焦建刚,等.金川Cu, Ni (PGE)岩浆硫化物矿床成矿时代研究[J].地学前缘(中国地质大学,北京;北京大学),2005,12(2):309-315.
    杨豹,毕守业,张殿发,等.吉林省板石沟—旺文川绿岩带岩石地球化学特征及成岩环境分析[J].吉林地质,1993,12(3):24-31.
    杨刚,杜安道,卢记仁,等.金川镍-铜-铂矿床块状硫化物矿石的Re-Os(ICP-MS)定年[J].中国科学:D辑,2005,35(3):241-245.
    杨合群.论金川硫化铜镍矿床成因[J].中国地质科学院院报,1991,22:117-135.
    杨胜洪,陈江峰,屈文俊,等.金川铜镍硫化物矿床的Re-Os“年龄”及其意义[J].地球化学,2007,36(1):27-36.
    杨雨.全国地层多重划分对比研究:甘肃省岩石地层[M].中国地质大学出版社,1997.
    杨振德,潘行适,杨易福.阿拉善断块及邻区地质构造特征与矿产[M].北京:科学出版社,1988.
    杨振升,徐仲元,刘正宏.孔兹岩系事件与太古宙地壳构造演化[J].前寒武纪研究进展,2000,23(4):206-212.
    于海峰,梅华林,李铨.甘肃敦煌地区太古宙孔兹岩系特征[J].前寒武纪研究进展,1998,21(1):19-25.
    翟明国,卞爱国.华北克拉通新太古代末超大陆拼合及古元古代末-中元古代裂解[J].中国科学:D辑,2000,30(12):129-137.
    翟明国.克拉通化与华北陆块的形成[J].中国科学:地球科学,2011,41(8):1037-1046.
    张旗.评花岗岩的哈克图解[J].岩石矿物学杂志,2012,31(3):425-431.
    张瑞英,张成立,孙勇.中条山前寒武纪花岗岩地球化学,年代学及其地质意义[J].岩石学报,2012,28(11):3559-3573.
    张维杰,李龙,耿明山.内蒙古固阳地区新太古代侵入岩的岩石特征及时代[J].地球科学-中国地质大学学报,2000,25(3):221-226.
    张新虎,刘建宏,徐家乐,等.再论甘肃省的板块构造[J].甘肃地质学报,2005,14(2):1-10.
    张新虎.龙首山古裂谷带的基本特征及其演化历史[J].西北地质,1992,13(1):6-13.
    张永清,张有宽,郑宝军,等.内蒙古中部小南沟-明星沟地区新太古代TTG岩系及其地质意义[J].岩石学报,2006,22(11):2762-2768.
    张玉清,刘俊杰.内蒙古大青山北前壕石英闪长岩锆石U-Pb年龄及地质意义[J].华南地质与矿产,2004,4:22-27.
    张振法,李超英,牛颖智.阿拉善-敦煌陆块的性质,范围及其构造作用和意义[J].内蒙古地质,1997,2(6):1-14.
    张宗清,杜安道,唐索寒,等.金川铜镍矿床年龄和源区同位素地球化学特征[J].地质学报,2004,78(3):359-365.
    赵凤清,李惠民,左义成,等.晋南中条山古元古代花岗岩的锆石U-Pb年龄[J].地质通报,2006,25(4):442-447.
    赵瑞福,郭敬辉,彭澎,等.恒山地区古元古代2.1 Ga地壳重熔事件:钾质花岗岩锆石U-Pb定年及Hf-Nd同位素研究[J].岩石学报,2011,27(6):1607-1623.
    赵祥生,张录易,邹湘华,等.西北地区震旦纪冰碛层及其地层意义[J].中国震旦亚界,1980,].
    赵振华.关于岩石微量元素构造环境判别图解使用的有关问题[J].大地构造与成矿学,2007,31(1):92-103.
    周红英,莫宣学,李俊建,等.内蒙古阿拉善庆格勒图黑云斜长片麻岩的单颗粒锆石U-Pb法年龄[J].矿物岩石地球化学通报,2007,26(3):221-223.
    周良仁,于浦生.阿拉善台隆同位素年龄数据及其地质意义[J].西北地质,1989,1:52-63.
    周喜文,耿元生.贺兰山孔兹岩系的变质时代及其对华北克拉通西部陆块演化的制约[J].岩石学报,2009,25(08):1843-1852.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700