用户名: 密码: 验证码:
介观结构无机生物材料的合成及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文致力于合成具有特殊结构、形貌或特定性质的几种多孔无机生物材料,探讨材料作为药物缓/控释体系的缓释性能,探索其在药物缓/控方面的应用。
     第一章介绍了无机生物材料的性能优势、介孔分子筛的结构特点和合成路线、具有介观结构和多孔结构的几种无机生物材料的合成及应用。在第二章中,选用生物相容性较好的系列脂肪酸为结构导向剂,合成了具有介观结构的多级层状羟基磷灰石,其层间距可随脂肪酸链的增长而增大,表明层间距可调控。第三章中,采用一步法(one-pot)合成了中空介孔壳二氧化硅材料,该方法不仅具有简单快速的特点,而且是绿色合成,不会对环境造成污染;同时,采用微乳液法合成了中空碳酸钙球,并考察了合成条件对产物形貌的影响。在第四章中,引入发光离子制得光功能化的介孔生物活性玻璃球形颗粒,探讨了其做为药物载体的缓释能力以及进行光学监测的可能性。在第五章中,以四氧化三铁颗粒为核使钙、磷物种在其外围生长,得到两种具有磁力性能的磷酸钙样品,两种样品均具有纳米孔道。
     本论文较详细地讨论了多种无机生物材料的制备和性能,为无机生物材料的进一步研究应用打下基础。
Inorganic biomaterials have been the subject of considerable attention due to their good stability in body, high mechanical strength, biocompatibity and hydrophilicity, acid or alkali resist, and innoxiousness. Winter has investigated the relationship between bioactivity in vitro and component, porous structure of inorganic biomaterials, the result implies that component and porous structure are important. The bioactivity in vitro would improve obviously when increasing the surface area and pore volume. Moreover, with porocity, a sharp fall of the rigidity of materials would happen, this is beneficial to the interface stress conduction and necessity achieving the stabile interface of materials. Ordered mesoporous materials are of great interest because of their periodic ordered regular channels, extremely high surface areas and pore volume, high thermal and hydrothermal stability, controllable morphology, and easily functionalized surface. After the addition of luminescent, magnetic substances or organic functional molecule, the mesoporous materials can be applied in target-drug delivery or selective adsorption/ separation of protein etc.. Recently, according to the designed strategy and synthetic method of mesoporous materials, large numbers of novel inorganic biomaterials were synthesized, such as mesoporous hydroxyapatite, mesoporous calcium carbonate, and mesoporous bioactive glass. These porous biomaterials offer an ideal platform for the main potential application in biology field such as remedy, therapy and bone repair.
     In this thesis, we prepared several mesostructured biomaterials as following:(1) synthesis and characterization of multi-lamellar mesostructured hydroxyapatites; (2) exploiting a simple, rapid and green route to fabricate hollow mesoporous silica; (3) synthesis of hollow calcium carbonate; (4) synthesis and characterization of a luminescent europium-doped inorganic porous bioglass sphere; (5) synthesis of magnetic particle-calcium phosphates. The obtained hollow mesoporous silica and europium-doped inorganic porous bioglass sphere were used as drug carriers to investigate the drug storage/release properties using ibuprofen (IBU) as a model drug.
     Learning from the study of Liang etc., there is meaningful relation between lamellar structure and mechanical property. Lamellar materials have an advantage of application in biology. Many researchers have paid attention to synthesize lamellar hydroxyapatite with innoxious surfactants as directing agents. To date, fatty acids have rarely been applied to produce mesostructured hydroxyapatite. Five familiar natural fatty acids were employed to prepare five lamellar mesostructured hydroxyapatites in alcohol/water mixed solvent. The results indicates that the interlayer spacing of HAs can be controlled and HAs with suitable interlayer spacing can be provided to accommodate functional molecules for further applications.
     Calcium carbonate is friendly to environment and organism because of the biocompatibility and biodegradability. There have been several reports on synthesizing hollow porous silica with calcium carbonate as hard template. However, most of the preparations require many tedious and time consuming synthetic steps, usually the hard template should be prapared firstly, following the centrifugation. washing and dispersion repeatly. A facile and rapid approach was exploited to synthesize hollow mesoporous silica materials. Ca(OAc)2 and NaHCO3 solution were mixed rapidly, then TEOS was dropped into the reaction mixture immediately, CTAB was used as second template to form prous structure in the silica shells. After the remove of inoranic CaCO3 and organic CTAB at alcohol/acid solution with ultrasonic assistant, a hollow mesoporous silica was obtained. A great of -OH were maintained by this template removing method, which performed an ideal platform for the adsorption of ibuprofen. This composite showed sustained release profile with ibuprofen as the model drug.
     Hollow calcium carbonate can be effectively used in the carry of large molecules owing to its biodegradable and large hollow structure. A series of hollow calcium carbonate have been reported, only a few hollow calcium carbonate with the particle size less than 500 nm were fabricated, of which the amount of product usually low. In view of these findings, we prepared hollow calcium carbonate (250nm-450nm) in the water/ glycol emulsion system. The morphology of products transformed from sphere to ellipsoid with the increase of amount of glycol.
     Mesoporous bioactive glass has been applied to repair bone defective and lost bone for decades. These days, researchers have paid attention to the synthesis of materials with specifical morphology and property. Mesoporous europium-doped bioactive glass spheres were successfully synthesized by a two-step acid-catalyzed selfassembly process in an inorganic-organic system. The results revealed that the IBU-loaded samples still showed red luminescence of Eu3+ under UV irradiation, and the emission intensities of Eu3+ in the drug carrier system varied with the released amount of IBU. The system demonstrates a great potential in the drug delivery and disease therapy fields.
     Calcium phosphate system has attracted significant interest for the good biodegradable. Many investigations displayed the original structure and functional property, however, there was few research focusing on porous-magnetic calcium phophate. Two Fe3O4 particles were prepared as magnetic core to react with Ca2+ and PO43-, giving the magnetic materials covering with calcium phosphate shell. Interestly, there are nanopores in both of the samples which can been separated easily at magnetic field. It is anticipated that the porous-magnetic calcium phophates may find advanced applications in target-drug delivery or selective adsorption/ separation of drugs etc.
引文
[1]IUPAC, Manual of symbols and terminology, Pure Appl. Chem.,1972,31: 578.
    [2]山口乔等编,窦筠等译,生物陶瓷[M],北京:化学工业出版社.1992-02.
    [3]Black J. Biological Performance of Materials [M], New York:Marcel Dekker, Inc.,1992.
    [4]崔福斋;冯庆玲,生物材料学[M].科学出版社:1996.
    [5]崔福斋;冯庆玲,生物材料学第二版[M].科学出版社:2004.
    [6]J.S. Temenoff, A.G. Mikos著;王远亮等译,生物材料-生物学与材料科学的交叉[M].科学出版社:2009.
    [7]汤顺清;毛萱,无机生物材料学[M].华南理工大学出版社2008.
    [8]李恒德;崔.李.,国内外生物医用材料产业分析[C].新材料产业2005-05-15.
    [9]叶慧,我国生物材料科学与工程已跨入国际先进水平—记中国生物材料科技和产业现状与发展对策沙龙[C].中国医疗器械信息2009-05-25.
    [10]Ducheyne P, Qiu Q, Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function [J]. Biomaterials,1999,20,2287-2303.
    [11]Woodard KL, Hench LL, Profiles in ceramics:Bioactive glass [J]. Am. Ceram. Soc. Bull.,1999,78:50-56.
    [12]Kim HM, Bioactive ceramics:Challenges and perspectives [J]. J. Ceram. Soc. Jpn.,2001,109:S49-S57.
    [13]Yan XX, Deng HX, Huang XH, et al., Mesoporous bioactive glasses. I. Synthesis and structural characterization [J]. J. Non-Cryst. Solids,2005,351: 3209-3217.
    [14]Hench LL, Splinter RJ, Allen WC, et al.. Bonding mechanisms at the interface of ceramic prosthetic materials [J]. J Biomed Mater Res.,1971,117-141.
    [15]Hulbert SF, Hench LL, Forbes D, History of bioceramics [J]. Ceramics in Surgery, Elsevier Scientific Publishing Company, Amsterdam,1983,3-29.
    [16]Ducheyne P, Qiu Q, Bioactive ceramics:the effect of surface reactivity on bone formation and bone cell function [J]. Biomaterials,1999,20:2287-2303.
    [17]White AA, Best SM, Kinloch IA, Hydroxyapatite-carbon nanotube composites for biomedical applications:A review [J]. Int. J. Appl. Ceram. Technol.,2007, 4:1-13.
    [18]Palmer LC, Newcomb CJ, Kaltz SR, et al, Biomimetic Systems for Hydroxyapatite Mineralization Inspired By Bone and Enamel [J]. Chem. Rev., 2008,108:4754-4783.
    [19]Orlovskii VP, Komlev VS, Barinov SM, Hydroxyapatite and hydroxyapatite-based ceramics [J]. Inorg. Mater.,2002,38:973-984.
    [20]Orlovskii VP, Barinov SM, Hydroxyapatite and hydroxyapatite-matrix ceramics:A survey [J]. Russ. J. Inorg. Chem.,2001,46:S129-S149.
    [21]Koutsopoulos S, Synthesis and characterization of hydroxyapatite crystals:A review study on the analytical methods [J]. J. Biomed. Mater. Res.,2002,62: 600-612.
    [22]Kannan S, Goetz-Neunhoeffer F, Neubauer J, et al., Ionic substitutions in biphasic hydroxyapatite and beta-tricalcium phosphate mixtures:Structural analysis by rietveld refinement [J]. J. Am. Ceram. Soc,2008,91:1-12.
    [23]Chu TMG, Orton DG, Hollister SJ, et al., Mechanical and in vivo performance of hydroxyapatite implants with controlled architectures [J]. Biomaterials, 2002,23:1283-1293.
    [24]Deligianni DD, Katsala ND, Koutsoukos PG, et al., Effect of surface roughness of hydroxyapatite on human bone marrow cell adhesion, proliferation, differentiation and detachment strength [J]. Biomaterials,2001,22:87-96.
    [25]Willmann G, Coating of implants with hydroxyapatite material connections between bone and metal [J]. Adv. Eng. Mater.,1999,1:95-105.
    [26]Stayton PS, Drobny GP, Shaw WJ, et al., Molecular recognition at the protein-hydroxyapatite interface [J]. Crit. Rev. Oral Biol. Med.,2003,14: 370-376.
    [27]Chang BS, Lee CK, Hong KS, et al., Osteoconduction at porous hydroxyapatite with various pore configurations [J]. Biomaterials,2000,21: 1291-1298.
    [28]Kim SB, Kim YJ, Yoon TR, et al., The characteristics of a hydroxyapatite-chitosan-PMMA bone cement [J]. Biomaterials,2004,25: 5715-5723.
    [29]Sun LM, Berndt CC, Gross KA, et al., Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings:A review [J]. J. Biomed. Mater. Res.,2001,58:570-592.
    [30]Kikuchi M, Ikoma T, Itoh S, et al., Biomimetic synthesis of bone-like nanocomposites using the self-organization mechanism of hydroxyapatite and collagen [J]. Compos. Sci. Technol.,2004,64:819-825.
    [31]Das S, Mukhopadhyay AK, Datta S, et al., Prospects of microwave processing: An overview [J]. Bull. Mat. Sci.,2009,32:1-13.
    [32]Vallet-Regi M, Gonzalez-Calbet JM, Calcium phosphates as substitution of bone tissues [J]. Prog. Solid State Chem.,2004,32:1-31.
    [33]Kikuchi M, Itoh S, Ichinose S, Shinomiya K, et al., Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo [J]. Biomaterials,2001,22: 1705-1711.
    [34]Yoshikawa H, Tamai N, Murase T, et al., Interconnected porous hydroxyapatite ceramics for bone tissue engineering [J]. J. R. Soc. Interface,2009,6: S341-S348.
    [35]Lee BH, Oyane A, Tsurushima H, et al., A New Approach for Hydroxyapatite Coating on Polymeric Materials Using Laser-Induced Precursor Formation and Subsequent Aging [J]. ACS Appl. Mater. Interfaces,2009,1:1520-1524.
    [36]Supova M, Problem of hydroxyapatite dispersion in polymer matrices:a review [J]. J. Mater. Sci.-Mater. Med.,2009,20:1201-1213.
    [37]Roeder RK, Converse GL, Kane RJ, Yue WM, Hydroxyapatite-reinforced polymer biocomposites for synthetic bone substitutes [J]. Jom,2008,60: 38-45.
    [38]Jalota S, Bhaduri SB, Tas AC, A new rhenanite (beta-NaCaPO4) and hydroxyapatite biophasic biomaterial for skeletal repair [J]. J. Biomed. Mater. Res. Part B,2007,80B:304-316.
    [39]Ong JL, Chan DCN, Hydroxyapatite and their use as coatings in dental implants:A review [J]. Crit. Rev. Biomed. Eng.,2000,28:667A-707A.
    [40]Cannillo V, Lusvarghi L, Pierli F, Sola A, In vitro behaviour of titania-hydroxyapatite functionally graded coatings [J]. Maney Publishing: Numberg, GERMANY,2007,259-267.
    [41]Narayan RJ, Hobbs LW, Jin CM, Rabiei A, The use of functionally gradient materials in medicine [J]. Jom,2006.58:52-56.
    [42]Watari F, Yokoyama A, Omori M, et al., Biocompatibility of materials and development to functionally graded implant for bio-medical application [J]. Compos. Sci. Technol.,2004,64:893-908.
    [43]Werner J, Linner-Krcmar B, Friess W, et al., Mechanical properties and in vitro cell compatibility of hydroxyapatite ceramics with graded pore structure [J]. Biomaterials.2002,23:4285-4294.
    [44]Manjubala I, Kumar TSS, Effect of TiO2-Ag2O additives on the formation of calcium phosphate based functionally graded bioceramics [J]. Biomaterials, 2000,21:1995-2002.
    [45]Chu CL, Yin ZD, Zhu JC, et al., Microstructure and thermal stress relaxation characteristics of hydroxyapatite-Ti functionally graded biomaterial [J]. J. Inorg. Mater.,1999,14:775-782.
    [46]Okazaki M, Takahashi J, Synthesis of functionally graded CO3 apatite as surface biodegradable crystals [J]. Biomaterials,1999,20:1073-1078.
    [47]Frakenburg E, Goldstein S, Bauer T. et al., Biomechanical and Histological Evaluation of a Calcium Phosphate Cement [J]. The Journal of Bone and Joint Surgery,1998,80.
    [48]Lim T, Brebach G, Renner S, et al, Biomechanical evaluation of an injectable calcium phosphate cement for vertebroplasty [J]. Spine,2002,27:1297.
    [49]Hsu HC, Tuan WH, Lee HY, In-situ observation on the transformation of calcium phosphate cement into hydroxyapatite [J]. Mater. Sci. Eng. C-Biomimetic Supramol. Syst.,2009,29:950-954.
    [50]Yuan HP, Li YB, de Bruijn JD, et al., Tissue responses of calcium phosphate cement:a study in dogs [J]. Biomaterials,2000,21:1283-1290.
    [51]Barralet JE, Grover L, Gaunt T, et al., Preparation of macroporous calcium phosphate cement tissue engineering scaffold [J]. Biomaterials,2002,23: 3063-3072.
    [52]Xu HHK, Quinn JB, Calcium phosphate cement containing resorbable fibers for short-term reinforcement and macroporosity [J]. Biomaterials,2002,23: 193-202.
    [53]Larsson S, Bauer T, Use of Injectable Calcium Phosphate Cement for Fracture Fixation:A Review [J]. Clinical Orthopaedics & Related Research,2002,395: 23.
    [54]Yu BQ, Han KW, Ma H, et al., Treatment of tibial plateau fractures with high strength injectable calcium sulphate [J]. Int. Orthop.2009,33:s1127-1133.
    [55]Rauschmann MA, Wichelhaus TA, Stirnal V, et al., Nanocrystalline hydroxyapatite and calcium sulphate as biodegradable composite carrier material for local delivery of antibiotics in bone infections [J]. Biomaterials, 2005,26:2677-2684.
    [56]Fernandez E, Vlad MD, Gel MM, et al., Modulation of porosity in apatitic cements by the use of alpha-tricalcium phosphate-calcium sulphate dihydrate mixtures [J]. Biomaterials,2005,26:3395-3404.
    [57]Nilsson M, Fernandez E, Sarda S, et al., Characterization of a novel calcium phosphate/sulphate bone cement [J]. J. Biomed. Mater. Res.,2002,61: 600-607.
    [58](a) Brunner TJ, Bohner M, Dora C, et al., Comparison of amorphous TCP nanoparticles to micron-sized alpha-TCP as starting materials for calcium phosphate cements [J]. J. Biomed. Mater. Res. Part B,2007,83B:400-407. (b)马杰,生物活性玻璃的制备及其组织性能研究[D],山东:山东大学,2007.
    [59]Wiltfang J, Merten HA, Schlegel KA, et al., Degradation characteristics of alpha and beta tri-calcium- phosphate (TCP) in Minipigs [J]. J. Biomed. Mater. Res.,2002,63:115-121.
    [60]Romeo HE, Fanovich MA, In TTCP-DCPA Based Calcium Phosphate Cements Containing Hybrid Microparticles as Drug Carriers, Buzios, BRAZIL, Oct 21-24,2008 [C]; Prado M, Zavaglia C, Eds. Trans Tech Publications Ltd: Buzios, BRAZIL,2008,489-492.
    [61]Tsai CH, Ju CP, Lin JHC, Morphology and mechanical behavior of TTCP-derived calcium phosphate cement subcutaneously implanted in rats [J]. J. Mater. Sci.-Mater. Med.,2008,19:2407-2415.
    [62]黄占杰,磷酸钙陶瓷生物降解研究的进展[J].功能材料,1997,28:1-4.
    [63]Motisuke M, Carrodeguas RG, Zavaglia CAC. In A Comparative Study between alpha-TCP and Si-alpha-TCP Calcium Phosphate Cement, Buzios, BRAZIL, Oct 21-24,2008 [C]; Prado, M.; Zavaglia, C., Eds. Trans Tech Publications Ltd:Buzios, BRAZIL,2008,201-204.
    [64]Wang IC, Ju CP, Lin JHC, Gamma-radiation effect on morphology and properties of TTCP/DCPA-derived calcium phosphate cement [J]. Mater. Trans.,2005,46:1701-1705.
    [65]Chen GX, Li WW, Zhao BX, Sun K, A Novel Biphasic Bone Scaffold: beta-Calcium Phosphate and Amorphous Calcium Polyphosphate [J]. J. Am. Ceram. Soc.,2009,92:945-948.
    [66]Yuan HP, De Bruijn JD, Li YB, et al., Bone formation induced by calcium phosphate ceramics in soft tissue of dogs:a comparative study between porous alpha-TCP and beta-TCP [J]. J. Mater. Sci.-Mater. Med.,2001,12:7-13.
    [67]Kasten P, Luginbuhl R, van Griensven M, et al., Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, beta-tricalcium phosphate and demineralized bone matrix [J]. Biomaterials, 2003,24:2593-2603.
    [68]Ryu HS, Youn HJ, Hong KS, et al., An improvement in sintering property of beta-tricalcium phosphate by addition of calcium pyrophosphate [J]. Biomaterials,2002,23:909-914.
    [69]Ouyang JM, The modulation and appficafion of matrix in biomimefie mineralization [M]. Beijing:Chemical Industry Press,2006,1-45 [欧阳健明,生物矿化的基质调控及其仿生应用.北京:化学工业出版社,2006,1-45]
    [70]Cui FZ, Biomineralization [M], Beijing. Tsinghua University Press,2007:90-156[崔福斋.生物矿化.北京:清华大学出版社,2007,90-156]
    [71]Brannon Peppas L, Recent advances on the use of biodegradable microparticles and nanoparticles in controlled drug delivery [J]. Int. J. Pharm.,1995,116(1):1-9.
    [72]Bottcher H, Slwik P, Suss W, Sol-Gel Carrier Systems for Controlled Drug Delivery [J]. J. Sol-Gel Sci. Technol.,1998,13 (1-3):277-281.
    [73]Li ZZ, Wen LX, Shao L, et al., Fabrication of porous hollow silica nanoparticles and their applications in drug release control [J]. J. Control. Release,2004,98 (2):245-254.
    [74]Kreuter J. Nanoparticle-based dmg delivery systems [J]. J. Control. Release, 1991,16(1-2):169-176.
    [75]Ueno Y, Futagawa H, Takagi Y, et al. Drug-incorporating calcium carbonate nanoparticles for a new delivery system [J]. J. Control. Release,2005,103 (1): 93-98.
    [76]Sundar VC, Yablon AD, Grazul LJ, Fibre-Optical Features of a Glass Sponge [J]. Nature,2003,424:899-900.
    [77]Auner N, Weis J, Organosilicon Chemistry Ⅲ:From Molecules to Materials Weinheim [M]. Wiley-VCH Press,1998.
    [78]Auner N, Weis J., Organosilicon Chemistry Ⅳ:From Molecules to Materials. Weinheim [M], Wiley-VCH Press,2000.
    [79]Ball P. Made to measure:New Materials for the 21st Century [M]. New Jersey: Princeton University Press,1997.
    [80]何晓晓,王柯敏,谭蔚泓等,基于氨基化SiO2纳米颗粒的新型基因载体[J].科学通报,2002,47(18):1365-1370.
    [81]朱诗国,吕红斌,向娟娟等,一种新型的非病毒DNA传递载体:多聚赖氨酸,硅纳米颗粒[J].科学通报,2002,47(3):193-197.
    [82]李小青,二氧化硅纳米粒子的仿生制备及性能研究[D].湖北:湖北大学,2009.
    [83]Zhang LH, et al., Electrogenerated Chemiluminescence Sensors Using Ru(bpy)32+ Doped in Silica Nanoparticles [J]. Anal. Chem.,2006,78: 5119-5123.
    [84]Rossi LM, Shi LF, Rosenzweig N, et al., Fluorescent Silica Nanospheres for Digital Counting Bioassay of the Breast Cancer Marker HER2/nue [J]. Biosensor and Bioelectronics,2006,21:1900-1906.
    [85]Santra S, Bagwe RP, Dutta D, et al., Synthesis and Characterization of Fluorescent, Radio-Opaque and Paramagnetic Silica Nanoparticles for Multimodal Bioimaging Applications [J]. Adv. Mater.,2005,17:2165-2169.
    [86]Li MJ, Chen ZF, Zu YB, et al. Multifunctional Ruthenium (Ⅱ) Polypyridine Complex-Based Core-Shell Magnetic Silica Nanocomposites:Magnetism, Luminescence, and Electrochemilumine Science [J]. ACS Nano,2008,2: 905-912.
    [87]Tan WH, Wang KM, He XX, et al., Bionanotechnology Based on silica Nanoparticles [J]. Medicinal Research Reviews,2004,24:621-638.
    [88]Santra S, Yang H, Dutta D, et al., TAT conjugated, FITC doped silica nanoparticles for bioimaging applications [J]. Chem. Commun.,2004, 2810-2811.
    [89]Xu XQ, Deng CH, Zhang XM, et al., Synthesis of Magnetic Microspheres with Immobilized Metal Ions for Enrichment and Direct Determination of Phosphopeptides by Matrix-Assisted Laser Desorption Ionization Mass Spectrometry [J]. Adv. Mater.,2006,18:3289-3293.
    [90]Zhou JF, Meng LJ, Lu QH, et al., Superparamagnetic submicro-megranates: Fe3O4 nanoparticles coated with highly cross-linked organic/inorganic hybrids [J]. Chem. Commun.,2009,6370-6372.
    [91](a) Lee KS, Woo MH, Kim HS,et al., Synthesis of hybrid Fe3O4-silica-NiO superstructures and their application as magnetically separable high-performance biocatalysts [J], Chem. Commun.,2009,3780-3782; (b) Hu SH, Liu TY, Huang HY, et al., Magnetic-Sensitive Silica Nanospheres for Controlled Drug Release [J]. Langmuir,2008,24:239-244.
    [92]Hench LL, Splinter RJ, Allen WC, et al., Bonding mechanisms at the interface of ceramic prosthetic materials [J]. J Biomed Mater Res.,1971,117-141.
    [93]Perez-Pariente J, Balas F, Roman J, et al., Influence of composition and surface characteristics on the in vitro bioactivity of SiO2-CaO-P2O5-MgO sol-gel glasses [J]. J. Biomed. Mater. Res.,1999,47:170-175.
    [94]Peitl O, Zanotto ED, Hench LL, Highly bioactive P205-Na2O-CaO-SiO2 glass-ceramics [J]. J. Non-Cryst. Solids,2001,292:115-126.
    [95]Xynos I, Hukkanen M, Batten J, et al., Bioglass 45S5 stimulates osteoblast turnover and enhances bone formation in vitro:implications and applications for bone tissue engineering [J]. Calcif. Tissue Int.,2000,67:321-329.
    [96]Fujibayashi S, Neo M, Kim HM, et al., A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O-CaO-SiO2 glasses [J]. Biomaterials,2003,24:1349-1356.
    [97]Saravanapavan P, Jones JR, Pryce RS, et al., Bioactivity of gel-glass powders in the CaO-SiO2 system:A comparison with ternary (CaO-P2O5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O) [J]. J. Biomed. Mater. Res. Part A, 2003,66A:110-119.
    [98]Bromer H, In Properties of the Bioactive Implant Material 'Ceravital'[J].1977, 219.
    [99]Gross U, Miiller-Mai C, Voigt C, Ceravital Bioactive Glass-Ceramics [J]. An Introduction to bioceramics,1993,105-123.
    [100]Gross U, Kinne R, Schmitz H, et al., Ceravital bioactive ceramics [C]. CRC Crit Rev Biocompatibility,1998.
    [101]张云,杨.周.尹.陈.肖.,AW.生物医学工程杂志[J],2003,20:541-545.
    [102]Holand W, Vogel W, Schubert T, et al., In Structure and properties of Bioverit glass ceramics [J].1989,97-104.
    [103]Verne E, Ferraris M, Jana C, et al., Bioverital base glass/Ti particulate biocomposite:in situ vacuum plasma spray deposition [J]. Journal of the European Ceramic Society,2000,20:473-479.
    [104]Chang J, Chen L, In Silicate-based Bioactive Materials for Bone Regeneration, Tsukuba, JAPAN, Dec 06-08,2007 [C]; Tateishi T, Ed. World Scientific Publ Co Pte Ltd:Tsukuba, JAPAN,2007,343-363.
    [105]Vallet-Regi M, Ragel CV, Salinas AJ, Glasses with medical applications [J]. European Journal of Inorganic Chemistry,2003,1029-1042.
    [106]Alemany MI, Velasquez P, de la Casa-Lillo MA, et al., Effect of materials' processing methods on the 'in vitro'bioactivity of wollastonite glass-ceramic materials [J]. J. Non-Cryst. Solids.2005,351:1716-1726.
    [107]De Aza AH, Velasquez P, Alemany MI, et al., In situ bone-like apatite formation from a Bioeutectic((R)) ceramic in SBF dynamic flow [J]. J. Am. Ceram. Soc.,2007,90:1200-1207.
    [108]De Leeuw NH, Mkhonto D, The effect of the nature of silica substrate surfaces on the adhesion of apatite thin films [J]. J. Mater. Chem.,2005,15:3272-3277.
    [109]Siriphannon P, Kameshima Y, Yasumori A, et al., Formation of hydroxyapatite on CaSiO3 powders in simulated body fluid [J]. J. European Ceram. Soc.,2002, 22L:511-520.
    [110]Kokubo T, Kim HM, Kawashita M, Novel bioactive materials with different mechanical properties [J]. Biomaterials,2003,24:2161-2175.
    [111]Xynos ID, Hukkanen MVJ. Batten JJ, et al., Bioglass (R) 45S5 stimulates osteoblast turnover and enhances bone formation in vitro:Implications and applications for bone tissue engineering [J]. Calcif. Tissue Int.,2000,67: 321-329.
    [112]Shi QH, Wang JF, Zhang JP, et al., Rapid-setting, mesoporous, bioactive glass cements that induce accelerated in vitro apatite formation [J]. Adv. Mater., 2006,18:1038-1042.
    [113]Moawad HMM, Jain H, Development of nano-macroporous soda-lime phosphofluorosilicate bioactive glass and glass-ceramics [J]. J. Mater. Sci.-Mater. Med.,2009,20:1409-1418.
    [114]Tikhomirov VK, Furniss D, Seddon AB, et al., Fabrication and characterization of nanoscale, Er3+-doped, ultratransparent oxy-fluoride glass ceramics [J]. Appl. Phys. Lett.,2002,81:1937-1939.
    [115]Tanabe S, Hayashi H, Hanada T, et al., Fluorescence properties of Er3+ ions in glass ceramics containing LaF3 nanocrystals [J]. Opt. Mater.,2002,19: 343-349.
    [116]Salinas AJ, Roman J, Vallet-Regi M, et al., In vitro bioactivity of glass and glass-ceramics of the 3CaO center dot P2O5-CaO center dot SiO2-CaO center dot MgO center dot 2SiO(2) system [J]. Biomaterials,2000,21:251-257.
    [117]Bini M, Grandi S, Capsoni D, et al., SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without ZnO:Relationships among Composition, Microstructure, and Bioactivity [J]. J. Phys. Chem. C,2009,113:8821-8828.
    [118]Salman SM, Salama SN, Darwish H, et al., In vitro bioactivity of glass-ceramics of the CaMgSi2O6-CaSiO3-Ca5(PO4)3-F-Na2SiO3 system with TiO2 or ZnO additives [J]. Ceram. Int.,2009,35:1083-1093.
    [119]Kokubo T, Ito S, Shigematsu M, et al., Mechanical properties of a new type of apatite-containing glass-ceramic for prosthetic application [J]. Journal of Materials Science,1985,20:2001-2004.
    [120]Ohtsuki C, Kushitani H, Kokubo T, et al., Apatite formation on the surface of Ceravital-type glass-ceramic in the body [J]. J. Biomed. Mater. Res.,1991,25.
    [121]干福熹主编,现代玻璃科学技术(下册)[M],上海,上海科学技术出版社,1988.
    [122]Firouzi A, Kumar D, Bull LM, et al., Cooperative organization of inorganic-surfactant and biomimetic assemblies [J]. Science,1995,267: 1138-1143.
    [123]Wan Y, Zhao DY, On the Controllable Soft-Templating Approach to Mesoporous Silicates [J]. Chemical Reviews,2007,107:2821-2860.
    [124]许宪祝,介孔材料与阴离子交换剂[M].哈尔滨:东北林业大学出版社,2005:1-1331.
    [125]Sun Y, Zhu L. Lu H, et al., Sulfated zirconia supported in mesoporous materials [J]. Appl. Catal. A:Gen.,2002,237:21.
    [126]Mori Y, Pinnavaia TJ, Optimizing Organic Functionality in Mesostructured Silica:Direct Assembly of Mercaptopropyl Groups in Wormhole Framework Structures [J]. Chem. Mater.,2001,13:2173-2178.
    [127]Koletstra KR, Van Bekkum H, Chin H, et al.. Solid mesoporous base catalysts comprising of MCM-41 supported intraporous cesium oxide [J]. Stud. Surf. Sci. Catal.,1997,105:431-438.
    [128]Mdoe JEG, Clark JH, Macquarrie DJ, Michael Additions Catalysed by N,N-dimethyl-3-aminopropyl-Derivatised Amorphous Silica and Hexagonal Mesoporous Silica (HMS) [J]. Synlett.,1998,6:625-627.
    [129]Kaoor MP, Inagaki S, Synthesis of Mesoporous Silicon Oxynitrides via Direct Nitridation with Nitrogen [J]. Chem. Lett.,2003,32:94-95.
    [130]Tuel A, Gontier S, Teissier R, Zirconium containing mesoporous silicas:new catalysts for oxidation reactions in the liquid phase [J]. Chem. Commun.,1996, 651-652.
    [131]Gontier S, Tuel A, Novel zirconium containing mesoporous silicas for oxidation reactions in the liquid phase [J]. Appl. Catal. A,1996,143:125-135.
    [132](a) Rice RL, Arnold DC, Shaw MT, et al., Advanced Functional Materials [J]. 2007,17:133; (b) Zhang RY, Ding W, Tu B, Zhao DY. Mesoporous Silica:An Efficient Nanoreactor for Liquid-Liquid Biphase Reactions [J]. Chem. Mater., 2007,19:4379-4381.
    [133]Araki H, Fukuoka A, Sakamoto Y, et al., Phosphinoethyl-sulfonatoalkylthio-ethers and diphenyl-ω-sulfonatoalkyl-phosphines as ligands and polyoxyethylene-polyoxypropylene-polyoxyethylene triblock co-polymers as promoters in the rhodium-catalyzed hydroformylation of 1-dodecene in aqueous two-phase systems [J]. J. Mol. Catal. A:Chem.,2003,199:95-103.
    [134]Arbiol J, Cabot A, Morante JR, et al., Distributions of noble metal Pd and Pt in mesoporous silica [J]. Appl. Phys. Lett.,2002,81:3449-3451.
    [135]Crowley AT, Ziegler KJ, Lyons DM, et al., Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays within a Mesoporous Silica Template [J]. Chem. Mater.,2003,15:3518-3522.
    [136]Fukuoka A, Shakamoto Y, Guan S, et al., Novel Templating Synthesis of Necklace-Shaped Mono- and Bimetallic Nanowires in Hybrid Organic-Inorganic Mesoporous Material [J]. J. Am. Chem. Soc.,2001,123: 3373-3374.
    [137]Fukuoka A, Araki H, Sakamoto Y, et al., Template Synthesis of Nanoparticle Arrays of Gold and Platinumin Mesoporous Silica Films [J]. Nano Lett.,2002, 2:793-795.
    [138]Fukuoka A, Shakamoto Y, Araki H, et al., In Nanotechnology in Mesostructure Materials [J]. ELSEVIER SCIENCE BV:Amsterdam,2003,146:23-28.
    [130]Fukuoka A, Araki H, Shakamoto Y, et al., Palladium nanowires and nanoparticles in mesoporous silica templates [J]. Inorg. Chim. Acta.,2003,350: 371-378.
    [140]Han YJ, Kim JM, Stucky GD, Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15 [J]. Chem. Mater.,2000,12: 2068-2069.
    [141]Moller K, Bein T, Inclusion Chemistry in Periodic Mesoporous Hosts [J]. Chem. Mater.,1998,10:2950-2963.
    [142]Valet-Regi M, Ramila A, De-Real RP, et al., A New Property of MCM-41: Drug Delivery System [J]. Chem. Mater.,2001,13:308-311.
    [143]Stein A, Melde BJ, Schroden RC, Hybrid Inorganic-Organic Mesoporous Silicates-Nanoscopic Reactors Coming of Age [J]. Adv. Mater.,2000,12: 1403-1419.
    [144]Jain A, Rogojevic S, Ponoth S, et al., Porous silica materials as low-k dielectrics for electronic and optical Interconnects [J]. Thin Solid Films,2001, (398-399):513-522.
    [145]Baskaran S, Liu J, Domansky K, et al., Low Dielectric Constant Mesoporous Silica Films Through Molecularly Templated Synthesis [J]. Adv. Mater.,2000, 12:291-294.
    [146]Balkenende AR, de Theije FK, Kriege JC, Controlling Dielectric and Optical Properties of Ordered Mesoporous Organosilicate Films [J]. Adv. Mater.,2003, 15:139-143.
    [147]Marlow F, McGehee MD, Zhao DY, et al., Doped Mesoporous Silica Fibers:A New Laser Material [J], Advanced Materials,1999,11(8):632-636.
    [148](a) Boissiere C, Kummel M, Persin M, et al.. Adv. Funct. Mater.,2001,11: 129-135; (b) Zornoza B, Irusta S, Tellez C, et al., Mesoporous Silica Sphere-Polysulfone Mixed Matrix Membranes for Gas Separation [J], Langmuir,2009,25(10):5903-5909; (c) Kelly TL, Yano K, Wolf MO, Nanoscale Control over Phase Separation in Conjugated Polymer Blends Using Mesoporous Silica Spheres [J]. Langmuir,2010,26(1):421-431.
    [149]Antonietti M, Ozin GA, Promises and Problems of Mesoscale Materials Chemistry or Why Meso? [J]. Chem. Eur. J.,2004,10:28-41.
    [150]Zhao JW, Gao F, Fu YL, et al., Biomolecule separation using large pore mesoporous SBA-15 as a substrate in high performance liquid chromatography [J]. Chem. Commun,2002,752-753.
    [151](a) Liu J, Qiao SZ, Hu QH, et al., Magnetic Nanocomposites with Mesoporous Structures:Synthesis and Applications [J]. Small,2011,7:425-443; (b) Li GL, Liu G, Kang ET, et al., pH-Responsive Hollow Polymeric Microspheres and Concentric Hollow Silica Microspheres from Silica-Polymer Core-Shell Microspheres [J]. Langmuir,2008,24:9050-9055.
    [152]Schuth F, Endo- and Exotemplating to Create High-Surface-Area Inorganic Materials [J]. Angew. Chem. Int. Ed.,2003,42:3604 and reference therein.
    [153]Soler-illia G, Sanchez C, Lebeau B, et al., Chemical Strategies To Design Textured Materials:from Microporous and Mesoporous Oxides to Nanonetworks and Hierarchical Structures [J]. Chem. Rev.,2002,102:4093.
    [154]Huo Q, Margolese D, Stucky G, Surfactant Control of Phases in the Synthesis of Mesoporous Silica-Based Materials [J]. Chem. Mater.,1996,8:1147-1160.
    [155]储彬.新型有序介孔材料的合成与表征[D].长春:吉林大学化学学院,2007.
    [156]Garcia C, Zhang Y, Disalvo F, et al., Mesoporous Aluminosilicate Materials with Superparamagnetic γ-Fe2O3 Particles Embedded in the Walls [J]. Angew. Chem. Int. Ed.,2003,42:1526-1530.
    [157]Wan Y, Zhao DY. On the Controllable Soft-Templating Approach to Mesoporous Silicates [J]. Chemical Reviews,2007,107:2821-2856.
    [158]Yang PD, Deng T, Zhao DY, et al., Hierarchically Ordered Oxides [J]. Science, 1998,282:2244.
    [159]Yang PD, Zhao DY, Margolese DI, et al., Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks [J]. Nature,1998, 396:152.
    [160]Caruso F, Lichtenfeld H, Giersig M, et al., Electrostatic Self-Assembly of Silica Nanoparticle-Polyelectrolyte Multilayers on Polystyrene Latex Particles [J]. J. Am. Chem. Soc.,1998,120:8523-8524.
    [161]Zhang LJ, Acunzi MD, Vollmer D, et al., Hollow Silica Spheres:Synthesis and Mechanical Properties [J]. Langmuir,2009,25:2711-2717.
    [162]Qi GG, Wang YB, Giannelis EP, et al., Facile and Scalable Synthesis of Monodispersed Spherical Capsules with a Mesoporous Shell [J]. Chem. Mater., 2010,22:2693-2695.
    [163]Zhu YF, Ikoma T, Hanagata N, et al., Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres as Carriers for Drug Delivery [J]. Small,2010,6: 471-478.
    [164]Zhu YF, Kockrick E, Kaskel S, An Efficient Route to Rattle-Type Fe3O4@SiO2 Hollow Mesoporous Spheres Using Colloidal Carbon Spheres Templates [J]. Chem. Mater.,2009,21:2547-2553.
    [165]Chen JF, Wang YH, Guo F, et al., Synthesis of Nanoparticles with Novel Technology:High-Gravity Reactive Precipitation [J]. Ind. Eng. Chem. Res., 2000,39:948-954.
    [166]Chen JF, Ding HM, Wang JX, et al., Preparation and characterization of porous hollow silica nanoparticles for drug delivery application [J]. Biomaterials, 2004,25:723-727.
    [167]Wang JX, Ding HM, Tao X, et al., Storage and sustained release of volatile substances from a hollow silica matrix [J]. Nanotechnology,2007,18:245705.
    [168]Yang YJ, Tao X, Hou Q, et al., Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen [J]. Acta Biomaterialia,2009,5:3488-3496.
    [169]Bau L, Bartova B, Arduini M, et al., Surfactant-free synthesis of mesoporous and hollow silica nanoparticles with an inorganic template [J]. Chem. Commun.,2009,7584-7586.
    [170]Williamson PA, Blower PJ, Green MA, Synthesis of porous hollow silica nanostructures using hydroxyapatite nanoparticle templates [J]. Chem. Commun.,2011,47:1568-1570.
    [171]Yao J, Tjandra W, Chen YZ, et al., Hydroxyapatite nanostructure materia lderive dusing cationic Surfactant as a template [J]. J. Mater. Chem.,2003,13: 3053-3057.
    [172]Li YB, Tjandra W, Tam KC, Synthesis and characterization of nanoporous hydroxyapatite using cationic surfactants as templates [J]. Materials Research Bulletin,2008,43 (9):2318-2326.
    [173]Wang HL, Zhai LF, Li YH, et al.. Preparation of irregular mesoporous hydroxyapatite [J]. Materials Research Bulletin,2008,43 (6):1607-1614.
    [174](a) Yang PP, Quan ZW, Li CX, et al., Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drugcarrier [J]. Biomaterials,2008,29: 4341-4347; (b) Zhang CM, Li CX, Lin J, et al., Self-activated luminescent and mesoporous strontium hydroxyapatite nanorods for drug delivery [J]. Biomaterials,2010,31:3374-3383.
    [175]Zhao Y F, Ma J, Triblock co-polymer templating synthesis of mesostructured hydroxyapatite [J]. Microporous and Mesoporous Materials,2005,87 (2): 110-117.
    [176]Ye F, Guo HF, Zhang HJ, He XL, Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system [J]. Acta Biomaterialia,2010,6:2212-2218.
    [177]Zhang SH, Wang YJ, Wei K, et al., Template-assisted synthesisof lamellar mesostructured hydroxyapatites [J]. Materials Letters,2007,61(6):1341-1345.
    [178]王迎军,刘小健,张淑花等.层状纳米羟基磷灰石的制备及影响因素[J],硅酸盐学报,2007,35(9):1200-1204.
    [179]Liu C, Ji XJ, Cheng GX, Template synthesis and characterization of highly ordered lamellar hydroxyapatite [J]. Applied Surface Science,2007,253(16): 6840-6843.
    [180]Zuo GF, Liu C, Wan YZ, et al., Synthesis of Intercalated Lamellar Hydroxyapatite/Gelatin Nanocomposite for Bone Substitute Application [J], J. Appl. Polym. Sci.,2009,113:3089-3094.
    [181]Ikawa N, Hori H, Kimura T, Templating Route for Mesostructured Calcium Phosphates with Carboxylic Acid- and Amine- Type Surfactants [J]. Langmuir, 2008,24:13113-13120.
    [182]刘超.模板法制备长程有序层状羟基磷灰石及其海藻酸盐基复合微球的研究[D].天津:天津大学,2004.
    [183]徐玲,徐海燕,吴通好等.新型复合分子筛的合成和催化应用[J].催化学报,2006,27(12):1149-1158.
    [184]李澄,齐利民.胶体晶体[J].大学化学,2006,215:1-12.
    [185]Madhavi S, Ferraris C, White T J. Synthesis and crystallization of macroporous hydroxyapatite [J]. Journal of Solid State Chemistry,2005,178(9):2838-2845.
    [186]Peng Q, Ming L, Jiang CX, et al., Preparation and Characterization of Hydroxyapatite Microspheres with Hollow Core and Mesoporous Shell [J]. Key Engineering Materials Vols.,2006.309-311:65-68.
    [187]Ma MY, Zhu YJ, Li L and Cao SW, Nanostructured porous hollow ellipsoidal capsules of hydroxyapatite and calcium silicate:preparation and application in drug delivery [J]. J.Mater.Chem.,2008,18:2722-2727.
    [188]Shum HC, Bandyopadhyay A, Bose S, et al., Double Emulsion Droplets as Microreactors for Synthesis of Mesoporous Hydroxyapatite [J]. Chem. Mater., 2009,21:5548-5555.
    [189]Guo YP, Lin TS, Zhou Y, et al., Fabrication of monodisperse mesoporous hydroxycarbonate apatite microspheres by emulsion method [J]. Microporous and Mesoporous Materials,2010,127:245-249.
    [190]Yuan ZY, Liu JQ, Peng LM, Morphosynthesis of Vesicular Mesostructured Calcium Phosphate under Electron Irradiation [J]. Langmuir,2002,18: 2450-2452.
    [191]Ikawa N, Hori H, Kimura T, et al., Templating Route for Mesostructured Calcium Phosphates with Carboxylic Acid- and Amine-Type Surfactants [J]. Langmuir,2008,24:13113-13120.
    [192]Ikawa N, Hori H, Kimura T, et al., Unique surface property of surfactant-assisted mesoporous calcium phosphate [J]. Microporous and Mesoporous Materials,2011.141:56-60.
    [193]Kanapathipillai M, Yusufoglu Y, Rawal A, et al., Synthesis and Characterization of Ionic Block Copolymer Templated Calcium Phosphate Nanocomposites [J]. Chem.Mater.,2008,20:5922-5932.
    [194]Ng SX, Guo J, Ma J, et al., Synthesis of high surface area mesostructured calcium phosphate particles [J]. Acta Biomaterialia,2010,6:3772-3781.
    [195]Schmidt SM, Donald JM, Pineda ET,et al., Surfactant based assembly of mesoporous patterned calcium phosphate micron-sized rods [J]. Microporous and Mesoporous Materials,2006,94:330-338.
    [196]Zhang JX, Fujiwara M, Xu Q,et al., Synthesis of mesoporous calcium phosphate using hybrid templates [J]. Microporous and Mesoporous Materials, 2008,111:411-416.
    [197]Kitamura M, Ohtsuki C, Ogata S, et al., Mesoporous calcium phosphate via post-treatment of alpha-TCP [J]. Journal of The American Ceramic Society,2005,88:822-826.
    [198]范杰.介孔材料结构和孔道的模板合成及其在生物和电池中的应用[D].上海:复旦大学,2004.
    [199]台国安.超声诱导组装介孔复合功能材料[D],南京航空航天大学,2005.
    [200]Tang XH, Liu SW, Wang YQ, et al., Rapid synthesis of high quality MCM-41 silica with ultrasound radiation [J]. Chem. Commun.,2000,2119-2120.
    [201]Prouzet E, Cot F, Boissiere C, et al., Nanometric hollow spheres made of MSU-X-type mesoporous silica [J]. J. Mater. Chem.,2002,12:1553-1556.
    [202]Cai YR, Pan HH, Xu XR, et al., Ultrasonic Controlled Morphology Transformation of Hollow Calcium Phosphate Nanospheres:A Smart and Biocompatible Drug Release System [J]. Chem. Mater.,2007,19:3081-3083.
    [203]Winter M, Bioceramics consisting of calcium phosphate salts [J]. Biomaterials, 1981,2:159-161.
    [204]Yan XX, Yu CZ, Zhou XF, et al., Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities [J]. Angew. Chem. Int. Edit., 2004,43:5980-5984.
    [205]Lopez-Noriega A, Arcos D, Izquierdo-Barba I, et al., Ordered mesoporous bioactive glasses for bone tissue regeneration [J]. Chem. Mat.,2006,18: 3137-3144.
    [206]Zhao YF, Loo SCJ, Chen YZ, et al, Insitu SAXRD study of sol-gel induced well-ordered mesoporous bioglasses for drug delivery [J]. J. Biomed. Mater. Res.,2008,85A:1032-1042.
    [207]Yun H, Kim S, Hyun Y, Preparation of 3D cubic ordered mesoporous bioactive glasses [J]. Solid State Sci.,2008,10:1083-1092.
    [208]Yun H, Kim S, Hyeon Y, Highly ordered mesoporous bioactive glasses with Im3m symmetry [J]. Mater. Lett.,2007,61:4569-4572.
    [209]Lopez-Noriega A, Arcos D, Vallet-Regi M, et al., Ordered Mesoporous Bioactive Glasses for Bone Tissue Regeneration [J]. Chem. Mater.,2006,18: 3137-3144.
    [210]Izquierdo-Barba I, Arcos D, Vallet-Regi M, et al., High-Performance Mesoporous Bioceramics Mimicking Bone Mineralization [J]. Chem. Mater., 2008,20:3191-3198.
    [211]Garcia A, Cicuendez M, Izquierdo-Barba I, et al., Essential Role of Calcium Phosphate Heterogeneities in 2D-Hexagonal and 3D-Cubic SiO2-CaO-P2O5 Mesoporous Bioactive Glasses [J]. Chem. Mater.,2009.21:5474-5484.
    [212]Yan XX, Wei GF, Yu CZ, et al., Synthesis and in vitro bioactivity of ordered mesostructured bioactive glasses with adjustable pore sizes [J]. Microporous and Mesoporous Materials,2010,132:282-289.
    [213]Lei B, Chen XF, Wang YJ, et al., Synthesis and in vitro bioactivity of novel mesoporous hollow bioactive glass microspheres [J]. Materials Letters,2009, 63:1719-1721.
    [214](a) Ostomel TA, Shi QH, Stucky GD, et al., Spherical Bioactive Glass with Enhanced Rates of Hydroxyapatite Deposition and Hemostatic Activity [J]. Small 2006,2:1261-1265; (b) Arcos D, Lopez-Noriega A, Vallet-Regi M, et al., Ordered Mesoporous Microspheres for Bone Grafting and Drug Delivery [J]. Chem. Mater.,2009,21:1000-1009.
    [215]Yun HS, Kim SE, Hyun YT, Preparation of bioactive glass ceramic beads with hierarchical pore structure using polymer self-assembly technique [J]. Materials Chemistry and Physics,2009,115:670-676.
    [216]Yun HS, Kim SE, Hyun YT, et al., Hierarchically Mesoporous-Macroporous Bioactive Glasses Scaffolds for Bone Tissue Regeneration [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2008,87B: 374-380.
    [217]Yun HS, Kim SE, Hyun YT, et al., Three Dimensional Mesoporous Giantporous Inorganic/Organic Composite Scaffolds for Tissue Engineering [J]. Chem. Mater.,2007,19:6363-6366.
    [218]Li X, Wang XP, Shi JL, et al., Hierarchically Porous Bioactive Glass Scaffolds Synthesized with a PUF and P123 Cotemplated Approach [J]. Chem. Mater., 2007,19:4322-4326.
    [219](a) Jagadeesan D, Deepak C, Eswaramoorthy M, et al., Carbon Spheres Assisted Synthesis of Porous Bioactive Glass Containing Hydroxycarbonate Apatite Nanocrystals:a Material with High in Vitro Bioactivity [J]. J. Phys. Chem. C,2008,112:7379-7384; (b) Yan PH, Wang JQ, Ou JF, et al., Synthesis and characterization of three-dimensional ordered mesoporous-macroporous bioactive glass [J]. Materials Letters,2010,64:2544-2547.
    [220]Lao J, Jallot E, Nedelec JM, Strontium-Delivering Glasses with Enhanced Bioactivity:A New Biomaterial for Antiosteoporotic Applications [J]. Chem. Mater.,2008,20:4969-4973.
    [221]Singh RK, Kothiyal GP, Srinivasan A, In vitro evaluation of bioactivity of CaO-SiO2-P2O5-Na2O-Fe2O3 glasses [J]. Applied Surface Science,2009,255: 6827-6831.
    [222]Li X, Wang XP, He DN, Shi JL, Synthesis and characterization of mesoporous CaO-MO-SiO2-P2O5 (M=Mg, Zn, Cu) bioactive glasses/composites [J]. J. Mater. Chem.,2008,18:4103-4109.
    [223]Xiu TP, Liu Q, Wang JC, Comparisons between surfactant-templated mesoporous and conventional sol-gel-derived CaO-B2O3-SiO2 glasses: Compositional, textural and in vitro bioactive properties [J]. Journal of Solid State Chemistry,2008,181:863-870.
    [224]Bini M, Grandi S, Capsoni D, et al, SiO2-P2O5-CaO Glasses and Glass-Ceramics with and without ZnO:Relationships among Composition, Microstructure, and Bioactivity [J]. J. Phys. Chem. C,2009,113:8821-8828.
    [225]Li X, Wang XP, Shi JL, et al., MBG/PLGA Composite Microspheres with Prolonged Drug Release [J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials,2009,89B:148-154.
    [226]Sun J, Li YS, Shi JL, et al., Functionalization and bioactivity in vitro of mesoporous bioactive glasses [J]. Journal of Non-Crystalline Solids,2008,354: 3799-3805.
    [227]Liang Y, Zhao J, Wang L, et al., The relationship between mechanical properties and crossed-lamellar structure of mollusk shells [J]. Mater. Sci. Eng. A,2008, (483-484):309-312.
    [228]Elliott J, Bond G, Tombe J. Space group and lattice constants of Ca10(PO4)6CO3 [J]. J Appl Cryst.,1980,13:618-621.
    [229]LeGeros R. Nature,1965,206:403-404.
    [230]Thompson JB, Kindt JH, Drake B, et al.. Bone indentation recovery time correlates with bond reforming time [J]. Nature,2001,414:773-776.
    [231]Ozin GA, Coombs N, Davies JE, et al.. Bone mimetics:a composite of hydroxyapatite and calcium dodecylphosphate lamellar phase [J]. J Mater Chem.,1997,7:1601-1607.
    [232]Dorozhkin SV. Calcium orthophosphate-based biocomposites and hybrid biomaterials [J]. J Mater Sci.,2009,44:2343-2387.
    [233]Karlinsey RL, Mackey AC. Solid-state preparation and dental application of an organically modified calcium phosphate [J]. J Mater Sci.,2009,44:346-349.
    [234]Krylova E, Ivanov A, Orlovski V, et al.. Hydroxyapatite-polysaccharide granules for drug delivery [J]. J Mater Sci:Mater Med,2002,13:87-90.
    [235]Ono I, Yamashita T, Jin HY. Combination of porous hydroxyapatite and cationic liposomes as a vector for BMP-2 gene therapy [J]. Biomaterials,2004, 25:4709-4718.
    [236]Kandori K, Tsuyama S, Tanaka H, Ishikawa T. Protein adsorption characteristics of calcium hydroxyapatites modified with pyrophosphoric acids [J]. Colloids and Surf. B:Biointerf.,2007,58:98-104.
    [237]Groot KD. Bioceramics of Calcium Phosphate [M], CRC Press,1984.
    [238]Torrent-Burgues J, Torrent-Burgues J, Boix T, et al.. Hydroxyapatite Precipitation in a Semibatch Process [J]. Cryst Res Technol,2001,36: 1075-1082.
    [239]Lagaly G, Beneke K, Dietz P, Weiss A. Intracrystalline Reactivity of Phyllodisilicic Acid (H2Si205)∞ [J]. Angew Chem Int Ed Engl,1974,13: 819-821.
    [240]Prevot V, Forano C, Besse JP. Hydrolysis in Polyol:New Route for Hybrid-Layered Double Hydroxides Preparation [J]. Chem. Mater.,2005,17: 6695-6701.
    [241]Choudary BM, Jaya VS, Reddy BR, et al.. Synthesis, Characterization, Ion Exchange, and Catalytic Properties of Nanobinary and Ternary Metal Oxy/Hydroxides [J]. Chem. Mater.,2005,17:2740-2743.
    [242]Jiang JQ, Xu YL, Quill K, et al.. Laboratory Study of Boron Removal by Mg/Al Double-Layered Hydroxides [J]. Ind Eng Chem Res,2007,46: 4577-4583.
    [243]Swanson CH, Shaikh HA, Rogow DL, et al.. Antimony Oxide Hydroxide Ethanedisulfonate:a Cationic Layered Metal Oxide for Lewis Acid Applications [J]. J Am Chem Soc,2008,130:11737-11741.
    [244]Ogawa M, Ide Y, Mizushima M. Controlled spatial separation of Eu ions in layered silicates with different layer thickness [J]. Chem. Commun.,2010,46: 2241-2243.
    [245]Wei M, Pu M, Guo J, et al.. Intercalation of L-Dopainto Layered Double Hydroxides:Enhancement of Both Chemical and Stereochemical Stabilities of a Drug through Host-Guest Interactions [J]. Chem. Mater.,2008,20: 5169-5180.
    [246]Xiang X, Hima HI, Wang H, Li F. Facile Synthesis and Catalytic Properties of Nickel-Based Mixed-Metal Oxides with Mesopore Networks from a Novel Hybrid Composite Precursor [J]. Chem. Mater.,2008,20:1173-1182.
    [247]Thyveetil MA, Coveney PV, Greenwell HC, Suter JL. Computer Simulation Study of the Structural Stability and Materials Properties of DNA-Intercalated Layered Double Hydroxides [J]. J Am Chem Soc,2008,130:4742-4756.
    [248]Bhattacharjee S, Dines TJ, Anderson JA. Comparison of Co with Mn and Fe in LDH-hosted Sulfonato-Salen Catalysts for Olefin Epoxidation [J]. J Phys Chem C,2008,112:14124-14130.
    [249]Chuang YH, Tzou YM, Wang MK, et al.. Removal of 2-Chlorophenol from Aqueous Solution by Mg/Al Layered Double Hydroxide (LDH) and Modified LDH [J]. Ind Eng Chem Res.,2008,47:3813-3819.
    [250]Begu S, Aubert-Pouessel A, Polexe R, et al.. New Layered Double Hydroxides/Phospholipid Bilayer Hybrid Material with Strong Potential for Sustained Drug Delivery System [J]. Chem. Mater.,2009,21:2679-2687.
    [251]Ng SX, Guo J, Ma J, Loo SC. Synthesis of high surface area mesostructured calcium phosphate particles [J]. Acta Biomaterialia,2010,6:3772-3781.
    [252]Yuan ZY, Liu JQ, Peng LM. Morphosynthesis of Vesicular Mesostructured Calcium Phosphate under Electron Irradiation [J]. Langmuir,2002,18:2450-2452.
    [253]Ikawa N, Oumi Y, Kimura T, et al.. Solubility and Crystallization-controlled Synthesis of Lamellar Mesostructured Calcium Phosphate in the Ethanol/Water System [J]. Chem. Lett.,2006,35:948-949.
    [254]Guo HF, Ye F, Zhang HJ. Tween-60 mediated synthesis of lamellar hydroxyapatite with worm-like mesopores [J]. Materials Letters,2008,62: 2125-2128.
    [255]Coelho JM, Moreira JA, Almeida A, Monteiro FJ. Synthesis and characterization of HAp nanorods from a cationic Surfactant template method [J]. J Mater Sci:Mater Med.,2010,21:2543-2549.
    [256]Tanaka H, Watanabea T, Chikazawaa M, et al.. Formation and structure of calcium alkylphosphates [J]. Colloids and Surfaces A:Physicochem Eng Aspects,1998,139:341-349.
    [257]Soten I, Ozin GA. Porous hydroxyapatite-dodecylphosphate composite film on titania-titanium substrate [J]. J Mater Chem.,1999,9:703-710.
    [258]Ikawa N, Oumi Y, Kimura T, et al.. Synthesis of lamellar mesostructured calcium phosphates using n-alkylamines as structure-directing agents in alcohol/water mixed solvent systems [J]. J Mater Sci.,2008,43:4198-4207.
    [259]Cheng GX, Liu C. Preparation of lamellar mesoporous silica microspheres via SDS templates [J]. Materials Chemistry and Phys.,2002,77:359-364.
    [260]Jack KS, Vizcarra TG, Trau M. Characterization and Surface Properties of Amino-Acid-Modified Carbonate-Containing Hydroxyapatite Particles [J]. Langmuir,2007,23:12233-12242.
    [261]Doat A, Fanjul M, Pelle F, et al.. Europium-doped bioapatite:a new photostable biological probe, internalizable by human cells [J]. Biomaterials, 2003,24:3365-3371.
    [262](a) Milev AS, Kannangara GS, Wilson MA. Template-Directed Synthesis of Hydroxyapatite from a Lamellar Phosphonate Precursor [J]. Langmuir,2004, 20:1888-1894; (b) Horvathova R, Miiller L, Helebrant A, et al., In vitro transformation of OCP into carbonated HA under physiological conditions [J]. Materials Science and Engineering C,2008,28:1414-1419.
    [263]Lagaly G. Kink-Block and Gauche-Block Structures of Bimolecular Films [J]. Angew Chem Int Ed Engl.,1976.15:575-586.
    [264]Snyder RG, Strauss HL, Elliger CA. C-H Stretching Modes and the Structure of n-Alkyl Chains.1. Long, Disordered chains [J]. J Phys Chem.,1982,86: 5145-5150.
    [265]MacPhail RA, Strauss HL, Snyder RG, Elliger CA. C-H Stretching Modes and the Structure of n-Alkyl Chains.2. Long, All-Trans Chains [J]. J Phys Chem., 1984,88:334-341.
    [266]Vaia RA, Teukolsky RK, Giannelis EP. Interlayer Structure and Molecular Environment of Alkylammonium Layered Silicates [J]. Chem. Mater.,1994,6: 1017-1022.
    [267]Kitaigorodskii AI. Molecular Crystals and Molecules Academic Press [M]. New York,1973.
    [268]Huo QS, Margolese DI, Ciesla U, et al.. Organization of Organic Molecules with Inorganic Molecular Species into Nanocomposite Biphase Arrays [J]. Chem. Mater.,1994,6:1176-1191.
    [269]Kresge CT, Leonowicz ME, Roth WJ, et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J], Nature,1992, 359:710-712.
    [270]Yanagisawa T, Shimizu T, Kuroda K, Kato C, The Preparation of Alkyltrimethylammonium-Kanemite Complexes and Their Conversion to Microporous Materials [J]. Bull. Chem. Soc. Jpn.,1990,63:988-992.
    [271]Yang J, Lee J, Kang J, et al., Hollow Silica Nanocontainers as Drug Delivery Vehicles [J]. Langmuir,2008,24:3417-3421.
    [272]Crudden CM, Sateesh M, Lewis R, Mercaptopropyl-Modified Mesoporous Silica:A remarkable Support for the Preparation of a Reusable, Heterogeneous Palladium Catalyst for Coupling Reactions [J]. J. Am. Chem. Soc.,2005,127: 10045-10050.
    [273]Descalzo AB, Jimenez D, Marcos MD, et al., A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups [J]. Adv. Mater.,2002,14:966-969.
    [274]Kim SS, Liu Y, Pinnavaia TJ, Ultrastable MSU-G molecular sieve catalysts with a lamellar framework structure and a vesicle-like particle texture [J]. Microporous Mesoporous Mater.,2001,489:44-45.
    [275]Lou XW, Wang Y, Yuan C, et al., Template-Free Synthesis of SnO2 Hollow Nanostructures with High Lithium Storage Capacity [J]. Adv. Mater.,2006,18: 2325-2329.
    [276]Tan B, Rankin SE, Dual Latex/Surfactant Templating of Hollow Spherical Silica Particles with Ordered Mesoporous Shells [J]. Langmuir,2005,21: 8180-8187.
    [277]Liu Y, Miyoshi L, Nakamura M, Novel drug delivery system of hollow mesoporous silica nanocapsules with thin shells Preparation and fluorescein isothiocyanate (FITC) release kinetics [J]. Colloids Surf., B,2007,58: 180-187.
    [278]Joo JB, Kim P, Kim W, et al., Simple preparation of hollow carbon sphere via templating method [J]. Curr. Appl. Phys.,2008,8:814-817.
    [279]Zhang S, Xu L, Liu H, et al., A dual template method for synthesizing hollow silica spheres with mesoporous shells [J]. Mater. Lett.,2009,63:258-259.
    [280]Su F, Zhao XS, Wang Y, et al., Hollow carbon spheres with a controllable shell structure [J]. J. Mater. Chem.,2006,16:4413-4419.
    [281]Teng Z, Han Y, Li J, et al., Preparation of hollow mesoporous silica spheres by a sol-gel/emulsion approach [J]. Microporous Mesoporous Mater.,2010,127: 67-72.
    [282]Hubert DHW, Jung M and German AL, Vesicle Templating [J]. Adv. Mater., 2000,12:1291-1294.
    [283]Han YS, Hadiko G, Fuji M, Takahashi M, Factors affecting the phase and morphology of CaCO3 Prepared by a bubbling method [J]. Journal of the European Ceramic Society,2006,26:843-847.
    [284]Zhao H, Li Y, Liu R, et al., Synthesis method for silica needle-shaped nano-hollow structure [J]. Materials Letters,2008,62:3401-3403.
    [285]Wang M, Zou HK, Shao L, Chen JF, Controlling factors and mechanism of preparing needlelike CaCO3 under high-gravity environment [J]. Powder Technology,2004,142:166-174.
    [286]Wu W, DeCoster MA, Daniel BM, Chen JF, et al. One-step synthesis of magnetic hollow silica and their application for nanomedicine [J]. J. Appl. Phys.,2006,99:08H104.
    [287]Zhou J, Wu W, Caruntu D, et al. Synthesis of Porous Magnetic Hollow Silica Nanospheres for Nanomedicine Application [J]. J. Phys. Chem. C,2007,111: 17473-17477.
    [288]Xiao QG, Tao X, Chen JF, Silica Nanotubes Based on Needle-like Calcium Carbonate:Fabrication and Immobilization for Glucose Oxidase [J]. Ind. Eng. Chem. Res.,2007,46:459-463.
    [289]Yang PP, Quan ZW, Lu LL, et al., MCM-41 functionalized with YVO4:Eu3+:a novel drug delivery system [J]. Nanotechnology,2007,18:235703.
    [290]Qiao ZA, Zhang L, Huo QS, Synthesis of Mesoporous Silica Nanoparticles via Controlled Hydrolysis and Condensation of Silicon Alkoxide [J]. Chem. Mater., 2009,21:3823-3829.
    [291]Han YS, Hadiko G, Fuji M, et al., Factors affecting the phase and morphology of CaCO3 prepared by a bubbling method [J]. Journal of the European Ceramic Society,2006,26:843-847.
    [292]Niu DC, Li YS, Dong WJ, et al., A facile dual templating route to fabricate hierarchically Mesostructured materials [J]. J Mater Sci.,2009,44:6519-6524.
    [293]Vallet-Regi M, Romero AM, Ragel CV, LeGeros RZ. XRD, SEM-EDS, and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses [J]. J. Biomed. Mater. Res.,1999,44:416-421.
    [294]Wei W, Ma GH, Hu G, Preparation of Hierarchical Hollow CaCO3 Particles and the Application as Anticancer Drug Carrier [J]. J. Am. Chem. Soc.,2008, 130:15808-15810.
    [295]Vallet-Regi M, Ordered Mesoporous Materials in the Context of Drug Delivery Systems and Bone Tissue Engineering [J]. Chem. Eur. J.,2006,12:5934-5910.
    [296]Trewyn BG, Whitman CM, Lin VSY, Morphological Control of Room-Temperature Ionic Liquid Templated Mesoporous Silica Nanoparticles for Controlled Release of Antibacterial Agents [J]. Nano Lett.,2004,4: 2139-2145.
    [297]Manzano M, Aina V, Arean CO, et al., Studies on MCM-41 mesoporous silica for drug delivery:Effect of particle morphology and amine functionalization [J]. Chem. Eng. J.2008,137:30-37.
    [298]Paul W, Sharma CP. Development of porous spherical hydroxyapatite granules: application towards protein delivery [J]. J. Mater. Sci. Mater Med 1999,10: 383-389.
    [299]Fan Y, Yang PP, Lin J, Luminescent and Mesoporous Europium-Doped Bioactive Glasses (MBG) as a Drug Carrier [J]. J. Phys. Chem. C,2009,113: 7826-7830.
    [300]Bellamy LJ, In The infrared spectra of complex molecules,3rded, CMBGman and Hall London,1975,2.
    [301]Gaasbeek RD, Toonen HG, Buma P. Mechanism of bone incorporation of beta-TCP bone substitute in open wedge tibial osteotomy in patients [J]. Biomaterials,2005,26(33):6713-6719.
    [302]Shetty V, Han TJ. Alloplastic materials in reconstructive periodontal surgery [J]. Dent Clin North Am,1991,35(3):521-530.
    [303]Zhang ZB, Duan HF, Yingjie Lin, et al.. Assembly of Magnetic Nanospheres into One-Dimensional Nanostructured Carbon Hybrid Materials [J]. Langmuir, 2010,26(9):6676-6680.
    [304]Cheng CM, Wen YH, Xu XF, et al.. Tunable synthesis of carboxyl-functionalized magnetite nanocrystal clusters with uniform size [J]. J. Mater. Chem.,2009,19:8782-8788.
    [305]Laurent S, Forge D, Muller RN, Magnetic Iron Oxide Nanoparticles:Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications [J]. Chem. Rev.,2008,108:2064-2110.
    [306]Zhang Y, Xia CG, Magnetic hydroxyapatite-encapsulated γ-Fe2O3 nanoparticles functionalized with basic ionic liquids for aqueous Knoevenagel condensation [J]. Applied Catalysis A:General,2009,366:141-147.
    [307]Mori K, Kaneda SKK, Development of Ruthenium-Hydroxyapatite- Encapsulated Superparamagnetic γ-Fe2O3 Nanocrystallites as an Efficient Oxidation Catalyst by Molecular Oxygen [J]. Chem. Mater.,2007,19: 1249-1256.
    [308]Guo YP, Zhou Y, Jia DC, et al. Fabrication and in vitro characterization of magnetic hydroxycarbonate apatite coatings with hierarchically porous structures [J]. Acta Biomaterialia,2008,4:923-931.
    [309]Petchsang N, Pon-On W, Hodak JH, et al. Magnetic properties of Co-ferrite-doped hydroxyapatite nanoparticles having a core/shell structure [J]. Journal of Magnetism and Magnetic Materials,2009,321:1990-1995.
    [310]Hou CH, Chen CW, Lin FH, et al. The fabrication and characterization of dicalcium phosphate dihydrate-modified magnetic nanoparticles and their performance in hyperthermia processes in vitro [J]. Biomaterials,2009,30: 4700-4707.
    [311]Yang PP, Quan ZW, Hou ZY, et al., A magnetic, luminescent and mesoporous core-shell structured composit material as drug carrier [J]. Biomaterials,2009, 30:4786-4795.
    [312]Guo YP, Zhou Y, Jia DC, Tang HX, Fabrication and characterization of hydroxycarbonate apatite with mesoporous structure [J]. Microporous and Mesoporous Materials,2009,118:480-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700