用户名: 密码: 验证码:
钛硅沸石膜及钛硅—钯复合膜的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钛硅分子筛是一种优异的催化材料,以沸石膜的形式负载在各种载体上用于催化反应具有广阔的应用前景。钯膜具有优异的透氢性,在苯一步羟基化制备苯酚中表现出良好的催化效果。本研究利用钛硅沸石和钯膜的优势,构建高效钛硅-钯双功能复合膜,解决单一钯膜催化苯一步合成苯酚中存在的问题,开辟一条新颖的催化氧化活化方式。
     本论文采用silicalite-1 (Sil-1)晶种诱导合成高活性含钛分子筛及其膜,优化合成配方;制备不同的钛硅-钯复合膜用于苯羟基化反应,研究钛硅层对反应的影响;构建类似“微通道”结构式的钯膜反应器,进一步优化苯羟基化反应条件。主要内容和结果如下:
     1.利用亚微米级Si1-1代替titanium silicalite-1 (TS-1)作为晶种在陶瓷管上合成了具有相似物化和催化性能的TS-1沸石膜,考察了多种因素对TS-1膜形成和催化性能的影响。改变晶化时间和次数可有效调节膜厚度、形貌和取向;母液中最优Ti/Si、H2O/Si和TPAOH/Si摩尔比为0.02、250和0.35。采用偶联剂法和改进的晶种-旋转法在不锈钢网和SiO2小球上制备了TS-1沸石膜,为在复杂形貌的载体上制备高质量的沸石膜提供了有效方法。相对于陶瓷管上的沸石膜和粉末催化剂,负载在不锈钢网和SiO2小球上的TS-1沸石膜,由于增加了界面接触面积,改善了传递过程,使TS-1膜的反应性能明显提高。相对于粉末,膜催化剂的再生和重复利用性明显增加,且回收利用简单方便。
     2.制备了性能优异的Pd-TS-1双功能复合膜。673K下,Pd-TS-1膜的H2渗透和H2/N2选择性为8.1×10-4mol·m-2·s-1.Pa-0.5和1030。673K下操作340h,19次H2-N2切换;473~523K下进行18次温度循环;473K、150KPa-50KPa下进行20次压力循环,钯膜透氢保持稳定。Pd-TS-1膜催化苯羟基化反应表明:H2/O2进料比、压差和温度对反应具有重要影响。H2/O2进料比为4.7,压差为100KPa,温度为473K时,苯转化率最高(5.4%);423~573K内,随温度升高,苯转化率降低,加氢趋势增强;水的生成主要来自钯膜表面氢和氧之间的反应;Pd-TS-1膜反应80h后,苯转化率和苯酚收率保持稳定。
     3.采用在母液中添加TEA和TPAOH对TS-1膜进行后处理的方法合成了具有较多晶间孔和中空结构的TS-1沸石膜,显著提高了TS-1膜的渗透和催化性能。采用Si1-1晶种制备了纯介孔相、具有分子筛结构单元和同微孔相似钛物种的含钛介孔催化剂,其具有较高的水热稳定性和反应性能。以一种新的TOF-SIMS方法检测了存在的分子筛结构单元。以Si1-1为晶种在陶瓷管上诱导合成了介孔膜,其H2和N2通量为3.68和1.02×10-6mol·m-2·s-1·Pa-1,H2/N2选择性达到3.62。相对于传统方法制备的含钛介孔膜,催化性能也有所改善。
     4.制备了不同的钛硅-钯双功能复合膜,并用于苯一步羟基化制备苯酚,提出了一条新颖的双功能膜催化氧化方式,对复合膜的催化机理进行了分析。结果表明:钛硅层的结构和进料方式对反应十分重要,随钛硅层孔径增大,苯转化率升高。Pd-TS-1p复合膜具有最高的苯转化率(6.0%)和苯酚选择性(94.5%)及最低的水生成速率(24mg/min),提高了原料利用率。复合膜体现了钛硅催化氧化和钯膜透氢的双功能作用。
     5.设计制备了具有类似“微通道”特征的Pd-TS-1p复合膜进行苯羟基化反应。由于提高了物料的接触界面,苯转化率从6.4%提高到了7.5%。利用中空纤维陶瓷管构建了新颖的类似“微通道”结构式的钯膜反应器,比常规膜反应器表现出更高的催化性能:苯转化率从5-7%提高到15-20%左右。考察了进料方式、H2/O2进料比、温度对反应的影响。423~523K内,随温度升高,加氢反应增强;Pd膜具有良好的反应稳定性,累计反应46h后,苯转化率和苯酚收率保持稳定。
Ti-contianing zeolite is an excellent catalytic material and Ti-containing zeolite films supported on various substrates have shown potential applications. Pd membrane has exceptional hydrogen permeation and exhibits unique property for direct hydroxylation of benzene to phenol. The purpose of this work is to design bifunctional titanium silicalite-Pd (TS-Pd) composite membrane based on the advantages of Ti-containing zeolite and Pd membrane for solving the problems existed in one-step oxidation benzene to phenol using sole Pd membrane reactor. It is promising to open a novel catalytic-oxidation process.
     This paper investigated the preparation of highly catalytic Ti-containing zeolite and films using silicalite-1 (Sil-1) as seeds and optimized the synthesis parameters. Different TS-Pd composite membranes were prepared and applied in one-step benzene hydroxylation, and the influences of titanium silicalite layer on reaction were investigated. At last, Pd membrane reactor with'microchannel'characteristic was constructed and further optimized the reaction conditions of benzene hydroxylation. The main contents and results are as follows:
     1. TS-1 films with similar physical and reaction behaviors were prepared on ceramic tubes using submicron Sil-1 particles instead of titanium silicalite-1 (TS-1) as seeds. Some factors on influencing TS-1 films formation and catalytic properties were investigated. Film thickness, morphology and orientation could be effectively controlled by adjusting crystallization time and times. The best molar composition of Ti/Si, H2O/Si and TPAOH/Si in mother liquid was 0.02,250 and 0.35. A uniform TS-1 layer was grown on the surface of stainless steel packing rings and SiO2 pellets by covalently seeding method and modified seeding-rotation method, which provided some effective methods to deposit high quality film on the surfaces with complex geometries. Compared with TS-1 film supported on tube and powder, the catalytic activity of TS-1 films supported on stainless steel rings and SiO2 pellets were dramatically increased due to provide a large interfacial contact area and improve the mass transfer processes. The reuse and regeneration of film were increased compared with powder catalyst.
     2. Pd-TS-1 composite membrane with excellent behevior was prepared. H2 flux and H2/N2 ideal selectivity of Pd-TS-1 membrane at 673 K were 8.1×10-4 mol·m-2-s-1·Pa-0.5 and 1030. Pd-TS-1 membrane was stable over a period of 340 h,19-H2-N2gas exchanging cycles at 673 K,18 temperature cycles between 473~523 K and 20 pressure cycles between 50~150 KPa at 473 K. The reactor configuration, H2/O2 feed ratio, pressure and temperature had important influences on benzene reaction. The best benzene conversion of 5.4% was obtained when H2/O2 feed ratio was 4.7 and pressure was 100 KPa. The degree of benzene hydrogenation increased and benzene conversion decreased with increasing temperature at 423~573 K. The water was mainly formed by reacting H2 with O2 on the surface of Pd membrane. Pd-TS-1 composite membrane had stable benzene conversion and phenol yield after reaction 80 h.
     3. TS-1 films with more inter-particle pores and hollow structure were prepared by adding TEA on the mother liquid and post-treated with TPAOH solution, which increased the flux and catalytic activity. Ti-containing mesoporous zeolite with pure mesoporous phase and zeolitic secondary building units as well as TS-1-like environment has been successfully assembled from submiron Sil-1 particles, which showed excellent hydrothermal stability and catalytic activity. A new TOF-SIMS method was used to detect the zeolite fragments existed in mesoporous catalyst. A mesoporous membrane was deposited on the surface of ceramic tubes by hydrothermal growth method using Sil-1 as seed, which possessed higher H2 and N2 flux with 3.68 and 1.02×10-6 mol·m-2·s-1·Pa-1 and H2/N2 selectivity of 3.62. The catalytic activity was improved compared with conventional Ti-containing mesoporous membrane.
     4. Different TS-Pd composite membranes were prepared and applied in one-step hydroxylation of benzene to phenol, a novel catalytic route was put forward and the catalytic mechanism of composite membrane was analyzed. The results showed that the configuration of titanium silicalite layer and feed model had important impact on the reaction. Benzene conversion increased with increasing the pore size of titanium silicalite. Pd-TS-1p composite membrane exhibited the highest benzene conversion (6.0%) and phenol selectivity (94.5%) and the lowest water generation rate (24 mg/min), which indicated increasing the material efficiency. Composite membrane displayed the bifunctional effect of catalytic oxidation for Ti-contaning zeolite and H2 permeation for Pd membrane.
     5. A novel Pd-TS-1p membrane reactor with similar'microchannel'characteristic was designed for benzene hydroxylation. Benzene conversion increased from 6.4% to 7.5% due to increase the contact area of reactants. A layer of Pd membrane was deposited on hollow fiber ceramic tube and similar'microchannel'reactor was constructed, which exhibited higher catalytic activity than conventional membrane reactor:benzene conversion increased from 5-7 % to 15-20%. The effects of feed model, H2/O2 ratio and temperature were investigated. The hydrogenation increased with increasing temperature at 423-523K. Pd membrane reactor had stable benzene conversion and phenol yield after reaction 46h.
引文
[1]Saracco G, Vesteeg G F, Van Swaai. Current hurdles to the success of high-temperature reactors [J]. Journal of Membrane Science,1994,95:105-123.
    [2]Ismail A F, David L I B. A review on the latest development of carbon membranes for gas separation [J]. Journal of Membrane Science,2001,193:1-18.
    [3]徐南平,刑卫红,王沛.无机膜在工业废水处理中的应用与展望[J].膜科学与技术,2000,20:23-28.
    [4]Nair S, Lai Z, Nikolakis V, et al. Separation of close-boiling hydrocarbon mixtures by MFI and FAU membranes made by secondary growth [J]. Microporous and Mesoporous Materials,2001,48: 219-228.
    [5]颜正朝,宋军,林晓,等.沸石分子筛膜的合成与应用[J].石油化工,2004,33:891-900.
    [6]张雄福,王金渠.沸石分子筛膜的合成与应用研究进展[J].石油化工,1999,28:266-270.
    [7]Wernick D L, Qsterhuber E J. Permeation through a single crystal of zeolite NaX [J]. Journal of Membrane Science,1985,22:137-146.
    [8]Jareman F, Andersson C, Hedlund J. The influence of the calcination rate on silicalite-1 membranes [J]. Microporous and Mesoporous Materials,2005,79:1-5.
    [9]Gopalakrishnan S, Yamaguchi T, Nakao S. Permeation properties of templated and template-free ZSM-5 membranes [J]. Journal of Membrane Science,2006,274:102-107.
    [10]Mabande G T P, Noack M, Avhale A, et al. Permeation properties of bi-layered Al-ZSM-5/Silicalite-1 membranes [J]. Microporous and Mesoporous Materials,2007,98:55-61.
    [11]Li Y S, Liu J, Yang W S. Formation mechanism of microwave synthesized LTA zeolite membranes [J]. Journal of Membrane Science,2006,281:646-657.
    [12]Li X S, Remias J E, Neathery J K, et al. NF/CO faujasite zeolite membrane-ammonia absorption solvent hybrid system for potential post-combustion CO2 capture application [J]. Journal of Membrane Science,2011,366:220-228.
    [13]Seijger G B F, Van den Berg A, Riva R, et al. In situ preparation of ferrierite coatings on cordierite honeycomb supports [J]. Applied Catalysis A:General,2002,236:187-203.
    [14]Bux H, Chmelik C, Krishna R, et al. Ethene/ethane separation by the MOF membrane ZIF-8: Molecular correlation of permeation, adsorption, diffusion [J]. Journal of Membrane Science,2011, 369:284-289.
    [15]Li S G, Carreon M A, Zhang Y F, et al. Scale-up of SAPO-34 membranes for CO2/CH4 separation [J]. Journal of Membrane Science,2010,352:7-13.
    [16]Mintova S, Mo S, Bein T. Nanosized AIPO4-5 Molecular Sieves and Ultrathin Films Prepared by Microiwave Synthesis [J]. Chemistry of Materials,1998,10:4030-4036.
    [17]Saputra H, Othman R, Sutjipto A G E, et al. MCM-41 as a new separator material for electrochemical cell:Application in zinc-air system [J]. Journal of Membrane Science,2011,367:152-157.
    [18]Pedernera M, De la lglesia O, Mallada R, et al. Preparation of stable MCM-48 tubular membranes [J]. Journal of Membrane Science,2009,326:137-144.
    [19]Makita K, Hirota Y, Egashira Y, et al. Synthesis of MCM-22 zeolite membranes and vapor permeation of water/acetic acid mixtures [J]. Journal of Membrane Science,2011,372:269-276.
    [20]Kalipcilar H, Bowen T C, Noble R D, et al. Synthesis and Separation Performance of SSA-13 Zeolite Membranes on Tubular Suppores [J]. Chemistry of Materials,2002,14:3458-3464.
    [21]Yeong Y F, Abdullah A Z, Ahmad A L, et al. Separation of p-xylene from binary xylene mixture over silicalite-1 membrane:Experimental and modeling studies [J]. Chemical Engineering Science,2011, 66:897-906.
    [22]Shen D, Xiao W, Yang J H, et al. Synthesis of silicalite-1 membrane with two silicon source by secondary growth method and its pervaporation performance [J]. Separation and Purification Technology,2011,76:308-315.
    [23]Li X G, Zhang Y, Meng F Z, et al. Hydroformylation of 1-Hexene Silicalite-1 Zeolite Membrane Coated Pd-Co/A.C. Catalyst [J]. Topics in Catalysis,2010,53:608-614.
    [24]孔春龙,王金渠,鲁金明,等.纳米晶种涂层法合成Silicalite-1沸石膜[J].过程工程学报,2007,7:71-74.
    [25]Hasegawa Y, Ikeda T, Nagase T, et al. Preparation and characterization of silicalite-1 membranes prepared by secondary growth of seeds with different crystal sizes [J]. Journal of Membrane Science, 2006,280:397-405.
    [26]Kong C, Lu J, Yang J. Preparation of silicalite-1 membranes on stainless steel supports by a two-stage varying-temperature in situ synthesis [J]. Journal of Membrane Science,2006,285:258-264.
    [27]Larlus O, Valtchev V, Patarin J, et al. Preparation of silicalite-1/glass fiber composites by one-and two-step hydrothermal synthesis [J]. Microporous and Mesoporous Materials,2002,56:175-184.
    [28]Li Q, Hedlund J, Stere J, et al. Synthesis and characterization of zoned MFI films by seeded growth [J]. Microporous and Mesoporous Materials,2002,56:291-302.
    [29]Lai S M, Au L T Y, Yeung K L. Influence of the synthesis conditions and growth environment on MFI zeolite film orientation [J]. Microporous and Mesoporous Materials,2002,54:63-77.
    [30]Tuan V A, Falconer J L, Noble R D. Alkali-Free ZSM-5 Membranes:Preparation Conditions and Separation Performance [J]. Industrial & Engineering Chemistry Research,1999,38:3635-3646.
    [31]Lin Y S, Kumakiri I, Nair B N, et al. Microporous Inorganic Membranes [J]. Separation and Purification Methods,2002,31:229-379.
    [32]魏建新,葛学贵,石磊等.沸石分子筛膜的研究进展及展望[J].材料导报,2005,19:27-30.
    [33]Tavolaro A, Drioli E. Zeolite Membranes [J]. Advanced Materials,1999,11:975-996.
    [34]Li Y S, Yang W S. Microwave synthesis of zeolite membranes:A review [J]. Journal of Membrane Science,2008,316:3-17.
    [35]Bonaccorsi L, Proverbio E. Microwave assisted crystallization of zeolite A from dense gels [J]. Journal of Crystal Growth,2003,247:555-562.
    [36]Zhu G Q, Li Y S, Zhou H, et al. Microwave synthesis of high performance FAU-type zeolite membranes:Optimization, characterization and pervaporation dehydration of alcohols [J]. Journal of Membrane Science,2009,337:47-54.
    [37]Zhou H, Li Y S, Zhu G Q, et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties [J]. Separation and Purification Technology,2009,65: 164-172.
    [38]Tang Z, Kim S J, Gu X H, et al. Microwave synthesis of MFI-type zeolite membranes by seeded secondary growth without the use of organic structure directing agents [J]. Microporous and Mesoporous Materials,2009,118:224-231.
    [39]Motuzas J, Mikutaviciute R, Gerardin E, et al. Controlled growth of thin and uniform TS-1 membranes by MW-assisted heating [J]. Microporous and Mesoporous Materials,2010,128:136-143.
    [40]Sebastian V, Motuzas J, Dirrix R W J, et al. Synthesis of capillary titanosilicalite TS-1 ceramic membranes by MW-assisted hydrothermal heating for pervaporation application [J]. Separation and Purification Technology,2010,75:249-256.
    [41]张雄福,王金渠,刘长厚.ZSM-5型沸石膜的合成及应用于乙苯脱氢反应研究进展[J].膜科学与技术,2001,21:55-61.
    [42]Armor J N. Membrane catalysis:Where is it now, what needs to be done? [J]. Catalysis Today,1995, 25:199-207.
    [43]Saracco G, Neomagus H W J P, Versteeg G F, et al. High-temperature membrane reactors:potential and problems [J]. Chemical Engineering Science,1999,54:1997-2017.
    [44]Saracco G, Specchia V. Catalytic Inorganic-Membrane Reactors-Present Experimence and Future Opportunties [J]. Catalysis Reviews:Science and Engineering,1994,36:305-384.
    [45]Sirkar K K, Shanbhag P V, Kovvali A S. Membrane in a reactor:A functional perspective [J]. Industrial & Engineering Chemistry Research,1999,38:3715-3737.
    [46]Dittmeyer R, Hollein V, Daub K. Membrane reactor for hydeogenation and dehydrogenation processes based on supported palladium [J]. Journal of Molecular Catalysis A:Chemical,2001,173: 135-184.
    [47]Noack M, Kolsch P, Schafer R, et al. Molecular Sieve Membranes for Industrial Application: Problems, Progress, Solutions [J]. Chemical Engineering and Technology,2002,25:221-230.
    [48]徐如人,庞文琴,于吉红,等.分子筛与多孔材料化学[M].北京:科学出版社,2005.
    [49]McLeary E E, Jansen J C, Kapteijn F. Zeolite based films, membranes and membrane reactors: Progress and prospects [J]. Microporous and Mesoporous Materials,2006,90:198-220.
    [50]Illgen U, Schafer R, Noack M, et al. Membrane supported catalytic dehydrogenation of iso-butane using an MFI zeolite membrane reactor [J]. Catalysis Communications,2001,2:339-345.
    [51]Casanave D,Giroir-Fendler A, Sanchez J, et al. Control of transport properties with a microporous membrane reactor to enhance yields in dehydrogenation reactions [J]. Catalysis Today,1995,25: 309-314.
    [52]Wu J C S, Gerdes T E, Pszczolkowski J L, et al. Dehydrogenation of Ethylbenzene to Styrene Using Commercial Ceramic Membranes as Reactors [J]. Separation Science and Technology,1990,25: 1489-1510.
    [53]刘建亮.纯硅沸石膜的合成及在乙苯脱氢制苯乙烯中的应用[D].大连:大连理工大学,2005.
    [54]Ikegami T, Yanagishita H, Kitamoto D, et al. Production of highly concentrated ethanol in a coupled fermentation/pervaporation process using silicalite membranes [J]. Biotechnology Techniques,1997, 11:921-924.
    [55]Sloot H J, Versteeg G F, Van Swaaij W P M. A non-permselective membrane reactor for chemical processes normally requiring strict stoichiometric feed rates of reactants [J]. Chemical Engineering Science,1990,45:2415-2421.
    [56]Sloot H J, Versteeg G F, Smolders C A, et al. Key Engineering Materials:Proceedings of the 2nd International Conference on Inorganic Membranes, Montpellier, France,1991 [C]. Trans Tech Publications,261-266,1992.
    [57]Suzuki H. Composite membrane having a surface layer of an ultrathin film of cage-shaped zeolite and processes for production thereof [P]. US Patent,4699892,1987-10-13.
    [58]Julbe A, Farrusseng D, Jalibert J C, et al. Characteristic and performance in the oxidative dehydeogenation of propane of MFI and V-MFI zeolite membranes [J]. Catalysis Today,2000,56: 199-209.
    [59]Schomacker R, Schmidt A, Frank B, et al. Membranes as catalyst agents [J]. Chemie Ingenieur Technik,2005,77:549-558.
    [60]Wu S, Gallot J E, Bousmina M, et al. Zeolite containing catalytic membranes as interphase contactors [J]. Catalysis Today,2000,56:113-129.
    [61]Farrusseng D, Julbe A, Guizard C. Evaluation of porous ceramic membranes as O2 distributors for the partial oxidation of alkanes in inert membrane reactors [J]. Separation and Purification Technology, 2001,25:137-149.
    [62]Nishiyama N, Miyamoto M, Egashira Y, et al. Zeolite membrane on catalyst particles for selective formation of p-xylene in the disproportionation of toluene [J]. Chemical Communications,2001,18: 1746-1747.
    [63]Nishiyama N, Ichioka K, Park D H, et al. Reactant-Selective Hydrogenation over Composite Silicalite-1-Coated Pt/TiO2 Particles [J]. Industrial & Engineering Chemistry Research,2004,43: 1211-1215.
    [64]Taramasso M, Perego G, Notari B. Preparation of porous crystalline synthetic material comprised of silicon and titanium oxides [P]. US Patent,4410501,1983-10-18.
    [65]Reddy J S, Kumar R, Ratnasamy P. Titanium silicalite-2:Synthesis, characterization and catalytic prperties [J]. Applied Catalysis,1990,58:L1-L4.
    [66]Serrano D P, Li H X, Davis M E. Synthesis of Titanium-containing ZSM-48 [J]. Journal of the Chemical Society, Chemical Communications,1992,10:745-747.
    [67]Camblor M A, Corma A, Martinez A, ea al. Synthesis of a titaniumsilicoaluminate isomorphous to zeolite beta and its application as a catalyst for the selective oxidation of large organic molecules [J]. Journal of the Chemical Society, Chemical Communications,1992,8:589-590.
    [68]Tuel A. Synthesis, chracterization, and catalytic properties of the new TiZSM-12 zeolite [J]. Zeolites, 1995,15:236-242.
    [69]Wu P, Komatsu T, Yashima T. Characterization of Titanium Species Incorporated into Dealuminated Mordenites by Means of IR Spectroscopy and 18O-Exchange Technique [J]. The Journal of Physical Chemistry,1996,100:10316-10322.
    [70]Wu P, Tatsumi T, Komatsu T, et al. Hydrothermal synthesis of a novel titanosilicate with MWW topology [J]. Chemistry Letters,2000,7:774-775.
    [71]Diaz-Cabanas M J, Villaescusa L A, Camblor M A. Synthesis and catalytic activity of Ti-ITQ-7:a new oxidation catalyst with a three-dimensional system of large pore channels [J]. Chemical Communications,2000,9:761-762.
    [72]Ulagappan N, Krishnasamy V. Titanium Substitution in Silicon-free Molecular Sieves:Anatase-free TAPO4-5 and TAPO4-11 Synthesis and Characterisation for Hydroxylation of Phenol [J]. Journal of the Chemical Society, Chemical Communications,1995,3:373-374.
    [73]Zahedi-Niaki M H, Joshi P N, Kaliaguine S. Synthesis and characterization of a novel titanium aluminophosphate molecular sieve with ATS structure:TAPO-36 [J]. Chemical Communications, 1996,1:47-48.
    [74]Padovan M, Leofanti G, Roffia P, ea al. Method for the Preparation of Titanium Silicates [P]. Europe Patent,311983,1989-10-06.
    [75]Uguina M A, Serrano D P, Ovejero G, et al. Preparation of TS-1 by wetness impregnation of amorphous SiO2-TiO2 solids:influence of the synthesis variables [J]. Applied Catalysis A:General, 1995,124:391-408.
    [76]Thangaraj A, Sivasanker S. An Improved Method for TS-1 Synthesis:29Si NMR Studies [J]. Journal of the Chemical Society, Chemical Commnications,1992,2:123-124.
    [77]Thangaraj A, Eapan M J, Sivasanker S, ea al. Studies on the synthesis of titanium silicalite, TS-1 [J]. Zeolites,1992,12:943-950.
    [78]王丽琴.钛硅分子筛合成过程及其催化氧化性能研究[D].大连:大连理工大学,2003.
    [79]Gao H X, Suo J S, Li S B. An Esay Way to Prepare Titanium Silicalite-1 (TS-1) [J]. Journal of the Chemical Society, Chemical Commnications,1995,8:835-835.
    [80]高焕新,索继栓,吕功煊.钛硅分子筛(TS-1)的合成、结构表征及催化性能研究[J].分子催化,1996,10:25-32.
    [81]Zhang G Y, Sterte J, Schoeman B. Discrete Collidal Crystal of Titanium Silicalite-1 [J]. Journal of the Chemical Society, Chemical Communications,1995,22:2259-2260.
    [82]Khomane R B, Kulkarni B D, Paraskar A, ea al. Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media [J]. Materials Chemistry and Physics,2002,76: 99-103.
    [83]Wang L Q, Wang X S, Guo X W, ea al. Synthesis of titanium silicalite-1 in the presence of Tween 40 [J]. Chinese Journal of Catalysis,2003,24:161-162.
    [84]Muller U, Steck W. Ammonium-based alkaline-free synthesis of MFI-type Boron and titanium zeolites [J]. Studies Surface Science and Catalysis,1994,84:203-210.
    [85]张义华.钛基催化材料的合成、表征和选择氧化性能研究[D].大连:大连理工大学,2001.
    [86]李钢.钛硅分子筛的合成、表征及催化丙烯环氧化性能的研究[D].大连:大连理工大学,2000.
    [87]Wang L Q, Wang X S, Guo X W, ea al. Quick synthesis of titanium silicalite-1 [J]. Chinese Journal of Catalysis,2001,22:513-514.
    [88]Kraushar B, Van Hoof J H C. A new method for the preparation of titanium silicalite (TS-1) [J]. Catalysis Letters,1988,4:81-84.
    [89]Ahn W S, Kang K K, Kim K Y. Synthesis of TS-1 by microwave heating of template-impregnated SiO2-TiO2 xerogels [J]. Catalysis Letters,2001,72:229-232.
    [90]Prasad M R, Kamalakar G, Kulkarni S J, et al. An improved process for the synthesis of titanium-rich titanium silicalites (TS-1) under microwave irradiation [J]. Catalysis Communications,2002,3: 399-404.
    [91]Kim K Y, Ahn W S, Park D W, et al. Microwave synthesis of titanium silicalite-1 using solid phase precursors [J]. Bulletin of the Korean Chemical Society,2004,25:634-638.
    [92]Phonthammachai N, Krissanasaeranee M, Gulari E, et al. Crystallization and catalytic activity of high titanium loaded TS-1 zeolite [J]. Materials Chemistry and Physics,2006,97:458-467.
    [93]Jin H L, Jiang N Z, Park S E. Nanoarchitectured synthesis of TS-1 depending on microwave powder [J]. Journal of Physics and Chemistry of Solids,2008,69:1136-1138.
    [94]杨迎春,李鹤,何登华.微波合成TS-1分子筛的催化性能研究[J].化学学报,2006,64:1411-1415.
    [95]李灿.高度隔离过渡金属催化剂及其催化烯烃环氧化反应[J].催化学报,2001,22:479-483.
    [96]Yang Q, Wang S, Lu J, et al. Epoxidation of styrene of Si/Ti/SiO2 catalysts prepared by chemical grafting [J]. Applied Catalysis A:General,2000,194-195:507-514.
    [97]Deo G, Turek A M, Wachs I E, et al. Characterization of titania silicalites [J]. Zeolites,1993,13: 365-373.
    [98]Khouw C B, Davis M E. Catalytic Activity of Titanium Silicates Synthesized in the Presence of Alkali-Metal and Alkaline-Earth Ions [J]. Journal of Catalysis,1995,151:77-86.
    [99]Khouw C B, Dartt C B, Labinger J A, et al. Studies on the Catalytic-Oxidation of Alkanes and Alkenes by Titanium Silicates [J]. Journal of Catalysis,1994,149:195-205.
    [100]Goa Y, Wu P, Tatsumi T. Catalytic Performance of [Ti, Al]-Beta in the Alkene Epoxidation Controlled by the Postsynthetic Ion Exchange [J]. The Journal of Physical Chemistry B,2004,108: 8401-8411.
    [101]On T D, Bonneviot L, Bittar A, et al. Titanium sites in titanium silicalites:An XPS, XANES and EXAFS study [J]. Journal of Molecular Catalysis,1992,74:233-246.
    [102]Vetter S, Schulz-Ekloff G, Kulawik K, et al. On the para/ortho product ratio of phenol and anisole hydroxylation over titanium silicalite-1 [J]. Chemical Engineering & Technology,1994,17:348-353.
    [103]Corma A, Navarro M T, Pariente J P. Synthesis of an Ultralarge Pore Titanium Silicate Isomorphous to MCM-41 and its Application as a Catalyst for Selective Oxidation of Hydrocarbons [J]. Journal of the Chemical Society, Chemical Communications,1994,2:147-148.
    [104]Koyano K A, Tatsumi T. Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure [J]. Chemical Communications,1996,2:145-146.
    [105]Bagshaw S A, Prouzet E, Pinnavaia T J. Templating of Mesoporous Molecular Sieves by Nonionic Polyethylene Oxide Surfactants [J]. Science,1995,269:1242-1244.
    [106]Tanev P T, Chibwe M, Pinnavaia T J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature,1994,368:321-322.
    [107]Zhao D Y, Huo Q S, Feng J L, et al. Nonionic Triblock and Star Diblock Copolymer and Oligometric Surfactant Synthesis of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures [J]. Journal of the American Chemical Society,1998,120:6024-6036.
    [108]Xiao F S, Han Y, Yu Y, et al. Hydrothermally Stable Ordered Mesoporous Titanosilicates with Highly Active Catalytic Sites [J]. Journal of the American Chemical Society,2002,124:888-889.
    [109]Meng X J, Li D F, Yang X Y, et al. Synthesis, Characterization, and Catalytic Activity of Mesostructured Titanosilicates Assembled from Polymer Surfactants with Performed Titanosilicate Precursors in Strongly Acidic Media [J]. The Journal of Physical Chemistry B,2003,107: 8972-8980.
    [110]Jin C Z, Li G, Wang X S, et al. Synthesis, Characterization and Catalytic Performance of Ti-Containing Mesoporous Molecular Sieves Assembled from Titanosilicate Precursors [J]. Chemistry of Materials,2007,19:1664-1670.
    [111]Galacho C, Ribeiro Carrott M M L, Carrott P J M. Structural and catalytic properties of Ti-MCM-41 synthesised at room temperature up to high Ti content [J]. Microporous and Mesoporous Materials, 2007,100:312-321.
    [112]成卫国,王祥生,李钢,等.钛硅分子筛挤条成型催化剂研究[J].大连理工大学学报,2004,44:482-485.
    [113]成卫国,王祥生,李钢,等.钛硅分子筛挤条成型催化剂热稳定性能的研究[J].分子催化,2004,18:241-247.
    [114]Li G, Wang X S, Yan H S, et al. Epoxidation of propylene using supported titanium silicalite catalysts [J]. Applied Catalysis A:General,2002,236:1-7.
    [115]Serrano D P, Sanz R, Pizarro P, et al. Preparation of extruded catalysts based on TS-1 zeolite for their application in propylene epoxidation [J]. Catalysis Today,2009,143:151-157.
    [116]Jung K. T, Shul Y G. A new method for the synthesis of TS-1 monolithic zeolite [J]. Microporous and Mesoporous Materials,1998,21:281-288.
    [117]Kim W J, Kim T J, Ahn W S, et al. Synthesis, characterization and catalytic properties of TS-1 monoliths [J]. Catalysis Letters,2003,91:123-127.
    [118]Guan N, Han Y. Monolithic TS-1/cordierite catalyst synthesized by in-situ method [J]. Chemistry Letters,2000,29:1084-1085.
    [119]陈晓晖,蔡丽蓉,魏可镁.钛硅分子筛膜的合成及其催化性能的研究[J].化工进展,2004,23:1222-1226.
    [120]王天友,李兰东,刘书亮.一种新型分子筛/堇青石整体式稀燃催化器的开发应用[J].天津大学学报,2005,38:294-297.
    [121]宗丽,刘莹,辛峰.整体式堇青石载体上TS-1的原位合成[J].无机材料学报,2007,22:1227-1232.
    [122]赵阳,郑亚峰,辛峰. 整体式催化剂性能及应用的研究进展[J].化学反应工程与技术,2004,20:357-362.
    [123]Jung K T, Shul Y G. Preparation of Transparent TS-1 Zeolite Film by Using Nanosized TS-1 Particles [J]. Chemistry of Materials,1997,9:420-422.
    [124]Cho G, Lee J S, Glatzhofer D T, et al. Ultra-Thin Zeolite Films Through Simple Self-Assembled Processes [J]. Advanced Materials,1999,11:497-499.
    [125]Lee Y, Ryu W, Kim S S, et al. Oriented Growth of TS-1 Zeolite Ultrathin Films on Poly (ethylene oxide) Monolayer Templates [J]. Langmuir,2005,21:5651-5654.
    [126]Au L T Y, Chau J L H, Ariso C T, et al. Preparation of supported Sil-1, TS-1 and VS-1 membranes: Effects of Ti and V metal ions on the membrane synthesis and permeation properties [J]. Journal of Membrane Science,2001,183:269-291.
    [127]Ke X B, Zeng C F, Yao J F, et al. Synthesis of titanium silicalite-1 nanocrystals on silica nanofibers by steam-assisted dry gel conversion technique [J]. Materials Letters,2008,62:3316-3318.
    [128]Zhao Q, Li P, Li D Q, et al. Synthesis and characterization of titanium silicalite-1 supported on carbon nanofiber [J]. Microporous and Mesoporous Materials,2008,108:311-317.
    [129]周颖.TS-1膜的合成及催化氯丙烷环氧化性能的研究[D].天津:天津大学,2006.
    [130]汤志刚,张黎黎.钛硅沸石分子筛TS-1陶瓷负载膜的制备与表征[J].纳米科技,2007,4:41-45.
    [131]Wang X D, Zhang P P, Liu X F, et al. Fabrication and characterization of TS-1 films on β-Al2O3 substrates using TiCl3 as titanium source [J]. Applied Surface Science,2007,254:544-547.
    [132]Chen P, Chen X S, Tanaka K, et al. A novel and Less-expensive Preparation of Titanium Silicalite-1 Membrane [J]. Chemistry Letters,2007,36:1078-1079.
    [133]Chen X S, Chen P, Kita H. Pervaporation through TS-1 membrane [J]. Microporous and Mesoporous Materials,2008,115:164-169.
    [134]Wang X D, Zhang B Q, Liu X F, et al. Synthesis of b-Oriented TS-1 Films on Chitosan-Modified a-Al2O3 Substrates [J]. Advanced Materials,2006,18:3261-3265.
    [135]Wan Y S S, Chau J L H, Gavriilidis A, et al. TS-1 zeolite microengineered reactors for 1-pentene epoxidation [J]. Chemical Communications,2002,8:878-879.
    [136]Wan Y S S, Chau J L H, Yeung K L.1-Pentene epoxidation in catalytic microfabricated reactors [J]. Journal of Catalysis,2004,223:241-249.
    [137]Wan Y S S, Yeung K L, Gavriilidis A. TS-1 oxidation of aniline to azoxybenzene in a microstructured reactor [J]. Applied Catalysis A:General,2005,281:285-293.
    [138]Maira A J, Lau W N, Yeung K L, et al. Performance of a membrane-catalyst for photocatalytic oxidation of volatile organic compounds [J]. Chemical Engineering Science,2003,58:959-962.
    [139]Lu Y, Ganguli R, Drewien C, et al. Continuous formation of supported cubic and hexagonal mesoporous films by sol-gel dip-coating [J]. Nature,1997,389:364-368.
    [140]Tolbert S H, Schaffer T E, Feng J, et al. A New Phase of Oriented Mesoporous Silicate Thin Films [J]. Chemistry of Materials,1997,9:1962-1967.
    [141]Zhao D Y, Yang P D, Melosh N, et al. Continuous Mesoporous Silica Films with Highly Ordered Large Pore Structures [J]. Advanced Materials,1998,10:1380-1385.
    [142]Honma I, Zhou H S, Kundu D, et al. Structural Control of Surfactant-Templated Hexagonal, Cubic, and Lamellar Mesoporous Silicate Thin Films Prepared by Spin-Casting [J]. Advanced Materials, 2000,12:1529-1533.
    [143]Kim Y S, Yang S M. Preparation of Continuous Mesoporous Silica Thin Films on a Porous Tube [J]. Advanced Materials,2002,14:1078-1081.
    [144]Huang L, Kawi S, Hidajat K, et al. Preparation of M41S family mesoporous silica thin films on porous oxides [J]. Microporous and Mesoporous Materials,2005,82:87-89.
    [145]Hua Z L, Shi J L, Zhang W H, et al. Direct synthesis and characterization of Ti-containing mesoporous silica thin films [J]. Materials Letters,2002,53:299-304.
    [146]Shioya Y, Ikeue K, Ogawa M, et al. Synthesis of transparent Ti-containing mesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O [J]. Applied Catalysis A:General,2003,254:251-259.
    [147]Graham T. On the absorption and dialytic separation gases by colloid sepata [J]. Phyilosophical Transactions of the Royal Society,1866,156:399-412.
    [148]Snelling W O. Apparatus for separating gases [P]. US patent 1174631,1916-3-7.
    [149]Hunter J B. A new hydrogen purification process [J]. Platinium Metals Review,1960,4:130-131.
    [150]Gryaznove V M, Ermilova M M, Morozova L S. et al. Palladium alloys as hydrogen permeable catalysts in hydrogenation and dehydrogenation ractions [J]. Journal of Less-Common Metal,1983, 89:529-535.
    [151]Uemiya S, Kude Y, Sugino K, et al. A Palladium/Porous-Glass Composite Membrane for Hydrogen Separation [J]. Chemistry Letters,1988,17:1687-1690.
    [152]Huang Y, Dittmeyer R. Preparation and characterization of composite palladium membranes on sinter-metal supports with a ceramic barrier against intermetallic diffusion [J]. Journal of Membrane Science,2006,282:296-310.
    [153]Peters T A, Tucho W M, Ramachandran A, et al. Thin Pd-23%Ag/stainless steel composite membranes:Long-term stability, life-time estimation and post-process characterization [J]. Journal of Membrane Science,2009,326:572-581.
    [154]Bhandari R, Ma Y H. Pd-Ag membrane synthesis:The electroless and electro-plating conditions and their effect on the deposites morphology [J]. Journal of Membrane Science,2009,334:50-63.
    [155]Jayaraman V, Lin Y S. Synthesis and hydrogen permeation properties of ultrathin palladium-siliver alloy membranes [J]. Journal of Membrane Science,1995,104:251-262.
    [156]Zhao H B, Li A W, Xiong G X, et al. Preparation of palladium composite membranes by modified electroless plating procedure [J]. Journal of Membrane Science,1998,142:147-157.
    [157]Zhang X L, Xiong G X, Yang W S. A modified electroless plating technique for thin dense palladium composite membranes with enhanced stability [J]. Journal of Membrane Science,2008,314: 226-237.
    [158]Wu L Q, Xu N P, Shi J. Preparation of a Palladium Composite Membrane by an Improved Electroless Plating Technique [J]. Industrial & Engineering Chemistry Research,2000,39:342-348.
    [159]雷敏志,陈森凤.钯膜与钯膜反应器应用研究进展[J].材料导报,2004,18:41-44.
    [160]张雪莹,杨长春,郭彩峰.钯复合膜研究进展[J].有色金属,2005,57:51-57.
    [161]黄彦,李雪,范益群,等.透氢钯复合膜的原理、制备及表征[J].化学进展,2006,18:231-238.
    [162]刘伟,张宝泉,刘秀凤.钯复合膜的研究进展[J].化学进展,2006,18:1468-1481.
    [163]雷强华,罗德礼,熊义富,等.用于氢相关领域的钯合金膜的研究进展[J].材料导报,2007,21:74-78.
    [164]Collins J P, Way J D. Preparation and Characterization of a Composite Palladium-Ceramic Membrane [J]. Industrial & Engineering Chemistry Research,1993,32:3006-3013.
    [165]Ilias S, Su N, Udo-Aka U I, et al. Application of Electroless Deposited Thin-Film Palladium Composite Membrane in Hydrogen Separation [J]. Separation Science and Technology,1997,32: 487-504.
    [166]Shu J, Grandjean B P A, Van Neste A, et al. Catalysis palladium-based membrane reactor:A review [J]. The Canadian Journal of Chemical Engineering,1991,69:1036-1060.
    [167]Nam S, Lee K. Hydrogen separation by Pd alloy composite membranes:Introduction of diffusion barrier [J]. Journal of Membrane Science,2001,192:177-185.
    [168]Su C, Jin T, Kuraoka K, et al. Thin Palladium Film Spported on SiO2-Modified Porous Stainless Steel for a High-Hydrogen-Flux Membrane [J]. Industrial & Engineering Chemistry Research,2005, 44:3053-3058.
    [169]Edlund D J, McCarthy J. The relationship between intermetallic diffusion and flux decline in composite-metal membranes:implications for achieving long material lifetime [J]. Journal of Membrane Science,1995,107:147-153.
    [170]Wang D, Tong J, Xu H, et al. Preparation of palladium membrane over porous stainless steel tube modified with zirconium oxide [J]. Catalysis Today,2004,93-95:689-693.
    [171]Zahedi M, Afra B, Dehghani-Mobarake M, et al. Preparation of Pd membrane on a WO3 modified porous stainless steel for hydrogen separation [J]. Journal of Membrane Science,2009,333:45-49.
    [172]Tong J, Su C, Kuraoka K, et al. Preparation of thin Pd membrane on CeO2-modified porous metal by a combined method of electroless plating and chemical vapor deposition [J]. Journal of Membrane Science,2006,269:101-108.
    [173]Moron F, Pina M P, Urriolabeitia E, et al. Preparation and characterizationof Pd-zeolite composite membranes for hydrogen separation [J]. Desalination,2002,147:425-431.
    [174]Bosko M L, Ojeda F, Lombardo E A, et al. NaA zeolite as an effective diffusion barrier in composite Pd/PSS membranes [J]. Journal of Membrane Science,2009,331:57-65.
    [175]Bosko M L, Munera J F, Lombardo E A, et al. Dry reforming of methane in membrane reactors using Pd and Pd-Ag composite membranes on a NaA zeolite modified porous stainless steel support [J]. Journal of Membrane Science,2010,364:17-26.
    [176]刘伟.超临界流体化学沉积法制备金属钯复合膜及其表征[D].天津:天津大学,2008.
    [177]She Y, Han J, Ma Y H. Palladium membrane reactor for the dehydrogenation of ethylbenzene to styrene [J]. Catalysis Today,2001,67:43-53.
    [178]Itoh N, Xu W C, Hara S, et al. Effects of Hydrogen Removal on the Catalytic Reforming of n-Hexane in a Palladium Membrane Reactor [J]. Industrial & Engineering Chemistry Research,2003, 42:6576-6581.
    [179]郭杨龙,卢冠忠,陈荣,等.钯复合膜反应器中异丁烷催化脱氢反应[J].化工学报,2000,51:572-575.
    [180]Yamamoto S, Hanaoka T, Hamakawa S, et al. Application of a microchannel to catalytic dehydrogenation of cyclohexane on Pd membrane [J]. Catalysis Today,2006,118:2-6.
    [181]Shirai M, Pu Y, Arai M, et al. Reactivity of permeating hydrogen with thiophene on a palladium membrane [J]. Applied Surface Science,1998,126:99-106.
    [182]Gryzaonv V M, Ermilova M M, Orekhova N V. Membrane-catalyst systems for selectivity improvement in dehydrogenation and hydrogenation reactions [J]. Catalysis Today,2001,67: 185-188.
    [183]Itoh N, Wu T H. An adiabatic type of palladium membrane reactor for coupling endothermic and exothermic reactions [J]. Journal of Membrane Science,1997,124:213-222.
    [184]Moustafa T M, Elnashaie S S E H. Simultaneous production of styrene and cyclohexane in an integrated membrane reactor [J]. Journal of Membrane Science,2000,178:171-184.
    [185]Choudhary V R, Gaikwad A G, Sansare S D. Nonhazardous Direct Oxidation of Hydrogen to Hydrogen Peroxide Using a Novel Membrane Catalyst [J]. Angewandte Chemie International Edition,2001,40:1776-1779.
    [186]Choudary V R, Sansare S D, Gaiwad A G. Hydrophobic composite Pd-membrane catalyst useful for non-hazardous direct oxidation of hydrogen by oxygen to hydrogen peroxide and method of its preparation [P]. US Patent,6448199,2002-10-10.
    [187]Abate S, Centi G, Melada S, et al. Preparation, performances and reaction mechanism for the synthesis of H2O2 from H2 an O2 based on palladium membranes [J]. Catalysis Today,2005,104: 323-328.
    [188]Abate S, Centi G, Perathoner S, et al. Enhanced stability of catalytic membranes based on a porous thin Pd film on a ceramic support by forming a Pd-Ag interlayer [J]. Catalysis Today,2006,118: 189-197.
    [189]Chen Y Z, Wang Y Z, Xu H Y, et al. Efficient production of hydrogen from natural gas steam reforming in palladium membrane reactor [J]. Applied Catalysis B:Environmental,2008,81: 283-294.
    [190]Niwa S, Eswaramoorthy M, Nair J, et al. A One-Step Conversion of Benzene to Phenol with a Palladium Membrane [J]. Science,2002,295:105-107.
    [191]He J, Xu W P, Evans D G, et al. Role of pore size and surface properties of Ti-MCM-41 catalysts in the hydroxylation of aromatics in the liquid phase [J]. Microporous and Mesoporous Materials,2001, 44-45:581-586.
    [192]Kitano T, Kuroda Y, Mori M, et al. Gas Phase Oxidation of Benzene to Phenol Using Pd-Cu Composite Catalysts. Part 2. Performance of CuSO4-based Catalysts [J]. Journal of the Chemical Society, Perkin Transactions 2,1993,5:981-985.
    [193]Miyake T, Hamada M, Sasaki Y, et al. Direct synthesis of phenol by hydroxylation of benzene with oxygen and hydrogen [J]. Applied Catalysis A:General,1995,131:33-42.
    [194]Ehrich H, Berndt H, Pohl M, et al. Oxidation of benzene to phenol on supported Pt-VOx and Pd-VOx catalysts [J]. Applied Catalysis A:General,2002,230:271-280.
    [195]Cai R, Song S Q, Ji B F, et al. Phenol cogeneration with electricity by using in situ generated H2O2 in a H2-O2 PEMFC reactor [J]. Catalysis Today,2005,104:200-204.
    [196]Kuznetsova N I, Kuznetsova L I. Hydrocarbon Oxidation with an Oxygen-Hydrogen Mixture: Catalytic Systems Based on the Interaction of Platinum or Palladium with a Heteropoly Compound [J]. Kinetics and Catalysis,2009,50:5-14.
    [197]Gimeno M P, Soler J, Herguido J, et al. Use of Fluidized Bed Reactors for Direct Gas Phase Oxidation of Benzene to Phenol [J]. Industrial & Engineering Chemistry Research,2010,49: 6810-6814.
    [198]翟宏斌,刘志煜.2002年有机化学闪光点[J].有机化学,2003,23:885-892.
    [199]Itoh N, Niwa S, Mizukami F, et al. Catalytic palladium membrane for reductive oxidation of benzene to phenol [J]. Catalysis Communications,2003,4:243-246.
    [200]Sato K, Niwa S, Hanaoka T, et al. Direct hydroxylation of methyl benzoate to methyl salicylate by using new Pd membrane reactor [J]. Catalysis Letters,2004,96:107-112.
    [201]Sato K, Hanaoka T, Niwa S, et al. Direct hydroxylation of aromatic compounds by a palladium membrane reactor [J]. Catalysis Today,2005,104:260-266.
    [202]Orita H, Itoh N. Simulation of phenol formation from benzene with a Pd membrane reactor:ab initio periodic density functional study [J]. Applied Catalysis A:Genenral,2004,258:17-23.
    [203]Sato K, Hanaoka T, Hamakawa S, et al. Structural changes of a Pd-based membrane during direct hydroxylation of benzene to phenol [J]. Catalysis Today,2006,118:57-62.
    [204]Vulpescu G D, Ruitenbeek M, Van Lieshout L L, et al. One-step selective oxidation over a Pd-based catalytic membrane:evaluation of the oxidation of benzene to phenol as a model reaction [J]. Catalysis Communications,2004,5:347-351.
    [205]Ye S, Hamakawa S, Tanaka S, et al. A one-step conversion of benzene to phenol using MEMS-based Pd membrane microreactors [J]. Chemical Engineering Journal,2009,155:829-837.
    [206]Shu S L, Huang Y, Hu X J, et al. On the Membrane Reactor Concept for One-Step Hydroxyaltion of Benzene to Phenol with Oxygen and Hydrogen [J]. Journal of Physical Chemistry C,2009,113: 19618-19622.
    [207]Bortolotto L, Dittmeyer R. Direct hydroxylation of benzene to phenol in a novel microstructured membrane reactor with distributed dosing of hydrogen and oxygen [J]. Separation and Purification Technology,2010,73:51-58.
    [208]Dittmeyer R, Bortolotto L. Modification of the catalytic properties of a Pd membrane catalyst for direct hydroxylation of benzene to phenol in a double-membrane reactor by sputtering of different catalyst systems [J]. Applied Catalysis A:General,2011,391:311-318.
    [209]Guo Y, Zhang X F, Zou H Y, et al. Pd-Sil-1 composite membrane for direct hydroxylation of benzene [J]. Chemical Communications,2009,39:5898-5900.
    [210]郭宇.钯复合膜制备、表征及其应用于苯一步合成苯酚反应研究[D].大连:大连理工大学,2010.
    [211]Laufer W, Hoelderich W F. Direct oxidation of propylene and other olefins on precious metal containing Ti-catalysts [J]. Applied Catalysis A:General,2001,213:163-171.
    [212]Balducci L, Bianchi D, Bortolo R, et al. Direct Oxidation of Benzene to Phenol with Hydrogen Peroxide over a Modified Titanium Silicalite [J]. Angewandte Chemie International Edition,2003, 42:4937-4940.
    [213]Notari B. Titanium silicalites [J]. Catalysis Today,1993,18:163-172.
    [214]Bellussi G, Rigutto M S. Metal-Ions Associated to the Molecular Sieve Framework Possible Catalytic Oxidation Sites [J]. Studies in Surface Science and Catalysis,1994,85:177-213.
    [215]Van der Pol A J H P, Verduyn A J, Van Hooff J H C. Why are some titanium silicalite-1 samples active and others not? [J]. Applied Catalysis A:General,1992,92:113-130.
    [216]Tuel A, Ben Taarit Y. Comparison between TS-1 and TS-2 in the hydroxylation of phenol with hydrogen peroxide [J]. Applied Catalysis A:General,1993,102:69-77.
    [217]Zhang G Y, Sterte J, Schoeman B J. Preparation of Colloidal Suspensions of Discrete TS-1 Crystals [J]. Chemistry of Materials,1997,9:210-217.
    [218]Jung K T, Hyun J H, Shul Y G, et al. Nanoparticle Synthesis of Titanium Silicalite for Fiber, Film, and Monolith Formation [J]. AIChE Journal,1997,43:2802-2808.
    [219]Zhang X F, Liu H O, Wang T H, et al. Modification of carbon membranes and preparation of carbon-zeolite composite membranes with zeolite growth [J]. Carbon,2006,44:501-507.
    [220]Au L T Y, Yeung K L. An investigation of the relationship between microstructure and permeation properties of ZSM-5 membranes [J]. Journal of Membrane Science,2001,194:33-35.
    [221]Wong W C, Au L T Y, Lau P S, et al. Effect of synthesis parameters on the zeolite membrane morphology [J]. Journal of Membrane Science,2001,193:141-161.
    [222]Zhang X F, Liu H O, Yeung K L. Influnce of seed size on the formation and microstructure of zeolite silicalite-1 membrane by seeded growth [J]. Materials Chemistry and Physics,2006,96:42-50.
    [223]邱芳锐.不同载体上钛硅沸石膜的制备及性能研究[D].大连:大连理工大学,2008.
    [224]Chau J L H, Tellez C, Yeung K L, et al. The role of surface chemistry in zeolite membrane formation [J]. Journal of Membrane Science,2000,164:257-275.
    [225]Lovallo M C, Gouzinis A, Tsapatsis M. Synthesis and Characterization of Oriented MFI Membranes Prepared by Secondary Growth [J]. AIChE Journal,1998,44:1903-1913.
    [226]Hedlund J, Ohrman O, Msimang V, et al. The synthesis and testing of thin film ZSM-5 catalysts [J]. Chemical Engineering Science,2004,59:2647-2657.
    [227]Wong W C, Au L T Y, Ariso C T, et al. Effects of synthesis parameters on the zeolite membrane growth [J]. Journal of Membrane Science,2001,191:143-163.
    [228]Carati A, Flego C, Berti D, et al. Influence of synthesis media on the TS-1 characteristic [J]. Studies in Surface Science and Catalysis,1999,125:45-52.
    [229]Serrano D P, Uguina M A, Ovejero G, et al. Synthesis of TS-1 by wetness impregnation of SiO2-TiO2 solids prepared by the sol-gel method [J]. Microporous Materials,1995,4:273-282.
    [230]Vayssilov N G. Structural and Physicochemical Features of Titanium Silicalites [J]. Catalysis Reviews:Science and Engineering,1997,39:209-251.
    [231]Bandyopadhyay M, Birkner A, Van den Berg M W E, et al. Synthesis and Characterization of Mesoporous MCM-48 Containing TiO2 Nanoparticles [J]. Chemistry of Materials,2005,17: 3820-3829.
    [232]Blasco T, Camblor M A, Corma A, et al. The State of Thin Titanoaluminosilicates Isomorphous with Zeolite β [J]. Journal of the American Chemical Society,1993,115:11806-11813.
    [233]Li Y G, Lee Y M, Porter J F. The synthesis and characterization of titanium silicalite-1 [J]. Journal of Materials Science,2002,37:1959-1965.
    [234]Wang X S, Guo X W. Synthesis, characterization and catalytic properties of low cost titanium silicalite [J]. Catalysis Today,1999,51:177-180.
    [235]Hu C W, Zhu L F, Xia Y S. Direact Amination of Benzene to Aniline by Aqueous Ammonia and Hydrogen Peroxide over V-Ni/Al2O3 Catalyst with Catalytic Distillation [J]. Industrial & Engineering Chemistry Research,2007,46:3443-3445.
    [236]Lei Z G, Yang Y, Li Q S, et al. Catalytic distillation for the synthesis of tert-butyl alcohol with structured catalytic packing [J]. Catalysis Today,2009,147:S352-S356.
    [237]Dechaine G P, Ng F T T. A New Coated Catalyst for the Production of Diacetone Alcohol via Catalytic Distillation [J]. Industrial & Engineering Chemistry Research,2008,47:9304-9313.
    [238]Yang G H, Zhang X F, Liu S Q, et al. A novel method for the assembly of nano-zeolite crystals on porous stainless steel microchannel and then zeolite film growth [J]. Journal of Physics and Chemistry of Solids,2007,68:26-31.
    [239]Fejes P, Nagy J B, Halasz, et al. Heat-treatment of isomorphously substituted ZSM-5 zeolites and its structural consequences:An X-ray diffraction,29Si MAS-NMR, XPS and FT-IR spectroscopy study [J]. Applied Catalysis A:General,1998,175:89-104.
    [240]Blasco T, Camblor M A, Fierro J L G, et al.. X-Ray photoelectron spectroscopy of Ti-Beta zeolite [J]. Microporous Materials,1994,3:259-263.
    [241]Gavriilidis A, Varma A, Morbidelli M. Optimal Distribution of Catalyst in Pellets [J], Catalysis Reviews:Science and Engineering,1993,35:399-456.
    [242]Papageorgiou P, Price D M, Gavriilidis A, et al. Preparation of Pt/γ-Al2O3 Pellets with Internal Step-Distribution of Catalyst:Experiments and Theory [J]. Journal of Catalysis,1996,158:439-451.
    [243]Klaewkla R, Rirksomboon T, Kulprathipanja S, et al. Light sensitivity of phenol hydroxylation with TS-1 [J]. Catalysis Communications,2006,7:260-263.
    [244]Yube K, Furuta M, Aoki N, et al. Control of selectvity in phenol hydroxylation using microstructured catalytic wall reactors [J]. Applied Catalysis A:General,2007,327:278-286.
    [245]Tuel A, Moussa-Khouzami S, Ben Taarit Y, et al. Hydroxylation of phenol over TS-1 surface and solvent effects [J]. Journal of Molecular Catalysis,1991,68:45-52.
    [246]Zhuang J. Q, Yang G, Ma D, et al. In Situ Magnetic Resonance Investigation of Styrene Oxidation over TS-1 zeolite [J]. Angewandte Chemie International Edition,2004,43:6377-6381.
    [247]Zhuang J Q, Ma D, Yan Z M, et al. Effect of acidity in TS-1 zeolites on product distribution of the styrene oxidation reaction [J]. Applied Catalysis A:General,2004,258:1-6.
    [248]Yang Q H, Li C, Yuan S D, et al. Epoxidation of Styrene on a Novel Titanium-Silica Catalyst Prepared by Ion Beam Implantation [J]. Journal of Catalysis,1999,183:128-130.
    [249]Kumar S B, Mirajkar S P, Pais G C G, et al. Epoxidation of Styrene over a Titanium Silicate Molecular Sieve TS-1 Using Dilute H2O2 as Oxidizing Agent [J]. Journal of Catalysis,1995,156: 163-166.
    [250]Hulea V, Dumitriu E. Styrene oxidation with H2O2 over Ti-containing molecular sieves with MFI, BEA and MCM-41 topoloties [J]. Applied Catalysis A:General,2004,277:99-106.
    [251]Laha S C, Kumar R. Selective Epoxidation of Styrene to Styrene Oxide over TS-1 Using Urea-Hydrogen Peroxide as Oxidizing Agent [J]. Journal of Catalysis,2001,204:64-70.
    [252]Lew C M, Cai R, Yan Y S. Zeolite Thin Films:From Computor Chips to Space Stations [J]. Accounts of Chemical Research,2010,43:210-219.
    [253]Mardilovich P P, She Y, Ma Y H, et al. Defect-free palladium membranes on porous stainless-steel support [J]. AIChE Journal,1998,44:310-322.
    [254]Hollein V, Thornton M, Quicker P, et al. Preparation and characterization of palladium composite membranes for hydrogen removal in hydrocarbon dehydrogenation membrane reactors [J]. Catalysis Today,2001,67:33-42.
    [255]Bottino A, Capannelli G, Comite A, et al. Pd and Pd/Ag composite membranes prepared by the electroless plating technique:preparation, characterization and interpretation of the H2 transport mechanism, Proceedings of the 9th International Conferences on Inorganic Membranes, Lillehammer, Norway,2006 [C]:96-99.
    [256]Huang Y, Shu S L, Lu Z, et al. Characterization of the adhesion of thin palladium membranes supported on tubular porous ceramics [J]. Thin Solid Films,2007,515:5233-5240.
    [257]Shi Z L, Wu S Q, Szpunar J A, et al. An observation of palladium membrane formation on a porous stainless steel substrate by electroless deposition [J]. Journal of Membrane Science,2006,280: 705-711.
    [258]武治锋,贺跃辉,江立,等.Pd/多孔TiAl合金基复合透氢膜的制备与性能[J].材料研究学报,2008,22:454-460.
    [259]Landon P, Collier P J, Carley A F D, et al. Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts [J]. Physical Chemistry Chemical Physics,2003,5:1917-1923.
    [260]Ke X B, Xu L, Zeng C F, et al. Synthesis of mesoporous TS-1 by hydrothermal and steam-assisted dry gel conversion techniques with the aid of triethanolamine [J]. Microporous and Mesoporous Materials,2007,106:68-75.
    [261]Wang Y R, Lin M, Tuel A. Hollow TS-1 crystals formed via a dissolution-recrystallization process [J]. Microporous and Mesoporous Materials,2007,102:80-85.
    [262]Kresge C T, Leonowicz M E, Roth W J, et al. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism [J]. Nature,1992,359:710-712.
    [263]Corma A. From Microporous to Mesoporous Molecular Sieve Materials and Their Use in Catalysis [J]. Chemical Reviews,1997,97:2373-2419.
    [264]Luan Z, Bae J Y, Kevan L. Vanadosilicate Mesoporous SBA-15 Molecular Sieves Incorporated with N-Alkylphenothiazines [J]. Chemistry of Materials,2000,12:3202-3207.
    [265]Trong On D, Lutic D, Kaliaguine S. An example of mesostructured zeolitic material:UL-TS-1 [J]. Microporous and Mesoporous Materials,2001,44-45:435-444.
    [266]Kolodziejski W, Corma A, Navarro M T, et al. Solid-state NMR study of ordered mesoporous aluminosilicate MCM-41 synthesized on a liquid-crystal template [J]. Solid State Nuclear Magnetic Resonance,1993,2:253-259.
    [267]Eimer G A, Chanquia C M, Sapag K, et al. The role of differnt parameters of synthesis in the final structure of Ti-containing mesopoporous materials [J]. Microporous and Mesoporous Materials, 2008,116:670-676.
    [268]Bengoa J F, Gallegod N G, Marchetti S G, et al. Influence of TS-1 structure properties and operation conditions on benzene catalytic oxidation with H2O2 [J]. Microporous and Mesoporous Materials, 1998,24:163-172.
    [269]De la Iglesis O, Pedernera M, Mallada R, et al. Synthesis and characterization of MCM-48 tubular membranes [J]. Journal of Membrane Science,2006,280:867-875.
    [270]Liu C Y, Wang L Q, Ren W Z, et al. Synthesis and characterization of a mesoporous silica (MCM-48) membrane on a large-pore α-Al2O3 ceramic tube [J]. Microporous and Mesoporous Materials,2007, 106:35-39.
    [271]Wu S F, Yang J H, Lu J M, et al. Synthesis of thin and compact mesoporous MCM-48 membrane on vacuum-coated a-Al2O3 tube [J]. Journal of Membrane Science,2008,319:231-237.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700