用户名: 密码: 验证码:
新型微泡超声造影剂的制备及性能与应用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超声诊断作为一种无创、低成本、实时的成像技术,是目前应用最为广泛的成像方法。然而,由于传统超声诊断技术的敏感性和分辨率都较低,限制了它的应用。微泡超声造影剂(Ultrasound Contrast Agent,UCA)因具有较强的回波反射性能,能够显著增强医学超声检测信号。在诊断方面,它能提高诊断的敏感性和特异性,在炎症显像、血栓显像以及癌症的早期诊断方面应用十分广泛。除了作为诊断药剂外,超声造影剂在分子影像、促进血栓溶解、基因转染和药物运输定位释放等多个领域都具有重要的研究和应用价值。本课题针对超声医学领域的需求,开发具有良好超声显影特性的新型微泡超声造影剂。
     针对目前制备的微泡超声造影剂稳定性欠佳的问题,制备了聚电解质膜包覆的微泡超声造影剂。首先,采用声振空化的方法制备了表面带负电荷的ST68微泡。然后以该微泡为模板,以带相反电荷和具有良好生物相容性的聚电解质为包膜材料,采用静电层层自组装的方法成功制备了聚电解质膜包覆的微泡超声造影剂。得到的微泡分散性好,粒度分布均匀。体内外超声造影结果表明,制得的微泡超声造影剂仍能维持其良好的超声造影效果。在前面工作的基础上,进一步制备了泡壁含有磁性纳米粒子的磁性微泡。首先,采用多元醇法制备了表面带负电荷的磁性纳米粒子,而后采用层层自组装的方法,通过聚乙烯亚胺和磁性纳米粒子在微泡表面的交替沉积,制得了具有超声/磁场双重响应特性的微泡超声造影剂。制得的磁性微泡形态规整,粒度分布均匀,在磁场中具有良好的响应特性。组装磁性纳米粒子后微泡的形态和粒径较组装前没有发生明显变化。体内外超声造影结果表明磁性微泡具有良好的超声造影效果。此外,我们在体外成功地实现了超声监测下的磁靶向,为今后进一步研究可满足诊断和治疗双重作用的磁靶向微泡超声造影剂打下了良好的研究基础。
     在总结前人工作的基础上,我们从分子结构出发,选择合适的成膜材料,制备了新型基于表面活性剂的微泡超声造影剂。新型微泡以司班60(Span 60)和聚乙二醇单硬脂酸酯(PEG40S)为成膜材料,全氟丙烷(C3F8)为包封气体,采用声振空化的方法制备而成。制得的微泡粒度分布均匀,分散性好,平均粒径约为2.08±1.27μm,超过99%的微泡直径小于8μm,表明它们尺寸适宜,可以作为超声造影剂用于静脉注射。体内外超声造影结果表明,新型微泡在脉冲反向谐波和能量多普勒模式下均具有很好的显影增强效果,造影过程中兔基本生命体征未见明显变化。在制得了微米级气泡的基础上,采用离心的方法从母液微泡悬液中分离得到了尺寸可控的纳米级气泡。动物体内能量多普勒模式造影结果表明,它可以显著增强兔肾脏能量多普勒信号。为了了解制得的新型微泡的结构和稳定机制,采用Langmuir单分子膜技术在分子水平上考察了微泡成膜组分的单分子膜行为。结果表明,Span 60能形成低表面张力的壳层,有效地降低了腔内气体向外部的弥散;PEG40S分子的加入构建了一个亚能垒,阻止了微泡间的凝聚融合,从而赋予了其良好的稳定性。将微泡与不同比例的混合单分子膜的π-A等温曲线进行比较,推测微泡膜层中Span 60与PEG40S的分子数比例大约为9:1。
     以生物相容性和安全性俱佳的可降解高分子聚合物聚乳酸(PLA)为成膜材料,量子点(QDs)为发光物质,采用双乳溶剂挥发法和冷冻干燥技术相结合制备具有超声/荧光双模式显影功能的高分子材料微泡——QDs@PLA微泡。制得的微泡呈规则的球形,具有中空结构,粒度分布均匀,能够满足超声造影剂对尺寸的基本要求。荧光发射光谱和荧光显微镜结果表明,QDs@PLA微泡能维持QDs良好的发光特性,PLA壳层有效地增加了QDs的荧光稳定性。体内外超声造影结果表明,QDs@PLA微泡具有良好的回声特性。体内外荧光成像结果表明,QDs@PLA微泡具有很好的荧光成像能力,与超声造影结果具有同步性。
As a non-invasive, low cost and real-time imaging modality, ultrasonic diagnosis is the most widely used imaging method at present. However, due to the relatively low sensitivity and resolution of traditional ultrasonic diagnosis, its further applications are limited. Microbubble ultrasound contrast agent can significantly improve the signal to noise ration of the medical ultrasound because of the strong echo reflection of microbubbles. In diagnosis, the advent of ultrasound contrast agent promises to improve the sensitivity and specificity of ultrasound in the detection of inflammation, thrombosis and early cancer. Besides working as a diagnostic agent, ultrasound contrast agent has been extensively studied in molecular imaging, promoting thrombolysis and gene transfection and site-specific drug delivery and release, etc. This dissertation is focus on the needs of ultrasound medicine, aiming to develop novel microbubble ultrasound contrast agent with excellent ultrasonic contrast imaging characteristics.
     In view of the instability of the present microbubble ultrasound contrast agent, polyelectrolyte multilayer film-coated microbubbles were developed. Firstly, ST68 microbubbles with negative charge were prepared by acoustic cavitation method. Subsequently, the resulting microbubbles were coated with oppositely charged and good biocompatibility polyelectrolytes by microbubble-templated layer-by-layer self-assembly technique via electrostatic interaction. The obtained microbubbles had a good dispersion and their size distribution is relative uniform. In vitro and in vivo ultrasound imaging results indicated that the polyelectrolyte multilayer film-coated microbubble ultrasound contrast agent could still maintain the good performance of initial microbubbles. On the basis of precedent work, we fabricated magnetic microbubbles which contained magnetic nanoparticles on the surface of microbubbles. Firstly, magnetic nanoparticles with negative charge were synthesized by polyol process. Then, the ultrasound/magnetic field dual response microbubble ultrasound contrast agent was fabricated through alternately depositing polyethylenimine and magnetic nanoparticles onto microbubbles by layer-by-layer self-assembly technique. The obtained magnetic microbubbles appeared uniformly with a tight size distribution and were provided with good response in magnetic field. The configuration and diameter of microbubbles after assembling magnetic nanoparticles were almost the same as those of non-assembled ones. In vitro and in vivo ultrasound contrast effects indicated that the magnetic microbubbles had good ultrasound imaging performance. In addition, we succeed in magnetic targeting in vitro under ultrasonic monitoring. It will serve a double purpose for diagnosis and treatment, which would establish well foundation for further magnetic targeting microbubble ultrasound contrast agent.
     Based on the work of the formers, we proceed from molecular structure, selecting suitable microbubble forming materials, to prepare novel microbubble ultrasound contrast agent based on surfactants. The novel perfluoropropane-containing microbubbles were fabricated using ultrasonication of a sorbitan monostearate (Span 60) and polyoxyethylene 40 stearate (PEG40S). The obtained microbubbles distributed uniformly with an average diameter of 2.08±1.27μm. More than 99% of the microbubbles had a mean diameter less than 8μm, indicating that they were appropriately sized for intravenous administration as ultrasound contrast agent. The preliminary in vitro and in vivo ultrasound imaging study showed that such novel microbubbles demonstrated excellent enhancement under grey-scale pulse inversion harmonic imaging and power Doppler imaging. There were no abnormal changes of the rabbit’s basic life signs during the study. Based on the facts that we have fabricated micro-scale microbubbles, a nano-sized population with controlled mean diameter could be sorted by using centrifugal classifier from the parent polydisperse suspensions. Preliminary study with the nano-scale bubbles in vivo showed that such nanobubbles provided an excellent power Doppler enhancement. In order to understand the structure and stabilization mechanism of the novel microbubbles, Langmuir monolayer technique was performed to investigate the monolayer behaviour of microbubble forming components at molecular level. The results indicated that Span 60 could form a low surface tension monolayer which could diminish the gas diffusion from the core into the aqueous medium. The incorporation of PEG40S into the monolayer shell created a sub-energy barrier to prevent aggregation among microbubbles which impart good stability to the microbubbles. Based on the comparison ofπ-A isotherms for microbubbles and those obtained for mixtures of surfactants at different molar ratios, we suggested a composition in the microbubble skin close to nine molecules of Span 60 to each molecule of PEG40S. Polymeric microbubble ultrasound contrast agent (QDs@PLA microbubbles) with ultrasound/fluorescence bi-mode imaging functions was fabricated using double emulsion solvent evaporation and lyophilization methods. Polylactide (PLA), a biocompatible, safety and biodegradable high molecular polymer, was employed as the shell material and quantum dots (QDs) were employed as the luminescent material. The morphology of the polymeric microbubbles observed with scanning electron microscope appeared regular spherical with hollow structure and have a tight size distribution, which could meet the requirement of size for ultrasound contrast agent. The results of fluorescence emission spectrum and fluorescence microscope indicated that QDs@PLA microbubbles could maintain the good luminescence properties of QDs and PLA microbubble shell impart good fluorescence stability to the QDs. In vitro and in vivo ultrasound contrast effects indicated that QDs@PLA microbubbles showed high echogenicity. The fluorescence imaging in vitro and in vivo showed that QDs@PLA microbubbles exhibited excellent fluorescence imaging ability, and were in synchronism with ultrasound contrast effect.
引文
1 F. Forsberg, D. A. Merton, J. B. Liu, L. Needleman, B. B. Goldberg. Clinical Applications of Ultrasound Contrast Agents. Ultrasonics. 1998, 36(1-5): 695~701
    2赵应征,张彦,梅兴国.微泡超声造影剂的研究进展.国外医学药学分册. 2003, 30(5): 298~302
    3 D. Cosgrove. Ultrasound Contrast Agents: An Overview. European J. of Radiology. 2006, 60(3): 324~330
    4 U. Rosenschein, V. Furman, E. Kerner, I. Fabian, J. Bernheim, Y. Eshel. Ultrasound Imaging-guided Noninvasive Ultrasound Thrombolysis: Preclinical Results. Circulation. 2000, 102(2): 238~245
    5冉海涛,任红,王志刚,郑元义,张群霞,李小东,许川山.包裹阿霉素的高分子材料微泡声学造影剂制备及显影效果实验研究.临床超声医学杂志. 2005, 7(4): 217~220
    6 V. Frenkel. Ultrasound Mediated Delivery of Drugs and Genes to Solid Tumors. Advanced Drug Delivery Reviews. 2008, 60(10): 1193~1208
    7 S. Hernot, A. L. Klibanov. Microbubbles in Ultrasound-triggered Drug and Gene Delivery. Advanced Drug Delivery Reviews. 2008, 60(10): 1153~1166
    8 M. Yu, Q. Liu, H. P. Song, Z. H. Han, H. L. Su, G. B. He, X. D. Zhou. Clinical Application of Contrast-enhanced Ultrasonography in Diagnosis of Superficial Lymphadenopathy. J. of Ultrasound in Medicine. 2010, 29(5): 735~740
    9 I. Zuber-Jerger, D. Schacherer, M. Woenckhaus, E. M. Jung, J. Scholmerich, F. Klebl. Contrast-enhanced Ultrasound in Diagnosing Liver Malignancy. Clinical Hemorheology and Microcirculation. 2009, 43(1-2): 109~118
    10 S. B. Feinstein, J. Cheirif, F. J. Ten Cate, P. R. Silverman, P. A. Heidenreich, C. Dick, R. M. Desir, W. F. Armstrong, M. A. Quinones, P. M. Shah. Safety and Efficacy of a New Transpulmonary Ultrasound Contrast Agent: Initial Multicenter Clinical Results. J. of the American College of Cardiology. 1990, 16(2): 316~324
    11 M. D. Smith, J. L. Elion, R. R. Mcclure, O. L. Kwan, A. N. Demaria. Left Heart Opacification with Peripheral Venous Injection of a New Saccharide Echo Contrast Agent in Dogs. J. of the American College of Cardiology. 1989, 13(7): 1622~1628
    12 F. Forsberg, R. Basude, J. B. Liu, J. Alessandro, W. T. Shi, N. M. Rawool, B. B.Goldberg, M. A. Wheatley. Effect of Filling Gases on the Backscatter from Contrast Microbubbles: Theory and In Vivo Measurements. Ultrasound in Medicine and Biology. 1999, 25(8): 1203~1211
    13 S. Takeuchi, T. Sato, N. Kawashima. Nonlinear Response of Microbubbles Coated with Surfactant Membrane Developed as Ultrasound Contrast Agent—Experimental Study and Numerical Calculations. Colloids and Surfaces B: Biointerfaces. 2002, 24(3-4): 207~216
    14 H. Leong-Poi, J. Christiansen, P. Heppner, C. W. Lewis, A. L. Klibanov, S. Kaul, J. R. Lindner. Assessment of Endogenous and Therapeutic Arteriogenesis by Contrast Ultrasound Molecular Imaging of Integrin Expression. Circulation. 2005, 111(24): 3248~3254
    15 J. J. Rychak, J. R. Lindner, K. Ley, A. L. Klibanov. Deformable Gas-filled Microbubbles Targeted to P-Selectin. J. of Controlled Release. 2006, 114(3): 288~299
    16 D. M. El-Sherif, M. A. Wheatley. Development of a Novel Method for Synthesis of a Polymeric Ultrasound Contrast Agent. J. of Biomedical Materials Research Part A. 2003, 66A(2): 347~355
    17 J. A. Straub, D. E. Chickering, C. C. Church, B. Shah, T. Hanlon, H. Bernstein. Porous PLGA Microparticles: AI-700, an Intravenously Administered Ultrasound Contrast Agent for Use in Echocardiography. J. of Controlled Release. 2005, 108(1): 21~32
    18赵玉英,智光.新型多聚体超声造影剂的研究进展.中国超声医学杂志. 2003, 19(4): 318~320
    19 S. B. Feinstein, F. J. Ten Cate, W. Zwehl, K. Ong, G. Maurer, C. Tei, P. M. Shah, S. Meerbaum, E. Corday. Two-dimensional Contrast Echocardiography. I. In Vitro Development and Quantitative Analysis of Echo Contrast Agents. J. of the American College of Cardiology. 1984, 3(1): 14~20
    20 R. Basude, J. W. Duckworth, M. A. Wheatley. Influence of Environmental Conditions on a New Surfactant-based Contrast Agent: ST68. Ultrasound in Medicine and Biology. 2000, 26(4): 621~628
    21 E. Stride, M. Edirisinghe. Novel Microbubble Preparation Technologies. Soft Matter. 2008, 4(12): 2350~2359
    22 K. Jong-Duk, C. Sung Ho, K. Jong-Yun. Dynamic Surface Tension of Stable Air-filled Microbubbles Prepared by Freeze-drying a Solution of Lipid/Surfactant Mixture. Colloids and Surfaces A-Physicochemical and Engineering Aspects. 2006, 284-285: 453~457
    23 J. R. Eisenbrey, O. M. Burstein, M. A. Wheatley. Effect of Molecular Weight andEnd Capping on Poly(lactic-co-glycolic acid) Ultrasound Contrast Agents. Polymer Engineering and Science. 2008, 48(9): 1785~1792
    24 J. R. Eisenbrey, O. M. Burstein, R. Kambhampati, F. Forsberg, J. B. Liu, M. A. Wheatley. Development and Optimization of a Doxorubicin Loaded Poly(lactic acid) Contrast Agent for Ultrasound Directed Drug Delivery. J. of Controlled Release. 2010, 143(1): 38~44
    25 M. J. Hasik, D. H. Kim, L. E. Howle, D. Needham, D. P. Prush. Evaluation of Synthetic Phospholipid Ultrasound Contrast Agents. Ultrasonics. 2002, 40(9): 973~982
    26 R. Gramiak, P. M. Shah. Echocardiography of the Aortic Root. Investigative Radiology. 1968, 3(5): 356~366
    27 M. C. Ziskin, A. Bonakdarpour, D. P. Weinstein, P. R. Lynch. Contrast Agents for Diagnostic Ultrasound. Investigative Radiology. 1972, 7(6): 500~505
    28 R. Walker, J. G. Wiencek, S. Aronson, J. Zaroff, D. Glock, R. Thisted, S. B. Feinstein. The Influence of Intravenous Albunex Injections on Pulmonary Arterial Pressure, Gas Exchange, and Left Ventricular Peak Intensity. J. of the American Society of Echocardiography. 1992, 5(5): 463~470
    29 K. Q. Schwarz, G. P. Bezante, X. Chen, D. Phillips, R. Schlief. Hemodynamic Effects of Microbubble Echo Contrast. J. of the American Society of Echocardiography. 1996, 9(6): 795~804
    30 J. L. Cohen, J. Cheirif, D. S. Segar, L. D. Gillam, J. S. Gottdiener, E. Hausnerova, D. E. Bruns. Improved Left Ventricular Endocardial Border Delineation and Opacification with Optison (FS069), a New Echocardiographic Contrast Agent. Results of a Phase III Multicenter Trial. J. of the American College of Cardiology. 1998, 32(3): 746~752
    31 D. Bokor, J. B. Chambers, P. J. Rees, T. G. Mant, F. Luzzani, A. Spinazzi. Clinical Safety of Sonovue, a New Contrast Agent for Ultrasound Imaging, in Healthy Volunteers and in Patients with Chronic Obstructive Pulmonary Disease. Investigative Radiology. 2001, 36(2): 104~109
    32 R. S. Meltzer, E. G. Tickner, T. P. Sahines, R. L. Popp. The Source of Ultrasound Contrast Effect. J. of Clinical Ultrasound. 1980, 8(2): 121~127
    33 B. A. Carroll, R. J. Turner, E. G. Tickner, D. B. Boyle, S. W. Young. Gelatin Encapsulated Nitrogen Microbubbles as Ultrasonic Contrast Agents. Investigative Radiology. 1980, 15(3): 260~266
    34 M. A. Wheatley, B. Schrope, P. Shen. Contrast Agents for Diagnostic Ultrasound: Development and Evaluation of Polymer-Coated Microbubbles. Biomaterials. 1990, 11(9): 713~717
    35敖梦,王志刚,冉海涛.高分子材料超声造影剂的研究进展.中国介入影像与治疗学. 2009, 6(3): 293~295
    36 M. Schneider, P. Bussat, M. Barrau. Polymeric Microballons as Ultrasound Contrast Agents: Physical and Ultrasound Properties Compared with Sonicated Albumin. Investigative Radiology. 1992, 27(2): 134~139
    37 J. Yao, M. Takeuchi, C. Teupe, M. Sheahan, R. Connolly, R. C. Walovitch, R. C. Fetterman, C. C. Church, J. E. Udelson, N. G. Pandian. Evaluation of a New Ultrasound Contrast Agent (AI-700) Using Two-dimensional and Three-dimensional Imaging During Acute Ischemia. J. of the American Society of Echocardiography. 2002, 15(7): 686~694
    38 S. H. Bloch, R. E. Short, K. W. Ferrara, E. R. Wisner. The Effect of Size on the Acoustic Response of Polymer-shelled Contrast Agents. Ultrasound in Medicine and Biology. 2005, 31(3): 439~444
    39 C. Teupe, J. Yao, M. Takeuchi, C. Abadi, E. Avelar, T. Fritzsch, N. Pandian. Myocardial Contrast Echocardiography with Harmonic Power Doppler and Lung Traversing SHU 563A Ultrasound Contrast Medium for Imaging Myocardial Perfusion Disorders. Z Kardiol. 2000, 89(10): 914~920
    40 H. Von Bibra. Determining Myocardial Perfusion—Contribution of Contrast Echocardiography. Z Kardiol. 2001, 90(11): 848~859
    41张雪娇,程永清,李丽君,王小荣.包膜微泡超声造影剂的研究进展.中国医学影像技术. 2005, 21(5): 819~821
    42 D. M. Skyba, R. J. Price, A. Z. Linka, T. C. Skalak, S. Kaul. Direct In Vivo Visualization of Intravascular Destruction of Microbubbles by Ultrasound and Its Local Effects on Tissue. Circulation. 1998, 98(4): 290~293
    43 Y. Y. Qiu, Y. Luo, Y. L. Zhang, W. C. Cui, D. Zhang, J. R. Wu, J. F. Zhang, J. A. Tu. The Correlation between Acoustic Cavitation and Sonoporation Involved in Ultrasound-mediated DNA Transfection with Polyethylenimine (PEI) In Vitro. J. of Controlled Release. 2010, 145(1): 40~48
    44 R. M. Patel. Microbubble: A Potential Ultrasound Tool in Molecular Imaging. Current Pharmaceutical Biotechnology. 2008, 9(5): 406~410
    45 T. R. Porter, F. Xie, D. Knapp, P. Iversen, L. A. Marky, J. M. Tsutsui, S. Maiti, J. Lof, S. J. Radio, N. Kipshidze. Targeted Vascular Delivery of Antisense Molecules Using Intravenous Microbubbles. Cardiovascular Revascularization Medicine. 2006, 7(1): 25~33
    46 Y. Wang, X. Li, Y. Zhou, P. Y. Huang, Y. H. Xu. Preparation of Nanobubbles for Ultrasound Imaging and Intracelluar Drug Delivery. International J. of Pharmaceutics. 2010, 384(1-2): 148~153
    47陈松,康娟,王志刚,李攀,伍星,许川山.纳米液态氟碳脂质微球超声造影剂的制备及体外聚集实验研究.第三军医大学学报. 2008, 30(23): 2161~2163
    48 T. M. Krupka, L. Solorio, R. E. Wilson, H. P. Wu, N. Azar, A. A. Exner. Formulation and Characterization of Echogenic Lipid-pluronic Nanobubbles. Molecular Pharmaceutics. 2010, 7(1): 49~59
    49 S. Kwon, M. A. Wheatley. Development and Characterization of PLA Nanodispersion as a Potential Ultrasound Contrast Agent for Cancer Site Imaging. 2005 IEEE 31st Annual Northeast Bioengineering Conference. 2005: 144~145
    50 M. Kukizaki, M. Goto. Size Control of Nanobubbles Generated from Shirasu-Porous-Glass (SPG) Membranes. J. of Membrane Science. 2006, 281(1-2): 386~396
    51 M. A. Wheatley, F. Forsberg, N. Dube, M. Patel, B. E. Oeffinger. Surfactant-stabilized Contrast Agent on the Nanoscale for Diagnostic Ultrasound Imaging. Ultrasound in Medicine and Biology. 2006, 32(1): 83~93
    52 X. Wu, Z. G. Wang, B. Hu, H. T. Ran, P. Li, C. S. Xu, Y. Y. Zheng, A. Li. Targeting an Ultrasound Contrast Agent to Folate Receptors on Ovarian Cancer Cells Feasibility Research for Ultrasonic Molecular Imaging of Tumor Cells. J. of Ultrasound in Medicine. 2010, 29(4): 609~614
    53 J. S. Xu, J. W. Huang, R. G. Qin, G. H. Hinkle, S. P. Povoski, E. W. Martin, R. X. Xu. Synthesizing and Binding Dual-mode Poly (lactic-co-glycolic acid) (PLGA) Nanobubbles for Cancer Targeting and Imaging. Biomaterials. 2010, 31(7): 1716~1722
    54项飞翔,王新房,谢明星,周翔,张艳容,张丽.国产超声造影剂在超声辐照下对肝细胞产生的生物效应.中国医学影像技术. 2007, 23(3): 325~328
    55万明习,刘凯文,李莉.包膜超声造影剂喷射雾化制备方法研究.中国生物医学工程学报. 2002, 21(3): 239-241
    56查道刚,张德柱,刘俭,周忠江,单友亮,杨莉,宾建平,刘伊丽.全氟显声学显像效果的研究.中国超声医学杂志. 2002, 18(4): 252~255
    57张青萍,柳建华,周翔.经静脉注射FX-530对实验性兔VX2肝癌超声造影的研究.中华超声影像学杂志. 1999, 8(4): 237~239
    58刘平,高云华,谭开彬,左松,刘政.自制脂质体造影剂对正常兔肝脏增强显影的早期实验研究.中国超声医学杂志. 2003, 19(1): 4~6
    59高云华,谭开彬,刘平,夏红梅,刘政,左松.一种新型长循环超声造影剂增强心脏显像的实验研究.中国超声医学杂志. 2004, 20(2): 81~84
    60单友亮,侯连兵,陈志良,刘世霆,刘伊丽.新型左心声学超声造影剂空气白蛋白微球制剂的研制.中国药房. 2002, 13(3): 138~140
    61刘杰惠等.超声造影剂的声学特性.南京大学学报(自然科学版). 2000, 36(1): 129~132
    62周忠江.超声介导微泡空化靶向传输系统促血管新生作用的初探.第一军医大学博士论文. 2002
    63杜永峰,万明习,王素品,宗瑜瑾.基于表面活性剂的纳米包膜微泡超声造影剂.化工学报. 2003, 54(6): 807~812
    64王身国,崔文瑾,李光明,蔡晴,智光,赵玉英,杨波,徐勇.一类新型超声诊断显影剂—生物降解性聚L—乳酸胶囊.中国科学B辑. 2003, 33(2): 134~140
    65张辉,冉海涛,张亚萍,骆杰,郝兰,王志刚.结合链霉亲和素的高分子造影剂的制备及其初步应用.中国医学影像技术. 2010, 26(6): 997~1000
    66朱叶峰,冉海涛,张群霞,王志刚,陈松,成涓,康娟,张辉.靶向纳米脂质超声造影剂制备及其体外寻靶能力实验研究.中国超声医学杂志. 2009, 25(3): 196~198
    67贺娟,孙江川,常淑芳,李潘,王志刚.人卵巢癌靶向超声造影剂的制备及其体外寻靶能力观察.中国医学影像技术. 2009, 25(6): 929~931
    68曾功君,柳建华,高云华,刘政,谭开彬,吴梅.脂膜超声造影剂增强兔肾vx2肿瘤显像及鉴别的实验研究.中国临床医学影像杂志. 2008, 19(6): 412~414
    69朱梅,梁红敏,谭开彬,王丹,杨磊,刘政.脂质超声造影剂评价兔乳腺癌内部坏死的实验研究.昆明医学院学报. 2009, 30(2): 1~4
    70马苏亚.超声造影剂在临床上的应用.现代实用医学. 2009, 21(4): 297~298
    71宫琳,王志刚,冉海涛,凌智瑜,张群霞.超声微泡造影剂介导小鼠骨骼肌基因转染实验研究.中国医学影像技术. 2001, 20(3): 346~348
    72杨钰楠,高云华,谭开彬,刘平,付赤学.诊断超声联合微泡促顺铂跨血脑屏障转运的实验研究.中国医学影像技术. 2009, 25(6): 938~941
    73 J. L. Ren, C. S. Xu, Z. Y. Zhou, Y. Zhang, X. S. Li, Y. Y. Zheng, H. T. Ran, Z. G. Wang. A Novel Ultrasound Microbubble Carrying Gene and Tat Peptide: Preparation and Characterization. Academic Radiology. 2009, 16(12): 1457~1465
    74 S. P. Qin, C. F. Caskey, K. W. Ferrara. Ultrasound Contrast Microbubbles in Imaging and Therapy: Physical Principles and Engineering. Physics in Medicineand Biology. 2009, 54(6): R27~R57
    75 K. Otani, K. Yamahara. Development of Antibody-carrying Microbubbles Based on Clinically Available Ultrasound Contrast Agent for Targeted Molecular Imaging. Circulation. 2009, 120(18): S328~S328
    76赵金花,惠春,陈亚珠.超声微泡造影剂的发展及最新临床应用研究.中国医学物理学杂志. 2010, 27(2): 1802~1805
    77 K. Kooiman, M. Emmer, M. Foppen-Harteveld, A. Van Wamel, N. De Jong. Increasing the Endothelial Layer Permeability through Ultrasound-activated Microbubbles. IEEE Transactions on Biomedical Engineering. 2010, 57(1): 29~32
    78 G. Danialou, A. S. Comtois, R. W. Dudley, J. Nalbantoglu, R. Gilbert, G. Karpati, D. H. Jones, B. J. Petrof. Ultrasound Increases Plasmid-mediated Gene Transfer to Dystrophic Muscles without Collateral Damage. Molecular Therapy. 2002, 6(5): 687~693
    79张祎伟,陈铁军,刘树红.超声空化空泡用作基因或药物载体研究中的几个关键问题.生物医学工程杂志. 2009, 26(5): 1129~1132
    80 N. De Jong, L. Hoff, T. Skotland, N. Bom. Absorption and Scatter of Encapsulated Gas Filled Microspheres: Theoretical Considerations and Some Measurements. Ultrasonics. 1992, 30(2): 95~103
    81 E. C. Unger, T. Porter, W. Culp, R. Labell, T. Matsunaga, R. Zutshi. Therapeutic Applications of Lipid-coated Microbubbles. Advanced Drug Delivery Reviews. 2004, 56(9): 1291~1314
    82 S. Sonoda, K. Tachibana, E. Uchino, A. Okubo, M. Yamamoto, K. Sakoda, T. Hisatomi, K. H. Sonoda, Y. Negishi, Y. Izumi, S. Takao, T. Sakamoto. Gene Transfer to Corneal Epithelium and Keratocytes Mediated by Ultrasound with Microbubbles. Investigative Ophthalmology and Visual Science. 2006, 47(2): 558~564
    83 E. C. Unger, T. O. Matsunaga, T. Mccreery, P. Schumann, R. Sweitzer, R. Quigley. Therapeutic Applications of Microbubbles. European J. of Radiology. 2002, 42(2): 160~168
    84 D. R. Owen, J. Shalhoub, S. Miller, T. Gauthier, O. Doryforou, A. H. Davies, E. L. S. Leen. Inflammation within Carotid Atherosclerotic Plaque: Assessment with Late-phase Contrast-enhanced US. Radiology. 2010, 255(2): 638~644
    85 J. R. Lindner, S. Ismail, W. D. Spotnitz, D. M. Skyba, A. R. Jayaweera, S. Kaul. Albumin Microbubble Persistence During Myocardial Contrast Echocardiography Is Associated with Microvascular Endothelial Glycocalyx Damage. Circulation. 1998, 98(20): 2187~2194
    86 A. L. Klibanov, M. S. Hughes, F. S. Villanueva, R. J. Jankowski, W. R. Wagner, J. K. Wojdyla, J. H. Wible, G. H. Brandenburger. Targeting and Ultrasound Imaging of Microbubble-based Contrast Agents. Magma. 1999, 8(3): 177~184
    87 E. A. Ferrante, J. E. Pickard, J. Rychak, A. Klibanov, K. Ley. Dual Targeting Improves Microbubble Contrast Agent Adhesion to VCAM-1 and P-selectin under Flow. J. of Controlled Release. 2009, 140(2): 100~107
    88 E. Unger, P. Metzger, 3rd, E. Krupinski, M. Baker, R. Hulett, D. Gabaeff, J. Mills, D. Ihnat, T. Mccreery. The Use of a Thrombus-Specific Ultrasound Contrast Agent to Detect Thrombus in Arteriovenous Fistulae. Investigative Radiology. 2000, 35(1): 86~89
    89 W. H. Wright, T. P. Mccreery, E. A. Krupinski, P. J. Lund, S. H. Smyth, M. R. Baker, R. L. Hulett, E. C. Unger. Evaluation of New Thrombus-specific Ultrasound Contrast Agent. Academic Radiology. 1998, 5: S240~S242
    90高峰,丁燕飞,盛小茜,王维,梁琪,罗卓琼,周平,李辉. Kgds血栓靶向超声造影剂的制备及其初步评价.中南大学学报(医学版). 2009, 34(12): 1255~1260
    91 H. Leong-Poi, D. Ellegala, J. Carpenter, A. L. Klibanov, V. Duong, S. Kaul, M. E. Shaffrey, J. R. Lindner. Site-specific Imaging of Tumor Angiogenesis Using Contrast-enhanced Ultrasound Imaging with Microbubbles Targeted to Alpha-V Beta-3. J. of the American College of Cardiology. 2003, 41(6): 431A~431A
    92 T. R. Porter, R. F. Leveen, R. Fox, A. Kricsfeld, F. Xie. Thrombolytic Enhancement with Perfluorocarbon-exposed Sonicated Dextrose Albumin Microbubbles. American Heart Journal. 1996, 132(5): 964~968
    93 E. C. Everbach, C. W. Francis. Cavitational Mechanisms in Ultrasound-accelerated Thrombolysis at 1 MHz. Ultrasound in Medicine and Biology. 2000, 26(7): 1153~1160
    94夏红梅,高云华,卞爱娜,谭开彬,刘政.亲血栓性靶向超声造影剂的鉴定及体外寻靶实验研究.中国超声医学杂志. 2004, 20(5): 321~323
    95李玲,穆玉明.超声溶栓的研究进展.中国介入影像与治疗学. 2009, 6(3): 279~282
    96夏红梅,高云华,刘政,谭开彬,杨钰楠,杨莉,钱频,王冬.血栓靶向脂膜超声造影剂的制备与初步评价.中国医学影像技术. 2008, 24(2): 176~179
    97 J. Folkman. Angiogenesis and Apoptosis. Seminars in Cancer Biology. 2003, 13(2): 159~167
    98 L. Holmgren, M. S. O'reilly, J. Folkman. Dormancy of Micrometastases: Balanced Proliferation and Apoptosis in the Presence of AngiogenesisSuppression. Nature Medicine. 1995, 1(2): 149~153
    99 E. C. Unger, T. P. Mccreery, R. H. Sweitzer, V. E. Caldwell, Y. Wu. Acoustically Active Lipospheres Containing Paclitaxel: A New Therapeutic Ultrasound Contrast Agent. Investigative Radiology. 1998, 33(12): 886~892
    100陈琛,袁立丽. Lb膜技术的应用综述.合肥师范学院学报. 2009, 27(3): 94~99
    101 G. Decher, J. D. Hong. Buildup of Ultrathin Multilayer Films by a Self-assembly Process: III. Consecutively Alternating Adsorption of Anionic and Cationic Polyelectrolytes on Charged Surfaces Makromolekulare Chemie-Macromolecular Symposia. 1991, 210-211(2): 321~327
    102 G. Decher, Fuzzy Nanoassemblies: Toward Layered Polymeric Multicomposites. 1997: 1232~1237.
    103张鹏,钱锦文,宣理静,安全福.聚电解质PDDA/PSS层层自组装膜的渗透汽化性能.高等学校化学学报. 2008, 29(9): 1885~1889
    104 E. Vázquez, D. M. Dewitt, P. T. Hammond, D. M. Lynn. Construction of Hydrolytically-degradable Thin Films Via Layer-by-Layer Deposition of Degradable Polyelectrolytes. J. of the American Chemical Society. 2002, 124(47): 13992~13993
    105 E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, H. M?hwald. Novel Hollow Polymer Shells by Colloid-templated Assembly of Polyelectrolytes. Angewandte Chemie-International Edition. 1998, 37(16): 2202~2205
    106 F. Caruso, R. A. Caruso, Ouml, H. M?hwald. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science. 1998, 282(5391): 1111~1114
    107仝维鋆,高长有.层层组装微胶囊的制备及其智能响应与物质包埋释放性能.高等学校化学学报. 2008, 29(7): 1285~1298
    108 M. Haga, K. Kobayashi, K. Terada. Fabrication and Functions of Surface Nanomaterials Based on Multilayered or Nanoarrayed Assembly of Metal Complexes. Coordination Chemistry Reviews. 2007, 251(21-24): 2688~2701
    109 W. J. Tong, C. Y. Gao. Layer-by-Layer Assembled Microcapsules: Fabrication, Stimuli-responsivity, Loading and Release. Chemical J. of Chinese Universities. 2008, 29(7): 1285~1298
    110 Z. Dai, A. Voigt, S. Leporatti, E. Donath, L. D?hne, H. M?hwald. Layer-by-Layer Self-assembly of Polyelectrolyte and Low Molecular Weight Species into Capsules. Advanced Materials. 2001, 13(17): 1339~1342
    111 D. G. Shchukin, K. Kohler, H. Mohvald, G. B. Sukhorukov. Gas-filled Polyelectrolyte Capsules. Angewandte Chemie-International Edition. 2005, 44(21): 3310~3314
    112 M. A. Borden, C. F. Caskey, E. Little, R. J. Gillies, K. W. Ferrara. DNA and Polylysine Adsorption and Multilayer Construction onto Cationic Lipid-coated Microbubbles. Langmuir. 2007, 23(18): 9401~9408
    113 A. E. Berkowitz, R. H. Kodama, S. A. Makhlouf, F. T. Parker, F. E. Spada, E. J. Mcniff, S. Foner. Anomalous Properties of Magnetic Nanoparticles. J. of Magnetism and Magnetic Materials. 1999, 196-197: 591~594
    114 V. S. Kalambur, B. Han, B. E. Hammer, T. W. Shield, J. C. Bischof. In Vitro Characterization of Movement, Heating and Visualization of Magnetic Nanoparticles for Biomedical Applications. Nanotechnology. 2005, 16(8): 1221~1233
    115 A. K. Gupta, M. Gupta. Synthesis and Surface Engineering of Iron Oxide Nanoparticles for Biomedical Applications. Biomaterials. 2005, 26(18): 3995~4021
    116 D. L. Huber. Synthesis, Properties, and Applications of Iron Nanoparticles. Small. 2005, 1(5): 482~501
    117 M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivisatos. Semiconductor Nanocrystals as Fluorescent Biological Labels. Science. 1998, 281(5385): 2013~2016
    118 W. C. Chan, Nbsp, W., S. Nie. Quantum Dot Bioconjugates for Ultrasensitive Nonisotopic Detection. Science. 1998, 281(5385): 2016~2018
    119 M. Han, X. Gao, J. Z. Su, S. Nie. Quantum-dot-tagged Microbeads for Multiplexed Optical Coding of Biomolecules. Nature Biotechnology. 2001, 19(7): 631~635
    120 D. E. Gomez, I. Pastoriza-Santos, P. Mulvaney. Tunable Whispering Gallery Quantum-dot-doped Mode Emission from Microspheres. Small. 2005, 1(2): 238~241
    121 X. H. Gao, Y. Y. Cui, R. M. Levenson, L. W. K. Chung, S. M. Nie. In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots. Nature Biotechnology. 2004, 22(8): 969~976
    122 S. Kim, Y. T. Lim, E. G. Soltesz, A. M. De Grand, J. Lee, A. Nakayama, J. A. Parker, T. Mihaljevic, R. G. Laurence, D. M. Dor, L. H. Cohn, M. G. Bawendi, J. V. Frangioni. Near-Infrared Fluorescent Type II Quantum Dots for Sentinel Lymph Node Mapping. Nature Biotechnology. 2004, 22(1): 93~97
    123 M. Nurunnabi, K. J. Cho, J. S. Choi, K. M. Huh, Y.-K. Lee. Targeted Near-IR QDs-loaded Micelles for Cancer Therapy and Imaging. Biomaterials. 2010, 31(20): 5436~5444
    124 R. Basude, J. W. Duckworth, M. A. Wheatley. Influence of EnvironmentalConditions on a New Surfactant-based Contrast Agent: ST68. Ultrasound in Medicine and Biology. 2000, 26(4): 621-628
    125 J. Wan, W. Cai, X. Meng, E. Liu. Monodisperse Water-soluble Magnetite Nanoparticles Prepared by Polyol Process for High-performance Magnetic Resonance Imaging. Chemical Communications. 2007(47): 5004~5006
    126 W. Wang, C. C. Moser, M. A. Wheatley. Langmuir Trough Study of Surfactant Mixtures Used in the Production of a New Ultrasound Contrast Agent Consisting of Stabilized Microbubbles. J. of Physical Chemistry. 1996, 100(32): 13815~13821
    127 E. Pisani, N. Tsapis, J. Paris, V. Nicolas, L. Cattel, E. Fattal. Polymeric Nano/Microcapsules of Liquid Perfluorocarbons for Ultrasonic Imaging:? Physical Characterization. Langmuir. 2006, 22(9): 4397~4402
    128 S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. V. Elst, R. N. Muller. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications. Chemical Reviews. 2008, 108(6): 2064~2110
    129 K. P. Xiao, J. J. Harris, A. Park, C. M. Martin, V. Pradeep, M. L. Bruening. Formation of Ultrathin, Defect-free Membranes by Grafting of Poly(acrylic acid) onto Layered Polyelectrolyte Films. Langmuir. 2001, 17(26): 8236~8241
    130 L. Ojam?e, C. Aulin, H. Pedersen, P.-O. K?ll. IR and Quantum-chemical Studies of Carboxylic Acid and Glycine Adsorption on Rutile TiO2 Nanoparticles. J. of Colloid and Interface Science. 2006, 296(1): 71~78
    131 Y.-W. Jun, Y.-M. Huh, J.-S. Choi, J.-H. Lee, H.-T. Song, Kimkim, S. Yoon, K.-S. Kim, J.-S. Shin, J.-S. Suh, J. Cheon. Nanoscale Size Effect of Magnetic Nanocrystals and Their Utilization for Cancer Diagnosis Via Magnetic Resonance Imaging. J. of the American Chemical Society. 2005, 127(16): 5732~5733
    132 T. Goetze, C. Gansau, N. Buske, M. Roeder, P. G?rnert, M. Bahr. Biocompatible Magnetic Core/Shell Nanoparticles. J. of Magnetism and Magnetic Materials. 2002, 252: : 399~402
    133 F. Forsberg, J. B. Liu, M. Patel, L. P. Liu, L. Lin, C. Solis, T. B. Fox, M. A. Wheatley. Preclinical Acute Toxicology Study of Surfactant-stabilized Ultrasound Contrast Agents in Adult Rats. International J. of Toxicology. 2010, 29(1): 32~39
    134 S. Singhal, C. C. Moser, M. A. Wheatley. Surfactant-stabilized Microbubbles as Ultrasound Contrast Agents: Stability Study of Span 60 and Tween 80 Mixtures Using a Langmuir Trough. Langmuir. 1993, 9(9): 2426-2429
    135 W. Wenhua, C. C. Moser, M. A. Wheatley. Langmuir Trough Study of Surfactant Mixtures Used in the Production of a New Ultrasound Contrast Agent Consisting of Stabilized Microbubbles. J. of Physical Chemistry. 1996, 100(32): 13815~13821
    136 R. W. Millard, H. Baig, S. F. Vatner. Cardiovascular Effects of Radioactive Microsphere Suspensions and Tween 80 Solutions. American J. of Physiology-Heart and Circulatory Physiology. 1977, 232(3): H331~H334
    137 Y. W. Yang, A. C. Wei, S. S. Shen. The Immunogenicity-Enhancing Effect of Emulsion Vaccine Adjuvants Is Independent of the Dispersion Type and Antigen Release Rate—A Revisit of the Role of the Hydrophile-lipophile Balance (HLB) Value. Vaccine. 2005, 23(20): 2665~2675
    138赵剑曦.表面活性剂胶团水溶液性质的粘度研究方法.日用化学. 2003, 33(4): 234~236
    139 T. Yoshioka, B. Sternberg, A. T. Florence. Preparation and Properties of Vesicles (Niosomes) of Sorbitan Monoesters (Span 20, 40, 60 and 80) and a Sorbitan Triester (Span 85). International J. of Pharmaceutics. 1994, 105(1): 1~6
    140 R. G. Strickley. Solubilizing Excipients in Oral and Injectable Formulations. Pharmaceutical Research. 2004, 21(2): 201~230
    141 B. B. Goldberg, J. B. Liu, F. Forsberg. Ultrasound Contrast Agents: A Review. Ultrasound in Medicine and Biology. 1994, 20(4): 319~333
    142 J. A. Feshitan, C. C. Chen, J. J. Kwan, M. A. Borden. Microbubble Size Isolation by Differential Centrifugation. J. of Colloid and Interface Science. 2009, 329(2): 316~324
    143 J. K. Willmann, R. H. Kimura, N. Deshpande, A. M. Lutz, J. R. Cochran, S. S. Gambhir. Targeted Contrast-enhanced Ultrasound Imaging of Tumor Angiogenesis with Contrast Microbubbles Conjugated to Integrin-binding Knottin Peptides. J. of Nuclear Medicine. 2010, 51(3): 433~440
    144 I. Brigger, C. Dubernet, P. Couvreur. Nanoparticles in Cancer Therapy and Diagnosis. Advanced Drug Delivery Reviews. 2002, 54(5): 631~651
    145 H. Maeda, J. Wu, T. Sawa, Y. Matsumura, K. Hori. Tumor Vascular Permeability and the EPR Effect in Macromolecular Therapeutics: A Review. J. of Controlled Release. 2000, 65(1-2): 271~284
    146 Y. Shen, R. L. Powell, M. L. Longo. Interfacial and Stability Study of Microbubbles Coated with a Monostearin/Monopalmitin-rich Food Emulsifier and PEG40 Stearate. J. of Colloid and Interface Science. 2008, 321(1): 186~194
    147 M. K. Li, H. S. Fogler. Acoustic Emulsification. 1. The Instability of the Oil-water Interface to Form the Initial Droplets. J. of Fluid Mechanics. 1978, 88(3):499~511
    148 M. K. Li, H. S. Fogler. Acoustic Emulsification. 2. Breakup of Large Primary Oil Droplets in a Water Medium. J. of Fluid Mechanics. 1978, 88(3): 513~528
    149 S. Kvále, H. A. Jakobsen, O. A. Asbj?rnsen, T. Omtveit. Size Fractionation of Gas-filled Microspheres by Flotation. Separations Technology. 1996, 6(4): 219~226
    150 X. H. Zhang, N. Maeda, V. S. J. Craig. Physical Properties of Nanobubbles on Hydrophobic Surfaces in Water and Aqueous Solutions. Langmuir. 2006, 22(11): 5025~5035
    151 M. A. Borden, M. L. Longo. Dissolution Behavior of Lipid Monolayer-coated, Air-filled Microbubbles: Effect of Lipid Hydrophobic Chain Length. Langmuir. 2002, 18(24): 9225~9233
    152 K. Sarkar, A. Katiyar, P. Jain. Growth and Dissolution of an Encapsulated Contrast Microbubble: Effects of Encapsulation Permeability. Ultrasound in Medicine and Biology. 2009, 35(8): 1385~1396
    153 A. W. Adamson. Physical Chemistry of Surfaces Fourth ed., Wiley, New York. 1982: 134~140
    154 M. A. Borden, G. Pu, G. J. Runner, M. L. Longo. Surface Phase Behavior and Microstructure of Lipid/PEG-emulsifier Monolayer-coated Microbubbles. Colloids and Surfaces B: Biointerfaces. 2004, 35(3-4): 209~223
    155 S. Singhal, C. C. Moser, M. A. Wheatley. Surfactant-stabilized Microbubbles as Ultrasound Contrast Agents: Stability Study of Span 60 and Tween 80 Mixtures Using a Langmuir Trough. Langmuir. 1993, 9(9): 2426~2429
    156 D. E. Yount. Skins of Varying Permeability: A Stabilization Mechanism for Gas Cavitation Nuclei. J. of the Acoustical Society of America. 1979, 65(6): 1429~1439
    157 H. D. Vanliew, S. Raychaudhuri. Stabilized Bubbles in the Body: Pressure-radius Relationships and the Limits to Stabilization. J. of Applied Physiology. 1997, 2(6): 2045~2053
    158 M. A. Borden, M. L. Longo. Oxygen Permeability of Fully Condensed Lipid Monolayers. J. of Physical Chemistry B. 2004, 108(19): 6009~6016
    159 A. Katiyar, K. Sarkar. Stability Analysis of an Encapsulated Microbubble against Gas Diffusion. J. of Colloid and Interface Science. 2010, 343(1): 42~47
    160 A. Katiyar, K. Sarkar, P. Jain. Effects of Encapsulation Elasticity on the Stability of an Encapsulated Microbubble. J. of Colloid and Interface Science. 2009, 336(2): 519~525
    161 S. Paul, A. Katiyar, K. Sarkar, D. Chatterjee, W. T. Shi, F. Forsberg. MaterialCharacterization of the Encapsulation of an Ultrasound Contrast Microbubble and Its Subharmonic Response: Strain-softening Interfacial Elasticity Model. J. of the Acoustical Society of America. 2010, 127(6): 3846~3857
    162 W. J. M. Mulder, R. Koole, R. J. Brandwijk, G. Storm, P. T. K. Chin, G. J. Strijkers, C. De Mello Donegá, K. Nicolay, A. W. Griffioen. Quantum Dots with a Paramagnetic Coating as a Bimodal Molecular Imaging Probe. Nano Letters. 2005, 6(1): 1~6
    163 W. B. Tan, Y. Zhang. Multifunctional Quantum-dot-based Magnetic Chitosan Nanobeads. Advanced Materials. 2005, 17(19): 2375~2380
    164 J. Kim, J. E. Lee, S. H. Lee, J. H. Yu, J. H. Lee, T. G. Park, T. Hyeon. Designed Fabrication of a Multifunctional Polymer Nanomedical Platform for Simultaneous Cancer-targeted Imaging and Magnetically Guided Drug Delivery. Advanced Materials. 2008, 20(3): 478~483
    165 F. Yang, Y. Li, Z. Chen, Y. Zhang, J. Wu, N. Gu. Superparamagnetic Iron Oxide Nanoparticle-embedded Encapsulated Microbubbles as Dual Contrast Agents of Magnetic Resonance and Ultrasound Imaging. Biomaterials. 2009, 30(23-24): 3882~3890
    166 M. Ao, Z. G. Wang, H. T. Ran, D. J. Guo, J. H. Yu, A. Li, W. J. Chen, W. Wu, Y. Y. Zheng. Gd-DTPA-loaded PLGA Microbubbles as Both Ultrasound Contrast Agent and MRI Contrast Agent—A Feasibility Research. J. of Biomedical Materials Research Part B-Applied Biomaterials. 2010, 93B(2): 551~556
    167 R. G. Xie, X. G. Peng. Synthetic Scheme for High-quality InAs Nanocrystals Based on Self-focusing and One-pot Synthesis of InAs-based Core-Shell Nanocrystals. Angewandte Chemie-International Edition. 2008, 47(40): 7677~7680
    168 R. G. Xie, Z. Li, X. G. Peng. Nucleation Kinetics Vs Chemical Kinetics in the Initial Formation of Semiconductor Nanocrystals. J. of the American Chemical Society. 2009, 131(42): 15457~15466
    169 H. T. Li, X. D. He, Z. H. Kang, H. Huang, Y. Liu, J. L. Liu, S. Y. Lian, C. H. A. Tsang, X. B. Yang, S. T. Lee. Water-soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie-International Edition. 2010, 49(26): 4430~4434
    170 L. Liu, X. H. Guo, Y. Li, X. H. Zhong. Bifunctional Multidentate Ligand Modified Highly Stable Water-soluble Quantum Dots. Inorganic Chemistry. 2010, 49(8): 3768~3775
    171 A. M. Derfus, W. C. W. Chan, S. N. Bhatia. Probing the Cytotoxicity of Semiconductor Quantum Dots. Nano Letters. 2003, 4(1): 11~18
    172 C. Kirchner, T. Liedl, S. Kudera, T. Pellegrino, A. Mu?oz Javier, H. E. Gaub, S. St?lzle, N. Fertig, W. J. Parak. Cytotoxicity of Colloidal CdSe and CdSe/ZnS Nanoparticles. Nano Letters. 2004, 5(2): 331~338
    173 V. A. Sinani, D. S. Koktysh, B. G. Yun, R. L. Matts, T. C. Pappas, M. Motamedi, S. N. Thomas, N. A. Kotov. Collagen Coating Promotes Biocompatibility of Semiconductor Nanoparticles in Stratified LbL Films. Nano Letters. 2003, 3(9): 1177~1182
    174 A. Hoshino, K. Fujioka, T. Oku, M. Suga, Y. F. Sasaki, T. Ohta, M. Yasuhara, K. Suzuki, K. Yamamoto. Physicochemical Properties and Cellular Toxicity of Nanocrystal Quantum Dots Depend on Their Surface Modification. Nano Letters. 2004, 4(11): 2163~2169
    175 X. Y. Ma, G. M. Pan, Z. Lu, J. S. Hu, J. Z. Bei, J. H. Jia, S. G. Wang. Preliminary Study of Oral Polylactide Microcapsulated Insulin in Vitro and in Vivo. Diabetes Obesity and Metabolism. 2000, 2(4): 243~250
    176 F. Wang, G. Xu, Z. Zhang, X. Xin. Synthesis of Monodisperse CdS Nanospheres in an Inverse Microemulsion System Formed with a Dendritic Polyether Copolymer. European J. of Inorganic Chemistry. 2006, 2006(1): 109~114
    177 H. D?llefeld, H. Weller, A. Eychmüller. Particle?particle Interactions in Semiconductor Nanocrystal Assemblies. Nano Letters. 2001, 1(5): 267~269
    178 S. Dwarakanath, J. G. Bruno, A. Shastry, T. Phillips, A. John, A. Kumar, L. D. Stephenson. Quantum Dot-antibody and Aptamer Conjugates Shift Fluorescence Upon Binding Bacteria. Biochemical and Biophysical Research Communications. 2004, 325(3): 739~743

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700