用户名: 密码: 验证码:
预制管混凝土柱受压性能及节点试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预制管混凝土柱主要由外层高强度混凝土预制管和核心现浇混凝土组成,预制管在工厂规模化生产,施工现场经吊装后,浇筑预制管内核心混凝土。预制管混凝土柱组合材料相同,协同工作性能好,预制管即充当核心混凝土模板又是重要的承载力部分,新型预制管混凝土柱节点形式实现了预制管与梁紧密连接,核心现浇混凝土的存在又能改善预制框架体系整体性能不足的特点,可以说预制管混凝土柱是一种本着施工快速化、结构高性能而产生的新型预制组合体系。
     本文针对新型预制管混凝土柱结构展开了以下研究工作:
     1、预制管混凝土柱粘结性能分析。利用新老混凝土粘结相关知识,结合预制管混凝土柱的自身特点,从理论上分析了预制管与核心混凝土的粘结问题。
     2、预制管混凝土柱轴压性能试验研究。通过10根方形截面预制管混凝土和10根圆形截面预制管混凝土轴压试验,分析了预制管混凝土柱轴压破坏性能及荷载-应变规律,结果表明预制管混凝土柱具有可靠的轴压性能。并且根据混凝土本构模型,通过MATLAB软件,计算出了不同强度混凝土相互协调系数关系,提出了预制管混凝土柱轴压的极限承载力计算公式,结果表明该计算公式与试验值吻合较好。
     3、预制管混凝土柱轴压性能和偏压性能数值模拟研究。分别通过MATLAB软件和有限元软件ABAQUS模拟了预制管混凝土柱的轴压和和偏压荷载-应变曲线,并通过有限元软件ABAQUS模拟分析了参数变化对预制管混凝土柱轴压和偏压性能的影响,通过分析更加透彻的揭示了预制管混凝土柱的轴压和偏压机理。
     4、预制管混凝土柱结构抗震性能试验研究。透过3组不同位置的预制管混凝土柱结构抗震试验研究,对比分析了预制管混凝土柱结构抗震性能与普通混凝土柱抗震性能的差异,结果证明预制管混凝土柱结构具有较可靠的抗震性能。
     5、预制管混凝土柱施工技术分析。参考现有的普通混凝土柱以及钢管混凝土柱结构的施工方法,结合预制管混凝土柱的自身特点,阐述了预制管混凝土柱结构的施工方法。
Concrete-filled prefabricated concrete tube column consist of the outer highstrength precast concrete tube and the inner core cast-in-place concrete, at theconstruction site inner core region concrete is pouring after outer high strength precastconcrete tube has done large scale production in the precasting yard and hoisting.Composite material of concrete-filled prefabricated concrete tube column combinedstructure is the same, thereby having good working ability, prefabricated tube act asboth core concrete building and the bearing part, this type node of novelconcrete-filled prefabricated concrete tube column realized the demand of highstrength node and connecting between prefabricated tube and beam, the inner corecast-in-place concrete improve the lack of overall performance of frame system. Theconcrete-filled prefabricated concrete tube column can be seen as a new type ofprefabricated composite system in the high speed of construction and highperformance of structure.
     This paper have done studies on new type of concrete-filled prefabricatedconcrete tube column:
     1. Analysis of bond performance of concrete-filled prefabricated concrete tubecolumn. Some theoretical analysis of the bonding force of prefabricated tube and thecore concrete has been done based on new and old concrete bond related knowledgeand the own characteristics of concrete precast tube.
     2. Research on axial bearing test of concrete-filled prefabricated concrete tubecolumn. The axial compression performance of concrete-filled prefabricated concretetube column is reliable by analysis of axial compression failure properties andstress-strain rules according to axial bearing test of10square and10circle crosssection concrete-filled prefabricated concrete tube columns. Coordination coefficientsof different strength concrete have been defined and calculation method of limitbearing capacity applicable to concrete-filled prefabricated concrete tube columnunder axial compression have been put forward according to the differences ofconstitutive model of concrete with different strength and the MATLAB software, theresults show that the formulas are in good agreement with experimental values.
     3. Research on Numerical Simulation of axial and bias compression performanceof concrete-filled prefabricated concrete tube column. Axial and bias compressionload-strain curve of concrete-filled prefabricated concrete tube column was simulated by MATLAB software and finite element analysis software ABAQUS, and theinfluence based on changes of parameters the concrete-filled prefabricated concretetube column axial and bias compression performance was simulated by finite elementanalysis software ABAQUS, reveal the mechanism of axial and bias compression theconcrete-filled prefabricated concrete tube column.
     4. Research on seismic performance test of concrete-filled prefabricated concretetube column. Some comparative analysis of differences of seismic performancebetween ordinary concrete columns and concrete-filled prefabricated concrete tubecolumns have been done according to3different positions experimental studies onseismic behavior of concrete-filled prefabricated concrete tube columns, the resultsshow that concrete-filled prefabricated concrete tube column is reliable in seismicperformance.
     5. The construction technology of concrete-filled prefabricated concrete tubecolumn. Reference to construction method of the existing ordinary concrete columnsand concrete filled steel tube columns, combined with own characteristics ofconcrete-filled prefabricated concrete tube columns, expounds the constructionmethod of concrete-filled prefabricated concrete tube columns.
引文
[1]黄灵,张德海,陶帅,预制装配式建筑在保障房中的应用意义[A],第九届沈阳科学学术年会论文集[C],中国辽宁沈阳,2012:642-644
    [2]张晓勇,孙晓阳,陈华等,预制全装配式框架结构构件工厂化生产技术,建筑施工,2012,v.34;No.249(03):206-207.
    [3]宋非非,预制装配式混凝土结构技术的研究与应用,住宅产业,2010,No.118(04):86-88.
    [4]毛建斌,模板早拆体系在施工中的应用和发展[D],天津大学,2007.
    [5]王丽丽,预制混凝土模板的研究[D].武汉理工大学,2007.
    [6]王丽丽,季学宏,潘茜,预制混凝土模板的研究,国外建材科技,2007,No.129(02):48-50.
    [7]于勇东,李学诚,竹胶合板大模板在施工中的应用,内蒙古科技与经济,2009,No.179((01):97.
    [8]丁红岩,刘会勋,侯川,最不利条件下楼板模板早拆施工技术分析,自然灾害学报,2009,v.18(04):49-54.
    [9]张晓玲,马慧,英伟等,高强度混凝土的耐火性能研究,国外建材科技,2007,No.130(03):28-31.
    [10]周履,高性能,高强度混凝土设计建议,国外桥梁,2000,(1):41-46.
    [11]马玉平,马昕,崔建涛,高强度混凝土试验研究,建筑科学与工程学报,2005,(03):67-69.
    [12]琚荣君,高强度混凝土在施工中的质量控制,铁道建筑,2005,(05):97-98.
    [13]蔡绍怀,薛立红,高强度混凝土的局部承压强度,土木工程学报,1994,(5):52-61.
    [14]王文安,乐运国,彭华等,高强度混凝土的细观损伤本构模型研究,武汉水利电力大学学报,1996,(5):12-18.
    [15]钟善桐,钢-混凝土组合结构在我国的研究与应用,钢结构,2000,(4):41-46.
    [16]王立衡,组合结构的发展现状及前景,山西建筑,2008,(3):118-120.
    [17]叶列平,方鄂华,《钢骨混凝土结构设计规程》讲座之二钢骨混凝土构件正截面承载力计算,建筑结构,1999,(08):56-60+55.
    [18]孙修礼,高层钢管混凝土结构体系设计方法及试验研究[D],东南大学,2006.
    [19]丁红岩,张浦阳,一种可装配的预制钢筋混凝土管柱结构及其施工方法,CN102400519China,2012.
    [20]丁红岩,和超,张浦阳,一种预制混凝土管柱钢骨混凝土梁节点结构及其施工方法,CN102704575China,2012.
    [21]丁红岩,和超,张浦阳,一种预制混凝土管柱钢梁节点结构及其施工方法,Vol. CN102704574China,2012.
    [22]丁红岩,和超,张浦阳,一种预制混凝土管柱钢筋混凝土梁节点结构及其施工方法,CN102677784China,2012.
    [23]李强,孟闻远,李辛民等,清水混凝土工程模板体系的分析、选型与设计,混凝土,2006,(11):82-86.
    [24]张轶,清水混凝土的发展与应用,中国建材,2005,(4):39-41.
    [25]N. H. Burns, D. K. Merritt and B. F. McCullough in Precast prestressed concrete pavement, Vol.213(Ed. S. A. Mirza),2003, pp.1-18.
    [26]J. Xiao, X. Huang and L. Shen, Seismic behavior of semi-precast column with recycled aggregate concrete, Construction And Building Materials,2012,35(988-1001.
    [27]K.-H. Yang, M.-H. Oh, M.-H. Kim, et al., Flexural behavior of hybrid precast concrete beams with H-steel beams at both ends, Engineering Structures,2010,32(9):2940-2949.
    [28]D. K. Merritt, B. F. McCullough, N. H. Burns, et al. in Precast prestressed concrete pavement pilot project near Georgetown, Texas, Vol.2003, pp.11-17.
    [29]S. McCraven, Gold bar wastewater treatment plant-Ultra-high-performance fiber-reinforced precast concrete proves market potential, Pci Journal,2007,52(6):32-48.
    [30]C. Redmon and N. A. Forbess, Architectural precast concrete panels beautify facade of Kuwait Scientific Center, Pci Journal,2002,47(3):46.
    [31]L.-Y. Shen, V. W.-Y. Tam and C.-Y. Li, Benefit analysis on replacing in situ concreting with precast slabs for temporary construction works in pursuing sustainable construction practice, Resources Conservation And Recycling,2009,53(3):145-148.
    [32]范力,装配式预制混凝土框架结构抗震性能研究[D],同济大学,2007.
    [33]李增志,预制混凝土管柱结构研究[D],天津大学,2012.
    [34]赵斌,吕西林,刘丽珍,全装配式预制混凝土结构梁柱组合件抗震性能试验研究,地震工程与工程振动,2005,(1):81-87.
    [35]李楠,张季超,楚先锋等,预制混凝土结构后浇整体式梁柱节点抗震性能试验研究,工程力学,2009,v.26(S1):41-44.
    [36]陈适才,闫维明,王文明等,大型预制混凝土结构梁-柱-叠合板边节点抗震性能研究,建筑结构学报,2011,v.32(06):60-67.
    [37]闫维明,王文明,陈适才等,装配式预制混凝土梁-柱-叠合板边节点抗震性能试验研究,土木工程学报,2010,v.43(12):56-61.
    [38]种迅,孟少平,潘其健,后张预应力预制混凝土框架梁柱节点抗震性能试验研究,土木工程学报,2012,v.45(12):38-44.
    [39]葛云鹏,王磊,尚立明,预制钢筋混凝土模板在大型悬臂结构中的应用,水利水电施工,2009,No.112(01):64-68.
    [40]郑敏,樊文林,在预制预应力混凝土模板上现浇顶板的组合梁桥,国外桥梁,1999,(2):52-57.
    [41]郭纯,一种新型预制管混凝土柱的轴压性能试验研究[D],湖南大学,2005.
    [42]郭纯,顾彦,凌国飞,一种新型预制管混凝土柱的非线性有限元分析,湖南文理学院学报(自然科学版),2007,No.52(01):92-95.
    [43]郭纯,凌国飞,一种新型预制管混凝土柱的轴压性能研究,工业建筑,2008,No.412(01):88-91.
    [44]J.-B. Bai, X.-Y. Wang, H. Wang, et al. in Research on technology and mechanism of grouting by using high-moisture quick-concreting material, Vol.405-406Eds.:H. W. Ye and G. F. Peng),2009, pp.30-36.
    [45]O. Sengul, C. Tasdemir and M. A. Tasdemir, Influence of aggregate type on mechanical behavior of normal-and high-strength concretes, Aci Materials Journal,2002,99(6):528-533.
    [46]王铁成,康谷贻,高强度混凝土构件斜截面受剪承载力设计,天津大学学报,2001,(05):659-663.
    [47]A. Bentur, S. Igarashi and K. Kovler, Prevention of autogenous shrinkage in high-strength concrete by internal curing using wet lightweight aggregates, Cement And Concrete Research,2001,31(11):1587-1591.
    [48]Y. N. Chan, G. F. Peng and M. Anson, Residual strength and pore structure of high-strength concrete and normal strength concrete after exposure to high temperatures, Cement&Concrete Composites,1999,21(1):23-27.
    [49]A. Elremaily and A. Azizinamini, Behavior and strength of circular concrete-filled tube columns, Journal Of Constructional Steel Research,2002,58(12):1567-1591.
    [50]G. C. Isaia, A. L. G. Gastaldini and R. Moraes, Physical and pozzolanic action of mineral additions on the mechanical strength of high-performance concrete, Cement&Concrete Composites,2003,25(1):69-76.
    [51]Q. M. Li and H. Meng, About the dynamic strength enhancement of concrete-like materials in a split Hopkinson pressure bar test, International Journal Of Solids And Structures,2003,40(2):343-360.
    [52]C. S. Poon, S. Azhar, M. Anson, et al., Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures, Cement And Concrete Research,2001,31(9):1291-1300.
    [53]C. S. Poon, Z. H. Shui and L. Lam, Effect of micro structure of ITZ on compressive strength of concrete prepared with recycled aggregates, Construction And Building Materials,2004,18(6):461-468.
    [54]I. B. Topcu and M. Saridemir, Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic, Computational Materials Science,2008,41(3):305-311.
    [55]A. H. Varma, J. M. Ricles, R. Sause, et al., Seismic behavior and modeling of high-strength composite concrete-filled steel tube (CFT) beam-columns, Journal Of Constructional Steel Research,2002,58(5-8):725-758.
    [56]I. C. Yeh, Modeling of strength of high-performance concrete using artificial neural networks, Cement And Concrete Research,1998,28(12):1797-1808.
    [57]张陆,超高强混凝土柱力学性能非线性有限元分析[D],大连理工大学,2008.
    [58]姜睿,超高强混凝土组合柱抗震性能的试验研究[D],大连理工大学,2007.
    [59]齐岳,郑文忠,核心高强混凝土柱荷载-位移恢复力模型,哈尔滨工业大学学报,2010,v.42(04):531-535.
    [60]齐岳,核心高强混凝土柱力学性能试验与分析[D],哈尔滨工业大学,2010.
    [61]齐岳,郑文忠,核心高强混凝土柱轴心受压承载力分析,工业建筑,2010,v.40;No.441(04):75-78.
    [62]郑文忠,齐岳,轴心受压核心高强素混凝土短柱试验分析,哈尔滨工业大学学报,2009,v.41(12):25-30.
    [63]王海艳,浅谈高强度混凝土梁柱节点设计与施工方法,广东科技,2009,No.214(12):135-136.
    [64]L. H. Han, Tests on stub columns of concrete-filled RHS sections, Journal Of Constructional Steel Research,2002,58(3):353-372.
    [65]H. T. Hu, C. S. Huang, M. H. Wu, et al., Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect, Journal Of Structural Engineering-Asce,2003,129(10):1322-1329.
    [66]C. S. Huang, Y. K. Yeh, G. Y. Liu, et al., Axial load behavior of stiffened concrete-filled steel columns, Journal Of Structural Engineering-Asce,2002,128(9):1222-1230.
    [67]M. D. O'Shea and R. Q. Bridge, Design of circular thin-walled concrete filled steel tubes, Journal Of Structural Engineering-Asce,2000,126(11):1295-1303.
    [68]C. W. Roeder, B. Cameron and C. B. Brown, Composite action in concrete filled tubes, Journal Of Structural Engineering-Asce,1999,125(5):477-484.
    [69]S. P. Schneider, Axially loaded concrete-filled steel tubes, Journal Of Structural Engineering-Asce,1998,124(10):1125-1138.
    [70]周绪红,刘界鹏,张素梅,方钢管约束型钢混凝土短柱抗震性能试验研究,建筑结构学报,2010,v.31(07):49-55.
    [71]周绪红,刘界鹏,张素梅,圆钢管约束钢筋混凝土短柱抗震性能试验研究,建筑结构学报,2010,v.31(07):56-63.
    [72]聂建国,赵洁,柏宇,钢管混凝土核心柱轴压极限承载力,清华大学学报(自然科学版),2005,(09):1153-1156.
    [73]聂建国,廖彦波,双圆夹层钢管混凝土柱轴压承载力计算,清华大学学报(自然科学版)网络.预览,2008,(03):312-315.
    [74]聂建国,徐桂根,方钢管混凝土柱节点的抗剪受力分析,清华大学学报(自然科学版)网络.预览,2009,v.49(06):782-786.
    [75]韩林海,杨有福,刘威,长期荷载作用对矩形钢管混凝土轴心受压柱力学性能的影响研究,土木工程学报,2004,(03):12-18.
    [76]聂建国,柏宇,李盛勇等,钢管混凝土核心柱轴压组合性能分析,土木工程学报,2005,(09):9-13.
    [77]陶忠,韩林海,黄宏,圆中空夹层钢管混凝土柱力学性能研究,土木工程学报,2004,(10):41-51.
    [78]周栋梁,钱稼茹,方小丹等,环梁连接的RC梁-钢管混凝土柱框架试验研究,土木工程学报,2004,(05):7-15.
    [79]周绪红,刘界鹏,张素梅,方钢管约束钢筋高强混凝土超短柱抗震性能试验研究,土木工程学报,2010,v.43(08):1-10.
    [80]周学军,曲慧,方钢管混凝土框架梁柱节点在低周往复荷载作用下的抗震性能研究,土木工程学报,2006,(01):38-42+49.
    [81]朱美春,王清湘,冯秀峰,轴心受压钢骨-方钢管自密实高强混凝土短柱的力学性能研究,土木工程学报,2006,(06):35-41.
    [82]丁发兴,周林超,余志武等,钢管混凝土轴压短柱非线性有限元分析,中国科技论文在线,2009,v.4(07):472-479.
    [83]王铁成,李新华,王天柱等,反复荷载作用下的异形柱框架滞回性能,吉林大学学报(工学版),2007,(01):224-228.
    [84]王艳艳,战蒙玲,张凌等,方钢管混凝土柱承载力计算方法对比研究,河南大学学报(自然科学版),2006,(01):110-113.
    [85]郭蓉,王铁成,赵少伟等,方钢管混凝土柱的地震损伤模型,河北农业大学学报,2007,No.132(03):109-112.
    [86]杜喜凯,王铁成,张建辉等,方钢管混凝土柱轴压比限值的研究,河北农业大学学报,2006,(02):112-114.
    [87]王铁成,卢明奇,张洪波,柱长细比对方钢管混凝土框架延性影响的分析,哈尔滨工业大学学报,2005,(03):332-335.
    [88]Y. P. Liu and R. E. Weyers, Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures, Aci Materials Journal,1998,95(6):675-681.
    [89]M. Saafi, H. A. Toutanji and Z. J. Li, Behavior of concrete columns confined with fiber reinforced polymer tubes, Aci Materials Journal,1999,96(4):500-509.
    [90]H. Yuan, J. G. Teng, R. Seracino, et al., Full-range behavior of FRP-to-concrete bonded joints, Engineering Structures,2004,26(5):553-565.
    [91]刘健,新老混凝土粘结的力学性能研究[D],大连理工大学,2000.
    [92]农金龙,新老混凝土界面粘结材料及强度的研究[D],湖南大学,2003.
    [93]王振领,新老混凝土粘结理论与试验及在桥梁加固工程中的应用研究,Vo1.西南交通大学,2007.
    [94]王振领,林拥军,钱永久,新老混凝土结合面抗剪性能试验研究,西南交通大学学报,2005,(05):600-604.
    [95]谢慧才,李庚英,熊光晶,新老混凝土界面粘结力形成机理,硅酸盐通报,2003,(03):7-10+18.
    [96]W. Li, J. Xiao, Z. Sun, et al., Interfacial transition zones in recycled aggregate concrete with different mixing approaches, Construction And Building Materials,2012,35(1045-1055.
    [97]D. S. Santos, P. M. D. Santos and D. Dias-da-Costa, Effect of surface preparation and bonding agent on the concrete-to-concrete interface strength, Construction And Building Materials,2012,37(102-110.
    [98]A. Katz, Properties of concrete made with recycled aggregate from partially hydrated old concrete, Cement And Concrete Research,2003,33(5):703-711.
    [99]X. Chang, C. Huang, D. Jiang, et al., Push-out test of pre-stressing concrete filled circular steel tube columns by means of expansive cement, Construction And Building Materials,2009,23(1):491-497.
    [100]J. F. Hajjar, P. H. Schiller and A. Molodan, A distributed plasticity model for concrete-filled steel tube beam-columns with interlayer slip, Engineering Structures,1998,20(8):663-676.
    [101]M. Mouli and H. Khelafi, Strength of short composite rectangular hollow section columns filled with lightweight aggregate concrete, Engineering Structures,2007,29(8):1791-1797.
    [102]T. Aly, M. Elchalakani, P. Thayalan, et al., Incremental collapse threshold for pushout resistance of circular concrete filled steel tubular columns, Journal Of Constructional Steel Research,2010,66(1):11-18.
    [103]Z. Tao, L.-H. Han, B. Uy, et al., Post-fire bond between the steel tube and concrete in concrete-filled steel tubular columns, Journal Of Constructional Steel Research,2011,67(3):484-496.
    [104]刘健,赵国藩,新老混凝土粘结收缩性能研究,大连理工大学学报,2001,(03):339-342.
    [105]赵志方,赵国藩,采用高压水射法处理新老混凝土粘结面的试验研究,大连理工大学学报,1999,(04):96-99.
    [106]管大庆,陈章洪,石韫珠,界面处理对新老混凝土粘结性能的影响,混凝土,1994,(05):16-22+11.
    [107]李庚英,谢慧才,熊光晶,混凝土修补界面的微观结构及与宏观力学性能的关系,混凝土,1999,(06):13-18.
    [108]刘金伟,谢慧才,熊光晶等,新老混凝土粘结界面耐久性能的试验研究,混凝土,2001,(02):35-38.
    [109]杨煜惠,黄政宇,罗纲等,水泥混凝土路面早期裂缝的原因及防止,混凝土,1996,(01):13-24+29.
    [110]袁群,刘健,新老混凝土粘结的剪切强度研究,建筑结构学报,2001,(02):46-50.
    [111]赵志方,赵国藩,黄承逵,新老混凝土粘结的拉剪性能研究,建筑结构学报,1999,(06):26-31.
    [112]赵志方,赵国藩,刘健等,新老混凝土粘结抗拉性能的试验研究,建筑结构学报,2001,(02):51-56.
    [113]刘金伟,谢慧才,修补钢筋混凝土梁新老混凝土界面粘结强度的试验研究,土木工程学报,2001,(01):30-32.
    [114]赵志方,赵国藩,黄承逵,新老混凝土粘结抗折性能研究,土木工程学报,2000,(02):67-72.
    [115]何伟,新老混凝土界面粘结强度的研究[D],湖南大学,2005.
    [116]张雷顺,韩菊红,郭进军等,新老混凝土粘结补强在某钢筋混凝土桥面板加固整修中的应用,土木工程学报,2003,(04):82-85.
    [117]L. H. Han and G. H. Yao, Influence of concrete compaction on the strength of concrete-filled steel RHS columns, Journal Of Constructional Steel Research,2003,59(6):751-767.
    [118]C. C. Rodrigues and M. A. G. Silva, Cyclic compression behaviour of polymer concrete, Journal Of Polymer Engineering,2007,27(6-7):525-545.
    [119]刘士润,低周反复荷载作用下穿透式钢管混凝土节点力学性能研究,[D],大连理工大学,2011.
    [120]王强稳,FRP管钢骨高强混凝土轴心受压组合柱试验研究[D],东北大学,2008.
    [121]袁继雄.框架梁柱节点性能研究之测试方法与边界条件的分析[D],汕头大学,2008.
    [122]黄国旺,有初始应力作用圆钢管混凝土短柱火灾全过程试验研究[D],湖南大学,2008.
    [123]张家广,火灾(高温)全过程作用后钢筋混凝土柱力学性能试验研究[D],湖南大学,2009.
    [124]陶忠,高献,于清,FRP约束圆钢筋混凝土柱滞回性能的理论分析,工业建筑,2005,(09):15-19.
    [125]王耀伟,平面不规则结构非弹性地震反应规律研究[D],重庆大学,2003.
    [126]张素梅,刘界鹏,王玉银等,双向压弯方钢管高强混凝土构件滞回性能试验与分析,建筑结构学报,2005,(03):9-18.
    [127]郑永乾,韩林海,经建生,火灾下型钢混凝土梁力学性能的研究,工程力学,2008,(09):118-125+148.
    [128]过镇海,钢筋混凝土原理[M],北京:清华大学出版社,1999
    [129]过镇海,混凝土的强度和本构关系原理和应用[M],北京中国建筑工业出版社,2004
    [130]刘劲松,刘红军,ABAQUS钢筋混凝土有限元分析,装备制造技术,2009,No.174(06):69-70+107.
    [131]汪大绥,李志山,李承铭等,复杂结构弹塑性时程分析在ABAQUS软件中的实现,建筑结构,2007,No.281(05):92-95+12.
    [132]张伟,伍鹤皋,苏凯,ABAQUS在大体积钢筋混凝土非线性有限元分析中的应用评述,水力发电学报,2005,(05):70-74.
    [133]刘威,钢管混凝土局部受压时的工作机理研究[D],福州大学,2005.
    [134]楼铁炯,无粘结预应力梁的有限元建模与性能分析研究[D],浙江大学,2005.
    [135]谢开仲,大跨度钢管混凝土拱桥非线性地震反应分析与研究[D],广西大学,2005.
    [136]尧国皇,钢管混凝土构件在复杂受力状态下的工作机理研究[D],福州大学,2006.
    [137]彭亚萍,FRP加固混凝土框架结构梁、柱和节点的性能研究[D],天津大学,2005.
    [138]曲福来,钢筋混凝土不等肢异形柱抗震性能试验研究[D],大连理工大学,2008.
    [139]张学辉,低周往复荷载下纤维增强混凝土异形柱结构的试验及理论研究[D],天津大学,2009.
    [140]赵海龙,纤维增强异形柱结构抗震性能试验和设计方法研究[D],天津大学,2011.
    [141]李忠献,工程结构试验理论与技术,天津:天津大学出版社,2003.6
    [142]郝贵强,聚丙烯纤维增强异形柱框架抗震性能的研究[D],天津:天津大学,2008.12
    [143]唐九如,钢筋混凝土框架节点抗震,南京:东南大学出版社,1998
    [144]赵国藩,高等钢筋混凝土结构学,北京:机械工业出版社,2005.8,430~480
    [145]Laura N.Lowes, Arash Altoontash, Modeling Reinforced-Concrete Beam-Column Joints Subjected to Cyclic Loading, Journal of Structural Engineering,2003(11):1686-1697
    [146]C. P. Antonopoulos and T. C. Triantafillou, Experimental investigation of FRP-strengthened RC beam-column joints, Journal Of Composites for Construction,2003,7(1):39-49.
    [147]A. Ghobarah and A. Said, Shear strengthening of beam-column joints, Engineering Structures,2002,24(7):881-888.
    [148] S. Hakuto, R. Park and H. Tanaka, Seismic load tests on interior and exteriorbeam-column joints with substandard reinforcing details, Aci Structural Journal,2000,97(1):11-25.
    [149] Z. S. Wu, H. Yuan and H. D. Niu, Stress transfer and fracture propagation indifferent kinds of adhesive joints, Journal Of Engineering Mechanics-Asce,2002,128(5):562-573

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700