用户名: 密码: 验证码:
高强汽车大梁钢微观组织控制与TMCP工艺开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汽车工业的快速发展和激烈的市场竞争对汽车用钢提出了越来越高的要求,高强度汽车梁用钢在汽车制造上得到越来越广泛的应用。本着低成本、高性能的减量化钢材生产原则,结合攀钢特有的资源优势,本文对V、Ti微合金化高强度汽车大梁钢轧制过程组织变化规律及控轧控冷工艺(TMCP-Thermic Machine Control Process)进行研究。通过实验室热模拟实验,研究含钒、钛高强度再结晶行为及工艺参数对显微组织的影响规律,在此基础上进行实验室热轧实验和现场工业实验。通过单轴拉伸试验、低温系列冲击试验和弯曲试验研究高强度汽车大梁板的力学性能,确定轧制工艺参数对力学性能的影响规律,并在攀钢热轧生产线进行了工业化生产。
     论文的主要内容包括:
     1)通过双道次压缩实验研究了含V、含Ti微合金钢奥氏体静态再结晶规律,结果表明,V和Ti在较低的温度范围内(850-900℃)对奥氏体静态再结晶过程具有较为明显的抑制作用,所以在相对较低的轧制温度下,钢中添加V和Ti有利于未再结晶区控制轧制。
     2)利用热模拟实验和热轧实验研究了含V微合金钢的析出行为,结果表明,含钒钢950℃以下会发生一定程度的V(CN)在奥氏体中的形变诱导析出;620-660℃范围内铁素体中V(CN)析出量较大,600℃以下析出量较小。
     3)利用热模拟实验研究了V、Ti对轧后冷却过程相变的影响,结果表明,与Nb的作用不同,低碳钢中随着含V量的增加,获得铁素体的冷却速度范围扩大,即对铁素体相变有促进作用,含V量较大时,变形对铁素体相变和珠光体相变的促进作用增大;Ti的作用与V类似,变形对铁素体相变和珠光体相变具有明显的促进作用。
     4)通过热轧试验研究了变形工艺参数对组织性能的影响,结果表明,降低终轧温度对铁素体晶粒有明显的细化作用,降低卷取温度在细化晶粒的同时,也可以获得一定的相变强化的效果。但卷取温度降低时,不利于发挥V、Ti合金元素沉淀强化的效果。
     5)通过工业实验确定了攀钢利用低成本P510L的化学成分生产P590L的减量化轧制工艺,即合理控制终轧温度和卷取温度,充分利用细晶强化和沉淀强化的强化机制,以达到提高材料强韧性的目的。组织性能分析结果表明,低成本P590L具有良好的综合力学性能、冷成形性及焊接性。
High strength steels for automotive frame have been widely applied because of the strict requirements which were ordered by the rapid development and drastic competition of the Motor Industry. According to the principle of reduced steel rolling technology, the works of this dissertation were carried out integrating with the resource advantages in Panzhihua Iron and Steel Company, and the evolving rule of the microstructure combining with TMCP(TMCP-Thermic Machine Control Process) for high strength microalloyed steels with vanadium or titanium for automotive beam were investigated. Utilizing thermal simulation experiments, the effects of recrystallization behavior and processing parameters on microstructure were investigated; based on which the experimental and commercial tests were preceded. In order to obtain the effects of rolling processing parameters on the mechanical properties of the products, series of tests were adopted including uniaxial tensile test, low temperature impact test and bending test. Finally, the industrial production was attained in the hot rolling production line of Panzhihua Iron and Steel Company.
     The main works involved as follows:
     1)The austenite static recrystallization behaviors of V/Ti microalloyed steels were investigated using double-hit hot compression test. The results indicate that control rolling in the non-recrystallization zone could be easily implemented in the relatively low rolling temperature with addition of vanadium and titanium.
     2) Precipitation behaviors of V-microalloyed steel were studied through the thermal simulation experiment and hot rolling test. The results shows that deformation induced precipitation of V(CN) occurred in austenite at the temperature below 950℃;the amount of vanadium carbonitride precipitated in ferrite at the temperature between 620-660℃was relatively more than the temperature below 600℃.
     3) The effect of vanadium and titanium on phase transformation in cooling stage was investigated. The results show that the ferrite transformation was accelerated with increasing of vanadium content. Both ferrite and pearlite transformations could be promoted when the vanadium content goes to a high level. The effect of titanium is similar with vanadium on the transformation.
     4) Effects of deformation processing parameters on the microstructure and property were discovered through hot rolling experiment. The results indicate that ferrite grains could be effectively refined by decreasing the finish rolling temperature, while both refinement of grains and transformation strengthening were obtained with lowering the coiling temperature. But the problem is that lowering the coiling temperature is unbeneficial to the precipitation strengthening of vanadium and titanium.
     5) Reduced rolling processing for the production of P590L was determined utilizing the commercial tests, that is appropriate controlling of finish rolling temperature and coiling temperature, and full utilization of grain refinement strengthening and precipitation strengthening in order to improve the strength and toughness. The analysis of microstructure and property shows that the low-cost P590L has possessed well combination property, cold formability and weldability.
引文
[1]Yada H,日本金属学会1983年秋季年会摘要[C]. (Collected Abstracts of the 1983 Autumn Meeting of Japan Inst[C].Metals), JIM, Sendai,1983,190.
    [2]H.Yada, Testsuto Hagane,1983,69:1459.
    [3]Hodgson P D, Hickson M R, Gibbs R K. Scripta Meter.1999,40:1179.
    [4]Hiroshi Yada. Dynamic γ→α Transformation during Hot Deformation Iron Nickel Carbon Alloys[J].ISIJ International,2000,40(2):200203.
    [5]王国栋,刘相华,杜林秀等.C-Mn超级钢的工业化生产及应用[J].中国冶金,2004(8):7-10.
    [6]刘相华,陆匠心,张丕龟等.400-500MPa级碳素钢先进工业化制造技术[J].中国有色金属学报,2004(14):207-210.
    [7]王国栋,刘相华,李维娟等.超级Super2SS400钢的工业轧制实验[J].钢铁,2001,36(5):39-43.
    [8]Choo Wung-yong. Present developing status of high performance steel in korea [A].新一代钢铁材料研讨会论文集[C].北京:2001,16-26.
    [9]SUN Zu-qing, YANG Wang-yue, HU An-min, et al. Microstructure refinement and mechanical properties of plain low carbon steel through strain2enhanced transformation[A].HSLA Steels'2000 [C].Beijing:2000,119-126.
    [10]迁伸泰.钢铁材料的晶粒超细化[J].世界钢铁,2003,3:16-24.
    [11]许珞萍,邵光杰,李麟等.汽车轻量化用金属材料及其发展动态[J],上海金属,2002,24(3):1-7.
    [12]张译中,邱伍华.汽车零部件用高强度钢材的进展[J],上海金属,2000,22(4):8-15.
    [13]唐荻,米振莉,陈雨来.国外新型汽车用钢的技术要求及研究开发现状[J],钢铁,2005,40(6):1-5.
    [14]朱铮.汽车用高强度钢板的开发应用和发展前景[J],钢铁,2000,35(11):66-70.
    [15]潘玲玲.高强度钢作为汽车轻质材料的应用[J],上海汽车,2005,8:41-43.
    [16]R. D. K. Misa, G. C. Weatherly, J.E.Hartmann, et al. Ultrahigh strength hot rolled microalloyed steels: microstructural aspects of development [J], Materials Science and Technology,2001,17(1): 1119-1129.
    [17]Yuxuan Li, Zhongqin Lin, Aiqin Jiang, et al. Experimental study of glass-fiber mat thermoplastic material impact properties and lightweight automobile body analysis[J],Materials and Design,2005, 25:579-585.
    [18]Yuxuan Li, Zhongqin Lin, Aiqin Jiang, et al. Use of high strength steel sheet for lightweight and crashworthy car body[J],Materials and Design,2003,24:177-182.
    [19]朱文英.汽车轻量化与高强度钢板的开发进展[J],上海金属,2003,25(3):11-15.
    [20]R. D.K. Misa,K. K. Tenneti,G. C. Weather, et al. Microstructure and texture of hot-rolled Nb-Ti and V-Nb microalloyed steels with differences in formability and toughness, Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science),2003,34A(10):2341-2351.
    [21]党淑娥.双相钢的研究现状及应用前景[J],山西机械,2002,4:14-18.
    [22]张志勤,何立波,高真凤.国外先进钢铁公司汽车板品种综述[J],武钢技术,2005,43(6):41-46.
    [23]张迎晖,康永林,于浩等TRIP钢变形奥氏体连续冷却过程的相变及组织研究[J],金属热处理,2005,30(12):79-81.
    [24]米振莉,唐荻,严玲等.高强度高塑性TWIP钢的开发研究[J],钢铁,2005,40(1):58-60.
    [25]吴颖,冀伟,赵实鸣.高强韧性双相钢的研究与开发应用前景[J],江西冶金,1999,19(4):25-28.
    [26]崔世海,韩建民,李卫京等.双相热处理20MnSi钢的强化机理[J],钢铁研究学报,2005,17(4):65-67.
    [27]党淑娥,田香菊,张敏刚.高强度双相钢丝的热处理工艺及性能研究[J],太原重型机械学院学报,2004,25(3):219-222.
    [28]R. D. K. Misa, H. Nathanin, F. Siciliano, et al. Effect of texture and microstructure on resistance to cracking of high-strength hot-rolled Nb-Ti microalloyed steels[J],Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science),2004,35A(9):3024-3029.
    [29]马鸣图,吴宝榕.双相钢—物理和力学冶金[M].北京:冶金工业出版社,1988:122-140.
    [30]M.S.Rashid, SAE preprint,760206,1976, Feb.
    [31]R.GDavies, C.L.Magee, J. of Metals,30(1979),17.
    [32]Hsun HU, Metall. Trans.,13 A(1982),1257.
    [33]马鸣图,吴国发,吴宝榕.钢铁研究总院学报,1984(3),80.
    [34]李爱萍,张存信.超高强度低合金TRIP钢的氢脆[J].国外金属热处理,2005,26(4):20-25.
    [35]苏钰,符仁钰,李麟.低硅Si-Mn系TRIP钢的组织和力学性能[J].上海大学学报(自然科学版),2005,11(1):80-83.
    [36]DING Hua, TANG Zheng-you, LIU Wei et al. Microstructures and Mechanical Properties of Fe-Mn-(Al,Si) TRIP/TWIP Steels[J].JOURNAL OF IRON AND STEEL RESEARCH, INTERNATIONAL,2006,13(6):66-70.
    [37]黄宝旭,王晓东,戎咏华,王利TWIP钢研究的现状与展望[J].热处理,2005,20(4):4-6.
    [38]严玲,唐荻,米振莉,郭锦.汽车用TWIP钢的力学性能和微观组织[J].北京科技大学学报,2006,28(8):739-742.
    [39]李卫,唐正友,王玫等.高Mn奥氏体TRIP/TWIP钢的组织和力学性能[J].钢铁,2007,42(1):71-75.
    [40]王轶娜,黎倩,何燕霖等.高强度高塑性TWIP钢的组织和性能[J].热处理,2006,21(3):25-30.
    [41]严玲,唐荻,米振莉,郭锦.不同加工工艺对高强度高塑性TWIP钢组织与性能的影响[J].热加工工艺,2005,8:15-17.
    [42]Petch N J. The cleavage strength of polycrystals[J].J Iron Steel Inst.,1953,174:25-28.
    [43]李鸿琦,邢冬梅,修景伟等.纳米固体材料的屈服应力与微观结构的关系[J].天津大学学报,2000,33(5):671-674.
    [44]衣海龙,杜林秀,李晓强,王国栋,刘相华.一种新型700MPa级低碳高强度钢的研制[J].机械工程材料,2006,30(11):43-45.
    [45]曹建春,刘清友,雍歧龙,孙新军.铌对高强度低合金钢的组织和强化机制的影响[J].钢铁,2006,41(8):60-63.
    [46]杨才福,张永权,柳书平.钒、氮微合金化钢筋的强化机制[J].钢铁,2001,36(5):55-58.
    [47]张娟,李建国,杨才福,张永权.钒氮在连轧带钢生产工艺中的应用[J].新技术新工艺·热加工技术,2004,3:36-37.
    [48]韩安昌,林大为.含Ti和含V低碳结构用微合金结构钢轧制工艺特点的比较[J].上海金属,2004,26(6):18-21.
    [49]杨春楣,彭建.终轧温度和轧后冷却对含Nb-V微合金钢性能的影响[J].金属成形工艺,2000,18(3):12-14.
    [50]杨春楣,胡贻苏,辛义德,彭建.控轧控冷时Nb-V微合金钢中碳氮化物的析出行为[J].1999,20(1):27-31.
    [51]王占学,塑性加工金属学[M],北京:冶金工业出版社,1999,186-187.
    [52]Yoshimasa Funakawa, Tsuyoshi Shiozaki, Kunikazu Tomita, et al. Development of high strength hot-rolled sheet steel consisting of ferrite and nanometer-sized carbides [J],ISIJ International,2004, 44(11):1945-1951.
    [53]P.F.Stratton. Optimising nano-carbide precipitation in tool steels[J].Materials Science and Engineering A 449-451,2007:809-812.
    [54]刘小林.变形工艺对低碳钢奥氏体中析出物的影响[J].钢铁研究,2007,35(1):23-26.
    [55]向高,刘国权,李长荣等.低碳钢碳氮析出物的热力学计算[J].北京科技大学学报,2006,23(9): 818-821.
    [56]岳尔斌,仇圣桃,干勇.低合金高强度钢中氮化物和碳化物析出热力学[J].钢铁研究学报,2007,19(1):35-38.
    [57]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:39-44.
    [58]刘晰棕.含Ti、Nb钢板的控制轧制[J],辽宁冶金,1995,4,33-35.
    [59]夏佃秀,李兴芳,李建沛。控制轧制和控制冷却技术的新发展[J],山东冶金,2003,10:38-39.
    [60]李曼云,孙本荣,钢的控制轧制和控制冷却技术手册[M],北京:冶金工业出版社,1990,1.
    [61]漆世泽,陆匠心,苏连锋,杜林秀等.800MPa级超级钢变形后连续冷却过程的组织变化[J].轧钢,2003,20(1):4-7.
    [62]林清华,漆世泽,王佳夫,杜林秀等.冷速和变形对700MPa超级钢组织和性能的影响[J].材料与冶金学报,2003,2(1):55-58.
    [63]于燕,刘相华,王华等.汽车用高强度钢板强化机理研究[J].汽车工艺与材料,2006:14-16.
    [64]小指军夫.控制轧制控制冷却—改善材质的轧制技术发展[M],北京:冶金工业出版社,2002.
    [65]于燕,孙艳坤,刘相华.高强度钢板强化机制的探讨[J].长春工业大学学报(自然科学版),2005,26(4):280-282.
    [66]张田宏,方洪渊,杨建国等.C和V对奥氏体不锈钢焊缝的强化[J].材料开发与应用,2005,20(4):9-11.
    [67]何毅,杨柯,孔亚凡等.超高强度18Ni无钴马氏体时效钢的力学性能[J].2002,38(2):278-282.
    [68]戴起勋,王安东,程晓农.低温奥氏体钢的强度计算[J].钢铁研究学报,2002,14(6):50-53.
    [69]刘靖,鹿守理.低碳钢组织与力学性能关系[J].北京科技大学学报,2002,24(2):208-210.
    [70]李玉秋.加快发展我国低合金钢生产进程[J].特钢技术,1999,1:63-68.
    [71]Imao Tamura. Thermomechanical Processing of High-strength Low-alloy Steels[M], London:Butterworths Co.,1988:133
    [72]刘东升.钢铁材料变形奥氏体相变的研究及应用[D],沈阳:东北大学博士学位论文[D],1999.
    [73]冯广纯.控轧控冷技术的现状与发展[J],四川冶金,1996,1,73-75.
    [74]江坂一彬,田淳一,高桥学等.制铁研究,1986,321:92-104.
    [75]Bai D Q, Yue S, Macccagno and Jona J. J.. Static recrystallization of Nb and Nb-B steels under continuous cooling conditions[J],ISIJ Int.,1996,36(8),1084-1093.
    [76]Deardo A J. New concepts in the design and processing of high performance[M],北京:中国科学技术出版社,1995,99-112.
    [77]栗山幸久.塑性と加工,1998,39(453):1009-1013.
    [78]康永林.汽车板的研究开发现状及发展趋势[J],鞍钢技术,6,2003:1-7.
    [79]康永林,于浩,傅杰等.CSP线生产低碳钢热轧薄板的组织演变研究[J].新一代钢铁材料研讨会,北京,2001:291-294.
    [80]马云亭,叶建军.Nb在低碳高强度船体结构钢EH36中的应用[J],宽厚板,2002,8(3),18-23.
    [81]Davenport A T, Brossard L C, Miner R E. J. Metals,1975,27(6):21.
    [82]Woodhead J H. Vanadium in High Strength Steel[J].Vanitec,London:1980:3.
    [83]许荣昌.船板钢的发展与生产技术[J].莱钢科技,2007,2:5-8.
    [84]杜林秀,丁桦,刘相华,王国栋.低碳钢控制轧制的温度范围及组织变化[J].东北大学学报,2002,23(10):972-975.
    [85]吴德强,胡昌宗,黄波.新钢宽厚板生产工艺特点[J].2006,1:29-32.
    [86]冯光宏,史秉华.钢材在线热处理技术[J].特钢技术,2007,13(50):1-4.
    [87]刘剑恒.特殊钢棒线材轧制工艺技术的发展[J].上海钢研,2005,2:3-7.
    [88]Alzetta F, "Luna" The Danieli ECR Endless Casting and Rolling Plant for Specialty Steels-technology, Innovation and Benefits. I&SM,2002, July:41-49.
    [89]吉江淳彦.在线热处理线材的开发[J].新日铁技报,1999,370:27-32.
    [90]成琦玲,周敏文.钢板轧制后直接淬火工艺研究[J].鞍钢技术,1997,12:29-34.
    [91]J. Lnik, T. Kvackaj.Effect of thermomechanical processing on the microstructure and mechmical properties of Nb-Ti microalloyed steel [J],Materials Science and Engineering,2001,A319:321-325.
    [92]H. Yada, Chun-ming Li, Yamagata, et al. Dynamic γ>α transformation during hot deformation in iron-nickel-carbon alloys[J], ISIJ International,2000,40(2):200-206.
    [93]W. B. Lee, K. B. Kang, C. G. Park. Growth kinetics of carbonitride precipitates in Nb bearing HSLA steels [J],Journal of the Korean Institute of Metals and Materials,1996,34(6):688-695.
    [94]刘嵩韬,杜林秀,刘相华,王国栋.含铌微合金钢形变诱导相变上限温度影响因素的研究[J].钢铁研究,2004,3:16-21.
    [95]杜林秀.低碳钢变形过程及冷却过程的组织演变与控制(D),沈阳东北大学,2003.
    [96]M. R. Hickson, P. J. Hurley, R. K. Gibbs,et al. The production of ultrafine ferrite in low-carbon steel by strain-induced transformation [J], Metallurgical and Materials Transactions A (Physical Metallurgy and Materials Science),2002,33A(4):1019-1026.
    [97]S. C. Hong, S. H. Lim, H. S. Hong, et al. Effects of Nb on strain induced ferrite transformation in C-Mn steel[J], Materials Science & Engineering A (Structural Materials:Properties, Microstructure and Processing),2003,355(1-2):241-248.
    [98]R. Kaspar, J. S. Distl, K. Joachim. Changes in austenite grain structure of microalloyed plate steels due to multiple hot deformation[J],Steel research,1998,57(6):271-448.
    [99]雍岐龙,阎生贡,裴和中,田建国,杨文勇,钒在钢中的物理冶金学基础数据[J],钢铁研究学报.1998,5:65
    [100]M.科恩.钢的微合金化及控制轧制[M],北京:冶金工业出版社,1984:261
    [101]冯光宏,杨钢,杨德江等.加速冷却对低碳铌钛钢力学性能的影响[J],钢铁,2000,35(3):22-25.
    [102]王昭东.应用形变热处理原理开发HQ685高强钢板[D],沈阳东北大学,1998.
    [103]孙传水.微量铌和钛对控轧低合金高强度结构钢力学性能的影响[J],钢铁,2004,39(2):51-56.
    [104]Joonoh Moon, Sanghoon Kim, Jongbong Lee et al. Limiting autenite grain size of TiN-containing steel considering the critical partical size[J].Scripta Materialia,2007 (56):1083-1086.
    [105]陈连生,狄国标,刘振宇等.低Si-Mn含Nb、Ti热轧双相钢的工艺和性能研究[J].材料热处理,2006,35(14):13-15.
    [106]王国栋,刘相华,吴迪.节约型钢铁材料及其减量化加工制造[J].轧钢,2006,23(2):1-5.
    [107]王俊丽,李志,金建军等.稀土对高纯超高强度23CoNi钢组织与性能影响的初步探索[J].航空材料学报,2006,26(3):301-302.
    [108]Medina S. F., Mancilla J. E. Static recrystallization modeling of hot deformed microalloyed steels at temperature below the critical temperature[J],ISIJ Int.,1996,36(8),1077-1083.
    [109]C.M.Jose, E.Guillermo, P.T.Estela. Characterization of microalloy precipitates in the austenitic range of high strength low alloy steels[J],Steel Research,2002,73(8):340-345
    [110]田蓉,李麟,符仁钰等.含钒TRIP钢的组织与力学性能研究[J].金属热处理,2004,29(6):33-36.
    [111]Hai-Long Yi, Lin-Xiu Du, Guo-Dong Wang, et al. Development of a hot-rolled low carbon steel with high yield strength [J],ISIJ International,2006,46(5):754-758.
    [112]M. I. Vega, S. F. Medina, M.Chapa, et al. Determination of Critical Temperatures Trn, Ar3, Arl in Hot Rolling of Structural Steels with Different Ti and N Contents[J],ISIJ International,1999,39(12): 1304-1310.
    [113]魏岩,王昭东,韩冰等Nb Ti微合金钢奥氏体高温变形行为[J],东北大学学报(自然科学版),1997,18(2):165-168.
    [114]S. F. Medina,M. Chapa, P.Valles,et al. Influence of Ti and N contents on austenite grain control and precipitate size in structural steels[J], ISIJ International,1999,39 (9):930-936.
    [115]S. F. Medina, J. E Mancilla, C. A. Hernandez. Static recrystallization of hot deformed austenite and induced precipitation kinetics in vanadium microalloyed steels [J],ISIJ International,1994,34 (8): 689-696.
    [116]A. Quispe, S.F. Medina, P. Valles. Recrystallization induced precipitation interaction in a medium carbon vanadium microalloyed steel [J], ISIJ International,1997,37 (8):783-788.
    [117]N. Komatsubara, K. Kunishige, S. Okaguchi. Computer modelling for the prediction and control of mechanical properties in plate and sheet steel production [J], Sumitomo Search,1990,44:159-168.
    [118]Medina S. F., Mancilla J. E. Influence of alloying elements in solution on the static recrystallization kinetics of hot deformed steels[J],ISIJ Int.,1996,36(8),1063-1069.
    [119]Medina S.F.,Mancilla J. E. Static recrystallization modeling of hot deformed steels containing several alloying elements[J], ISIJ Int.,1996,36(8),1070-1076.
    [120]Medina S.F., Mancilla J. E. The influence of titanium on the static recrystallization of hot deformation austenite and on strain induced precipitation kinetics[J],Scripta Metallurgica et Materialia,No.1,vol 1(30),1994,73-78.
    [121]M. Avrami. J. Chem. Phys.,1940,8:212.
    [122]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:27-30.
    [123]戚正风.金属材料热处理原理[M].北京:机械工业出版社,1986:81-88.
    [124]苑少强,杨善武,武会宾等.多元微合金钢中的应变诱导复合析出[J],北京科技大学学报,2003,25(5):414-417.
    [125]肖锋.微钛处理钢中Ti(C、N)第二相质点析出、长大行为及其对晶粒长大的阻止作用研究[J],四川冶金,1998,4:46-49.
    [126]张冬梅,张晓明,杜林秀等.含钛微合金钢连续冷却转变的研究[J].钢铁研究,2005,3:21-24.
    [127]张秀芳,马成甫,钟定钟等.汽车用含钛T52(L)钢板控轧控冷工艺研究与应用[J],钢铁研究,1994,81(6):14-22.
    [128]翁宇庆.超细晶钢-钢的组织细化理论与控制技术[M],北京:冶金工业出版社,2003,312-315.
    [129]Medina S. F..The influence of niobium on the static recrystallization of hot deformation austenite and on strain induced precipitation kinetics[J], Scripta Metallurgica et Materialia, No.1,vol 1(32), 1995,43-48.
    [130]Fuming Wang, Li Tang, J. J. Esser, W. Bleck. Static softening behavior of hot-worked austenite in microalloyed structural steel[J],Materials,1999,6(1):35-43.
    [131]邢新,徐洲,黄杰.钒钦微合金钢热变形奥氏体的再结晶行为的研究[J].上海金属,2003,25(5):12-15.
    [132]谭静,刘静,袁泽喜V、Nb、Ti碳氮化物在铁素体中的析出与组织演变[J].武汉科技大学学报(自然科学版),2006,29(1):29-32.
    [133]王晓刚,齐海超.低碳微合金钢控轧过程中的显微组织[J].物理测试,2006,24(1):24-27.
    [134]王祖滨,宋青.世纪之交看低合金高强度钢的发展[J],钢铁,2001,36(9):66-70.
    [135]L.Pentti, T.Maccagno, J.J.Jonas. Softening and flow stress behavior of nb microalloyed steels during hot rolling simulation[J], ISIJ Int.1995,35(12):1523-1531.
    [136]Siciliano F. Jr., Minami K., Jonas J. J.. Mathematical modeling of the mean flow stress, fractional and grain size during the hot strip rolling of C-Mn steels[J], ISIJ Int.1996,36 (3):1500-1506.
    [137]董洪波,程龙.控轧控冷条件下Nb-V钢碳氮化物的析出行为[J].宽厚板,2001,7(5):16-20.
    [138]齐俊杰,黄运华,张跃.微合金化钢[M].北京:冶金工业出版社,2006:31-32.
    [139]郑之旺,陈杰,周丹.卷曲温度对Ti-IF钢热轧卷组织和性能的影响[J].钢铁钒钛,2006,27(4):21-24.
    [140]李维娟,康小兵Nb、Ti碳化物的溶解与析出对低C微合金钢组织和性能的影响[J].特殊钢,2006,27(6):4-6.
    [141]赵坤,衣海龙,杜林秀等.含Ti高强度汽车板控轧控冷工艺研究[J].轧钢,2006,23(2):6-9.
    [142]S.F.MEDINA, V.LOPEZ. Static recrystallization in austenite and its influence on microstrural changes in C-Mn steel and vanadium microalloyed steel at the hot strip mill[J], ISIJ International, 1993,33 (5):605-614.
    [143]I Tamura.Hot Deformation Behavior and Thermo-Mechanical Treatment of Austenite[J].Iron and Steel,Vol.20,1985:64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700