用户名: 密码: 验证码:
乳糖传感检测与癌细胞现场红外分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪80年代以高技术群为代表的新技术革命,把生物技术、新材料和信息技术并列为新技术革命的重要标志。人口、地球环境、食物、能源与健康等重大问题的解决,莫不寄希望于生命科学的发展和材料的创新。本论文针对生命科学领域中的相关问题,开发了无线磁弹性传感技术,测定了与人类健康息息相关的食品中的乳糖含量;研究了现场红外-衰减全反射傅立叶变换红外光谱技术在人乳腺癌细胞生长过程分析中的应用;此外,文章还针对材料开发相关问题,探索了碳纤维的催化石墨化及其机理。
     (1)牛奶中乳糖的无线传感分析:本文基于无线无源传感器的原理,在磁弹性传感器表面固定一层pH聚合物,制备了pH传感器,然后再在该pH传感器的表面固定β-半乳糖苷酶、葡萄糖氧化酶和过氧化氢酶的复合酶,获得了乳糖传感器。利用底物在多酶作用下水解最终生成H+,使溶液pH值变小,导致传感器表面pH敏感膜发生收缩,从而使表面质量负载减少导致传感器共振频率增加的原理,分析了乳糖标准溶液的浓度,线性范围为2~16 mmol/L,检测下限达0.72 mmol/L。将该传感器应用于实际牛奶样品中的检测,效果与光谱分析数据相当。
     (2)乳腺癌细胞生长过程的现场红外分析:基于红外光谱能够反映物质结构的特点,采用衰减全反射傅立叶变换红外(ATR-FTIR)光谱,在线分析人乳腺癌细胞生长全过程的物质变化,实现了对人乳腺癌细胞生长的在线实时无损监测。通过比较正常人乳腺细胞与癌细胞的区别,为红外光谱诊断癌症的工作提供了数据材料;通过探索癌细胞的生长行为,为癌细胞的生长过程机理研究做出了贡献,同时该方法的建立为进一步研究抗癌药物对癌细胞作用机制提供了可行性依据。
     (3)磁场诱导化学镀Ni-P对碳纤维催化石墨化的影响研究:针对聚丙烯腈(PAN)碳纤维难石墨化的问题,采用磁场诱导的方法,在化学镀镍的过程中获得了颗粒均一的镀层表面。考察了镀层均匀程度对碳纤维石墨化度的影响。通过扫描电子显微镜(SEM)图比较了两种不同的化学镀层,通过X射线衍射(XRD)表征研究了石墨化度跟镀层的均匀程度的关系。
Since 1980s, biotechnology, new materials and information technology have been regarded as the symbols of technical innovation, which are important to the areas of population, environment, food, energy, health and so on. This dissertation focuses on the areas of life science and materials. We developed a magnetoealstic biosensor to determine the lactose in milk sample, studied the application of in situ attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy in analysis of cancer cells. Finally, we investigated the graphitization of carbon fibers.
     (1) Analysis of lactose in milk samples by wireless sensing: We developed a wireless biosensor for analysis of lactose in milk by co-immobilizingβ-galactosidase (GLA), glucose oxidase (GOD) and catalase onto a magnetoelastic ribbon-like sensor which was pre-coated with a layer of pH-sensitive polymer. The lactose can be hydrolyzed to produce acid finally by the multi-enzyme, resulting in the pH-responsive polymer shrinking, and consequently the resonance frequency (?r) of the sensor increasing. The shifts in frequency were linearly proportional to the concentration of lactose from 2 mmol/L to 16 mmol/L with a detection limit of 0.72 mmol/L. The sensor was applied to the milk samples, and the results were the same as that of spectroscopic analysis.
     (2) In situ evaluation of breast cancer cell growth with ATR-FTIR Spectroscopy: Base on the powerful ability of Fourier-transform infrared (FTIR) spectroscopy to elucidate the structure of biological samples. We introduced ATR-FTIR to in situ evaluate the growth of human breast cancer cell, and elucidated the distinguishing phase of the cell cycle with 3D ATR-FTIR spectroscopy. The different spectroscopy between cancer cell and normal cell offered information to the cancer screening. This study not only provides a time sketch of cancer events but also shows the potential to the mechanism of the anti-cancer drugs acting on the cells.
     (3) The investigation of effect on the graphitization of carbon fibers with electroless deposition of Ni-P catalyst under a magnetic filed: In the process of electroless deposition of Ni, a magnetic filed was added to obtain a homogenous, smooth and orientated coating. SEM images determined the surface of two different coatings. A conclusion that the graphitization is independent on the degree of smooth of coating surfaces was achieved by XRD data.
引文
[01] 中国科学院. 1999科学发展报告. 北京: 科学出版社, 1999.
    [02] 中国科学院. 2000科学发展报告. 北京: 科学出版社, 2000
    [03] 张礼和. 化学学科进展. 北京: 化学工业出版社,2005
    [04] 裘娟萍, 钱海丰. 生命科学概论. 北京: 科学出版社, 2004
    [05] 沃克 J M, 拉谱勒 R. 分子生物学与生物技术. 谭天伟, 黄留玉, 苏国富等译. 北京: 化学工业出版社, 2003
    [06] Bataillard P. Calorimetric sensing in bioanalytical chemistry: Principles, applications and trends: Trends in Analytical Chemistry. 1993, 12 : 387-394
    [07] Mosbach K. Thermal biosensors. Biosensors and Bioelectronics, 1991, 6: 179-182
    [08] Gizeli E, Lowe C R. Current Opinion in Biotechnology. Immunosensors, 1996, 7: 66-79
    [09] 宛德福, 马兴隆. 磁性物理学. 成都: 电子科技大学出版社, 1994
    [10] 钟文定. 铁磁学. 北京: 科学出版社, 2000
    [11] Cai Q Y, Grimes C A. A remote query magnetoelastic pH sensor. Sensors and Actuators B, 2000, 71 (1-2): 112-117
    [12] Cai Q Y, Zeng K F, Ruan C M, et al. A wireless, remote query glucose biosensor based on a pH-sensitive polymer. Analytical Chemistry, 2004, 76 (14): 4038-4043
    [13] Grimes C A, Mungle C S, Zeng K F, et al. Wireless magnetoelastic resonance sensors: a critical review. Sensors, 2002, 2: 294-313
    [14] Shankar K, Ruan C M, Zeng K F, et al. Quantification of ricin concentrations in aqueous media. Sensors and Actuators B, 2005,107 (2): 640-648
    [15] Grimes C A, Kouzoudis D. Remote query measurement of pressure, fluid-flow velocity, and humidity using magnetoelastic thick-film sensors. Sensors and Actuators A, 2000, 84: 205-212
    [16] Jain M K, Schmidt S, Ong K G, et al. Magnetoacoustic remote query temperature and humidity sensors. Smart Materials and Structures, 2000, 9 (4): 502-510
    [17] Stoyanov P G, Grimes C A. A remote query magnetostrictive viscosity sensor. Sensors and Actuators A, 2000, 84(1): 8-14
    [18] Loiselle K, Grimes C A. Remote query measurement of viscosity in viscous liquids using magnetostrictive thick-films. Review of Scientific Instrument,2000, 71 (3): 1141-1446
    [19] Cai Q Y, Jain M K, Grimes C A. A wireless, remote query ammonia sensor. Sensors and Actuators B, 2001, 77 (3): 614-619
    [20] Puckett L G, Barrett G, Kouzoudis D, et al. Monitoring blood coagulation with magnetoelastic sensors. Biosensors and Bioelectronics, 2003, 18: 675-681
    [21] Sindhuphak R, Issaravanich S, Udomprasertgul V, et al. A new approach for the detection of cervical cancer in Thai women. Gynecologic Oncology, 2003, 90: 10-14
    [22] Papo N, Shai Y. New Lytic Peptides Based on the D, L-Amphipathic Helix Motif Preferentially Kill Tumor Cells Compared to Normal Cells. Biochemistry, 2003, 24: 9346-9354
    [23] Ramesh J, Salman A, Hammody Z, et al. Application of FTIR microscopy for the Characterization of malignancy: H-ras transfected murine fibroblasts as an example. J. Biochem. Biophys. Methods, 2001, 50: 33-42
    [24] Fujioka N, Morimoto Y, Arai T, et al. Discrimination between normal and malignant human gastric tissues by Fourier transform infrared spectroscopy Cancer Detection and Prevention, 2004, 28: 32-36
    [25] Dhiman H K, Ray A R, Panda A K. Characterization and evaluation of chitosan matrix for in vitro growth of MCF-7 breast cancer cell lines. Biomaterials, 2004, 25: 5147-5154
    [26] Wood B R, Chiriboga L, Yee H, et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecologic Oncology, 2004, 93: 59-68.
    [27] 冯尚源. 人血红细胞傅立叶变换近红外拉曼和红外光谱研究: [福建师范大学硕士学位论文]. 福州, 2004, 2-3
    [28] Parker F S. Application of Infrared Spectroscopy in Biochemistry and Medicine. Pknvm, New York,1971
    [29] Susi H. Structure and Stability of Biological Macromolecules, Marcel Dekker, New York, 1969
    [30] 刘仁明, 冀勇, 唐伟跃等. 人体甲状腺癌织红外光谱特征的研究. 肿瘤基础与临床, 2006, 19 (2): 99-101
    [31] 马晓冬, 蒋诗平, 王卫等. 消化道癌患者和正常人指甲的红外光谱比较研究. 分析仪器, 2007, 3: 26-29
    [32] 霍红, 胡祥, 关宏伟等. 人体乳腺癌织红外光谱特征的研究. 高等学校化学学报, 2000, 21 (8): 1244-1247
    [33] 于舸, 吕淑华, 许家林等. 衰减全反射红外光谱用于人乳腺癌织的研究.光子学报, 2005, 3 (34): 390-394
    [34] 慈云祥,高体玉,冯军等. 乳腺癌变织的Fourier变换红外光谱研究. 科学通报, 1998, 43 (24) : 2627-2631
    [35] 马晓冬.傅立叶变换红外光谱在癌症检测中的应用研究: [中国科学技术大学硕士学位论文]. 大连, 2007, 1-9
    [36] Fahrenfort J. Atenuated total reflection: A new principle for the production of useful infrared reflection spectra of organic compounds. Spectrochim. Acta., 1961, 17: 698-709
    [37] Sarangi I, Ghosh D, Bhutia S K, et al. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. International Immunopharmacology, 2006, 6: 1287-1297
    [38] Salman A, Sahu R K, Bernshtain E, et al. Probing cell proliferation in the human colon using vibrational spectroscopy: a novel use of FTIR-microspectroscopy. Vibrational Spectroscopy, 2004, 34: 301-308
    [39] Wang H P, Wangb H C, Huang Y J. Microscopic FTIR studies of lung cancer cells in pleural fluid. Science of the Total Environment, 1997, 204: 283-287
    [40] Peng Y, Wu P, Siesler H W. Two-Dimensional/ATR Infrared Correlation Spectroscopic Study on Water Diffusion in a Poly (E-caprolactone) Matrix. Biomacromolecules, 2003, 4: 1041-1044
    [41] Micha?l G, Virginie D, Alain D, et al. Bacterial Swarming: A Biochemical Time-Resolved FTIR-ATR Study of Proteus mirabilis Swarm-Cell Differentiation Biochemistry, 2001, 40: 11938-11945
    [42] Kang S, Bremer J, Kim K, et al. Monitoring Metal Ion Binding in Single-Layer Pseudomonas aeruginosa Biofilms Using ATR-IR Spectroscopy. Langmuir, 2006, 22: 286-291
    [43] Parikh S J, Chorover J. ATR-FTIR Spectroscopy Reveals Bond Formation During Bacterial Adhesion to Iron Oxide. Langmuir 2006, 22: 8492-8500
    [44] Wong P T T, Lacelle S, Fng M F K, et al. Characterization of exfoliated cell and tissues from human endocervix and ectocervix by FTIR and ATR/FTIR spectroscopy. Biospectroscopy, 1995, 1: 357-364
    [45] 贺福. 碳的结构.炭素, 1984, (3): 12-20
    [46] 稻垣道夫, 白石稳, 中沟实等. 石墨化度的评价. 刘洪波译. 炭素术, 1991, 5: 38-43
    [47] 李崇俊, 马伯信, 霍肖旭. 炭/炭复合材料石墨化度的表. 新型炭材料, 1999, 14 (l): 19-25
    [48] 程鸿申. 人造石墨的石墨化度的判断方法. 炭素, 1984, 3: 31-38
    [49] Oberlin A. Pyrocarbons. Carbon, 2002, 40 (l): 7-24
    [50] Oya A, ?tani S. Effects of particle size of calcium and calcium compounds of graphitization of phenolic resin carbon. Carbon, 1979, 17(2): 125-129
    [51] 李玉敏. 催化石墨化. 炭素, 1982, 2: 18-20
    [52] Oya A, ?tani S. Catalytic graphitization of carbon by various metals. Carbon, 1979, 17 (2): 131-137
    [53] Dhakate S R, Mathur R B, Bahl O P. Catalytic effect of iron oxide on carbon/carbon composites during graphitization. Carbon, 1997, 35 (12): 1753 -1756
    [54] Oya A, Mochizuki M, Otani S, et al. Electron microscopic study on the turbostratic carbon formed in phenolic resin carbon by catalytic action of finely dispersed nickel. Carbon, 1979, 17 (1): 71-76
    [55] 稻垣道夫. X射线衍射技术. 程鸿申译炭素, 1982, 1: 33-43
    [56] Franklin R E. The structure of graphitic carbons. Acta crystallographica, 1951, 4: 253-261
    [57] 稻垣道夫, 刘洪波. 石墨化度的评价(续), 炭素技术, 1991, 6: 19-24
    [58] Bayot V, Piraux L, Michenaud J P, et al. Two-dimensional weak localization in partially graphitic carbons. Phys Rev B, 1990, 41 (17): 770-779
    [59] Sasic S, Ozaki Y. Short-Wave Near-Infrared Spectroscopy of Biological Fluids. 1. Quantitative Analysis of Fat, Protein, and Lactose in Raw Milk by Partial Least-Squares Regression and Band Assignment. Anal. Chem., 2001, 73: 64–71
    [60] Tsenkova R, Ozaki Y, Toyoda K. Near-Infrared Spectroscopy for Bionomitoring: Cow Milk Composition Measurementin a Spectral Region Form 1100 to 2400 Nanometers. J. Anim. Sci., 2000, 78: 5 15-522
    [61] Bao Y D, Silva T M J, Guerrant R L, et al. Direct analysis of mannitol, lactulose and glucose in urine samples by high-performance anion-exchange chromatography with pulse amperometric detection clinical evaluation of intestinal permeability in human immunodeficiency virus infection. Journal of Chromatography B, 1996, 685: 105-112
    [62] Jenkins D M, Delwiche M J. Manometric biosensor for online measurement of milk urea. Biosensors and Bioelectronics, 2002, 17: 557-563
    [63] Jenkins D M, Delwiche M J. Adaptation of a manometric biosensor to measure glucose and lactose. Biosensors and Bioelectronics, 2003, 18: 101-107.
    [64] Amárita F, Fernández C R, Alkorta F. Hybrid biosensor to estimate lactose in milk. Analytica Chimica Acta.,1997, 349: 153-158
    [65] Stoica L, Ludwig R, Haltrich D, et al. Third-Generation Biosensor for Lactose Based on Newly Discovered Cellobiose Dehydrogenase. Anal. Chem., 2006, 78: 393-398
    [66] Grimes C A, Kouzoudis D, Mungle C. Simultaneous measurement of liquid density and viscosity using remote query magnetoelastic sensors. Review of Scientific Instruments, 2000, 71(10): 3822-3824
    [67] Trémolet E, Lacheisserie. Magnetostriction: Theory and applications of magnetoelasticity. CRC Press, Boca Raton, 2000
    [68] O'Handley R C. Modern Magnetic Materials: Principles and applications. John Wiley and Sons, New York, 2000
    [69] Grimes C A, Ong K G, Loiselle K, et al. Magnetoelastic sensors for remote query environmental monitoring. Smart Materials and Structures, 1999, 8 (5): 639-646
    [70] Landau L D, Lifshitz E M. Theory of Elasticity, 3rd Edition, Pergamon Press, Oxford, 1986, p. 100
    [71] Schmidt S, Grimes C A. Characterization of nano-dimensional thin-film elastic moduli using magnetoelastic sensor. Sensors and Actuators A, 2001, 94 (3): 189-196
    [72] Zeng K F, Ong K G, Mungle C, et al. Time domain characterization of oscillating sensors: application of frequency counting to resonance frequency determination. Review of Scientific Instrument, 2002, 73 (12): 4375-4380
    [73] Pretsch E, Hlmann P B, Affolter C. Structure Determination of Organic Compounds Tables of Spectral Data. 2000, 291
    [74] Kim D K, Berry C C, Zagorodni A, et al. BSA Immobilization on Amine-Functionalized Superparamagnetic Iron Oxide Nanoparticles. Chem. Mater., 2004, 16 (12): 2344-2354
    [75] Maruyama T, Katoh S, Nakajima M, et al. FT-IR analysis of BSA fouled on ultrafiltration and microfiltration membranes. Journal of Membrane Science, 2001, 192 (1): 201-207
    [76] Krishnan K, Chittur. FTIR/ATR for protein adsorption to biomaterial surfaces. Biomaterials, 1998, 19: 357-369
    [77] Wei X, Cruz J, Gorski W. Integration of Enzymes and Electrodes:Spectroscopic and Electrochemical Studies of Chitosan-Enzyme Films. Anal. Chem., 2002, 74, 5039-5046
    [78] 王美玲. 几种有机分子电氧化机理及蛋白质吸附过程的现场红外光谱研究: [湖南师范大学硕士学位论文]. 湖南: 湖南师范大学, 2005, 10-14
    [79] Chen M, Gao L. Synthesis and characterization of wurtzite ZnSe one -dimensional nanocrystals through molecular precursor decomposition by solvothermal method. Materials Chemistry and Physics., 2005, 91: 437-44
    [80] Huleihel M, Salman A, Erukhimovitch V, et al. Novel spectral method for the study of viral carcinogenesis in vitro. J. Biochem. Biophys. Methods, 2002, 50:111-121
    [81] Omoike A, Chorover J, Kwon K D, et al. Adhesion of Bacterial Exopolymers to α-FeOOH: Inner-Sphere Complexation of Phosphodiester Groups. Langmuir, 2004, 20 (25): 11108-11114
    [82] Cepus V, Goody R S, Scheidig A J, et al. Time-Resolved FTIR Studies of the GTPase Reaction of H-Ras P21 Reveal a Key Role for the β-Phosphate. Biochemistry, 1998, 37 (28): 10263-10271
    [83] Nivens D E, Schmitt J, Sniateki J, et al. Multi-channel ART/FT-IR spectrometer for on-line examination of microbial biofilms. Applied Spectroscopy, 1993, 47: 668-671
    [84] Sockalingum G D, Bouhedja W, Pina P, et al. ATR-FTIR spectroscopic investigation of imipenem-susceptible and-resistant pseudomonas aeruginosa isogenic strains. Biochem Biophys Res Commun, 1997, 232 (1): 240
    [85] Jiang W, Saxena A, Song B, et al. Elucidation of Functional Groups on Gram-Positive and Gram-Negative Bacterial Surfaces Using Infrared Spectroscopy. Langmuir, 2004, 20 (26): 11433- 11442
    [86] Schmitt J, Flemming H C. FTIR Spectroscopy in Microbial and Materice Analysis int. Biodeterioration Biodegration, 1998, 41 (1): 1-11
    [87] Marc M, Joellen W, Jiashu T. Breast cancer detection by fourier transform infraredspectrometry. Vibrational Spectroscopy, 1996, 10: 341-346
    [88] Rigas B, Wong P T T. Human colon adenocarcinoma cell lines display infrared spectroscopy features of malignant colon tissues. Cancer Research, 1992, 52 (1): 84-88
    [89] Marsh H, Rodriguez-Reinoso F. Sciences of carbon materials, Alicante: Publicaciones Universidad de Alicante, 2000, 1-97
    [90] 霍红, 人体乳腺肿瘤的傅立叶变换红外光谱研究: [中国科学院硕士学位论文]. 大连: 中科院大连化学物理研究所, 1999, 4-8
    [91] Inagaki M. New carbons–control of structure and functions. Oxford. Elsevier Science Ltd, 2000, 15-17
    [92] Toyoda M, Katoh M, Tanigawa M, et al. Acceleration of graphitization in carbon fibers through exfoliation. Carbon, 2004, 65: 2567-2572
    [93] Fischbach D B. The kinetics and mechanism of graphitization. In: Walker Jr PL, Editor. Chemistry and physics of carbon, 1971, 7: 1-105
    [94] Marsh H, Warburton AP. Catalytic graphitization of carbon using titanium and zirconium, Carbon, 1976, 14: 47-52
    [95] Yudasaka M, Tasaka K, Kikuchi R, et al. Influence of chemical bond of carbon on Ni catalyzed graphitization. J Appl Phys, 1997, 81: 7623-7629
    [96] Jackson P W, Marjoram J R. Recrystallization of nickel-coated carbon fibres. Nature, 1968, 218: 83-84
    [97] Lamber R, Jaeger N, Schulz-Ekloff G. Electron microscopy study of the interaction of Ni, Pd and Pt with carbon. Surf Sci., 1988, 197: 402-414
    [98] Tzeng S S. Catalytic graphitization of electroless Ni-P coated PAN-based carbon fibers. Carbon, 2006, 44: 1986-1993
    [99] 何为, 唐先忠, 迟兰州. 碳纤维表面化学镀镍工艺研究. 电镀与涂饰, 2003, 22 (1): 8-11
    [100] 姜晓霞, 沈伟. 化学镀理论及实践. 北京: 国防工业出版社, 2000, 70-74
    [101] 韩变华, 罗天骄, 姚广春等. 碳纤维镀镍. 有色矿冶, 2006, 22 (2): 37-40
    [102] Chen Q W, Qian Y T, Chen Z Y, et al. Hydrothermal deposition of magnetite (FeO) thin films. Materials Letters, 1995, 24: 85-87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700