用户名: 密码: 验证码:
兰陵溪小流域不同植被恢复模式生态功能效益的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究在总结前人研究的基础之上,以库区退耕还林重点示范区域——兰陵溪小流域为研究区域,选择7种植被恢复模式的径流小区(针阔混交林、马尾松林、栎林、板栗林、柑橘林、茶林、竹林),并以工程区坡耕地径流小区作为对照,对兰陵溪小流域不同植被恢复模式生态功能效益进行了详细的研究,主要研究成果如下:
     1.草本植物是各模式土壤种子库物种成和个体成的主要部分,种子库密度大小顺序是:坡耕地(12042.67粒/m~2)>柑橘林(10160粒/m~2)>针阔混交林(5605.33粒/m~2)>竹林(3653.33粒/m~2)>板栗林(3642.67粒/m~2)>茶林(3626.67粒/m~2)>栎林(2005.33粒/m~2)>马尾松林(1045.33粒/m~2)。不同的植被恢复模式种子库相比较,物种丰富度的顺序为板栗林(23)=针阔混交林(23)>栎林(21)>马尾松林(20)>柑橘林(16)=竹林(16)>茶林(14)>坡耕地(11),而多样性指数顺序为:针阔混交林(3.19)>栎林(3.17)>马尾松林(3.12)>竹林(3.05)>板栗林(3.02)>柑橘林(2.72)>茶林(2.42)>坡耕地(2.21)。8个林分两两间种子库成成分相似性变化范围为37.50~86.67,但从总体上看并未表现出较大的异质性。其中坡耕地(参照)与其他植被恢复模式的相似性最小,板栗林、栎林、柑橘林的相似性最大。大多数植被恢复模式中,种子库萌发种子成与地面原有物种有一些相似。
     各植被恢复模式中,针阔混交林物种多样性恢复最快,而柑橘林、茶林等群落结构相对较为简单。受人为干扰较少的针阔混交林、马尾松林、栎林、板栗林等植被恢复模式土壤种子库中虽然种子数量不多,但其物种丰富度、物种多样性等指标均优于其它退耕还林模式的土壤种子库,并且在草本植物占优势的前提下,前者种子库中乔、灌、草生活型的物种比例均优于其它模式土壤种子库。从三峡库区退耕还林各植被恢复模式的生物多样性维持和保护来讲,马尾松、针阔混交林是该地区较好的生态林恢复方式,竹林和柑橘是较好的经济林模式。
     2.各植被恢复模式林地,随着土层深度的增加,土壤容重也随之增大,土壤容重均值大小顺序为:板栗林(1.865g·cm~(-3))>马尾松林(1.815g·cm~(-3))>栎林(1.795g·cm~(-3))>柑橘(1.725g·cm~(-3))>针阔混交林(1.53g·cm~(-3))>茶林(1.51g·cm~(-3))>坡耕地(1.46g·cm~(-3))>竹林(1.375g·cm~(-3))。土壤孔隙度均表现为A层高于B层,总孔隙度均值大小顺序为:竹林(44.885%)>茶林(44.44%)>针阔混交林(44.345%)>坡耕地(44.3%)>栎林(33.7%)>柑橘林(32.25%)>马尾松林(30.4%)>板栗林(29.7%)。
     各种植被恢复模式有效蓄水量大小依次为竹林(510.34t·hm~(-2))>针阔混交林(307.30t·hm~(-2))>板栗林(305.80t·hm~(-2))>坡耕地(274.95t·hm~(-2))>马尾松林(261.80t·hm~(-2))>柑橘林(255.75t·hm~(-2))>茶林(242.00t·hm~(-2))>栎林(178.00t·hm~(-2))。土壤初渗速率在0.03mm·min~(-1)~4.43 mm·min~(-1)之间,稳透速率为0.03 mm·min~(-1)~2.96 mm·min~(-1)。A层栎林和马尾松林的稳透速率最高,坡耕地最低;B层竹林最高,马尾松林和针阔混交林最低。
     3.3种有枯落物层的林分枯落物单位面积储量依次为:栎林(16.88t·hm~(-2))>马尾松林(13.24t·hm~(-2))>针阔混交林(6.88t·hm~(-2))。枯落物单位质量最大持水量依次为针阔混交林(2863.0g·kg~(-1))>栎林(2696.9g·kg~(-1))>马尾松林(1796.0g·kg~(-1))。枯落物的持水量(失水量)随浸泡时间(失水时间)的增加而增加,初期增长幅度较大,后期逐渐平稳。持水量(失水量)与浸泡时间(失水时间)呈对数关系。持水率(失水率)与浸泡时间(失水时间)呈幂函数关系。
     4.各林地的水土保持效果比还林前的坡耕地有了明显的改善,地表径流量呈明显的减少趋势,其中针阔混交林模式地表径流量最小,为220.7 m~3/hm~2,比坡耕地减少了86.42%,其次为板栗林、栎林、柑橘林、马尾松林、竹林和茶林,平均较坡耕地减少82.04%。径流系数变化范围在0.0195~0.0253之间,平均为0.0215,与坡耕地径流系数相比减少了83.72%。退耕还林后林地土壤的侵蚀模数均呈现明显减小趋势,减小范围为1608.87~1876.66t/km~2·a~(-1),以竹林模式土壤侵蚀模数最小,为85.8t/km~2·a~(-1),较坡耕地减少95.6%;其次为针阔混交林,较坡耕地减少93.1%;茶林模式土壤侵蚀量最大,352.63 t/km~2·a~(-1)。
     研究区内土壤大多呈酸性,土壤有机质、N、P、K、交换性Ca~(2+)、Mg~(2+)量等营养元素含量与坡耕地对照样地相比较均有较大的提高,其中有机质含量栎林的提高最多,达到189%;水解氮马尾松林提高最多,为192%;全氮是板栗林提高最多,达到354%;速效磷则是马尾松林提高最多,为129%;全磷则是柑橘林提高最多,达到810%;速效钾板栗林提高最多,为176%;交换性阳离子变化幅度并不很大。
     5.利用主成分分析法,选取有机质、水解氮、全氮、速效磷、全磷、速效钾、交换性钙量、交换性镁量、pH值、容重、非毛管孔隙度共11个因子作为主成分分析法的评价指标,对不同植被恢复模式土壤质量进行评价。7种模式的土壤质量指数分别为:马尾松林(1.6170)>板栗林(1.0239)>栎林(0.7764)>针阔混交林(0.2902)>柑橘林(-0.3007)>竹林(-0.7028)>茶林(-1.1719)>坡耕地(-1.5320)。不同的退耕还林模式相比,人为干扰较少的马尾松林等模式土壤质量明显优于茶林、竹林等受人类耕作影响较大的模式。在库区应该大力推荐的生态林植被恢复模式为马尾松林和板栗林,经济林为柑橘和竹林。
Based on former studies,we chose seven typical vegetation restoration models (chestnut plantation,oak forest,citrus plantation,masson pine forest,tea plantation, bamboo forest and mixed conifer and broadleaved forest) in Lanlingxi small watershed in the Three Gorges Reservoir Area as study subjects,choosing slope land as reference.A detailed study on ecological benefit assessment of conversion of farmland to forest in different vegetation restoration models in the study area was made and principal results were as follows:
     1.The herb plants were the main components of the numbers of species and individuals in soil seed bank.The size order of density in soil seed bank was:slope land(12042.67grain/m~2),citrus plantation(10160 grain/m~2),mixed conifer and broadleaved forest(5605.33 grain/m~2),bamboo forest(3653.33 grain/m~2),chestnut plantation(3642.67 grain/m~2),tea garden(3626.67 grain/m~2),oak stand(2005.33 grain/m~2),masson pine forest(1045.33 grain/m~2).Species richness of soil seed banks in different vegetation restoration models was caculated,and the result was as follows: chestnut plantation(23),mixed conifer and broadleaved forest(23),oak stand(21), masson pine forest(20),citrus plantation(16),bamboo forest(16),tea garden(14),slope land(11).The diversity of soil seed banks was in order of mixed conifer and broadleaved forest(3.19),oak stand(3.17),masson pine forest(3.12),bamboo forest(3.05),chestnut plantation(3.02),citrus plantation(2.72),tea garden(2.42),slope land(2.21).The similarity range of composing species between every two patterns was 37.50~86.67,but overall didn't exhibit a large heterogeneity.Among them,the similarity between slope land and other patterns was at minimum,but the similarity among chestnut plantation, oak stand and citrus plantation was larger than others.In these different vegetation restoration models,there were some similar species between soil seed banks and ground vegetation.
     In different vegetation restoration models,diversity of mixed conifer and broadleaved forest was restored rapidly,but the community structures of citrus plantation,tea garden were relatively simple.Although seed amount in models under less human disturbance such as mixed conifer and broadleaved forest,masson pine forest and oak stand was not large,their species richness and species diversity were larger than the others.On the premise of herb plants accounting for 88.1%,proportional composition of life forms of species in the former patterns was better than others.According to the maintenance and conservation of biodiversity of different vegetation restoration models in returning farmland to forest project in the Three Gorges Reservoir Area,masson pine forest and mixed conifer and broadleaved forest were better ecological forest models,and bamboo forest and citrus plantation were better economic forest models.
     2.In different vegetation restoration models,soil bulk density tended to increase with soil depth increasing.The order of soil bulk density was:chestnut plantation (1.865g·cm~(-3)),masson pine forest(1.815g·cm~(-3)),oak stand(1.795g·cm~(-3)),citrus plantation(1.725g·cm~(-3)),mixed conifer and broadleaved forest(1.53g·cm~(-3)),tea garden (1.51g·cm~(-3)),slope land(1.46g·cm~(-3)),bamboo forest(1.375g·cm~(-3)).The soil porosity sequence in size order was:bamboo forest(44.885%),tea garden(44.44%)>mixed conifer and broadleaved forest(44.345%),slope land(44.3%),oak stand(33.7%),citrus plantation(32.25%),masson pine forest(30.4%),chestnut plantation(29.7%).
     The order of efficient water storage capacity was:bamboo forest(510.34t·hm~(-2)), mixed conifer and broadleaved forest(307.30t·hm~(-2)),chestnut plantation(305.80t·hm~(-2)), slope land(274.95t·hm~(-2)),masson pine forest(261.80t·hm~(-2)),citrus plantation (255.75t·hm~(-2)),tea garden(242.00t·hm~(-2)),oak stand(178.00t·hm~(-2)).The stable percolation rate was 0.03mm·min~(-1) to 4.43mm·min~(-1),the stable percolation rate was between 0.03 mm.min~(-1) and 2.96 mm·min~(-1).The stable percolation rate of oak stand and masson pine forest was the highest in A layer;and slope land was the lowest as 0.96 mm·min~(-1).In B layer,the stable percolation rate of bamboo forest was the highest (1.02mm·min~(-1));masson pine forest and mixed forest of conifers and broad-leaved trees were the lowest(0.03 mm·min~(-1)).
     3.The amount of litter of the three forest types(oak stand,masson pine forest,mixed forest of conifers and broad-leaved trees) in per unit area were 16.88 t·hm~(-2),13.24 t·hm~(-2) and 6.88 t·hm~(-2),respectivly.The maximum water-holding capacity of the three patterns in per unit weight was:mixed forest of conifers and broad-leaved trees(2863.g·kg~(-1)),oak stand(2696.9g·kg~(-1)),masson pine forest(1796.0g·kg~(-1)).The relationship between the water capacity(water-losing capacity) of litter production and immersion time (water-losing time) was a logarithm function.The relationship between the water absorption speed(water losing speed) of litter production and immersion time (water-losing time) was a power function.
     4.Compared with slope land,soil and water conservation effects of different vegetation restoration models had been improved obviously,and the surface runoff trended to decrease.Among them,the surface runoff in the pattern of mixed conifer and broadleaved forest was the minimum(220.7 m~3/hm~2),which was decreased by 86.42% compared with slope land.The range of runoff coefficients of different models was 0.0195 to 0.0253,average being 0.0215,which was decreased by 83.72%compared with slope land.The soil erosion modulus in different vegetation restoration models trended to decrease and the range was 1608.87 t/km~2·a~(-1) to 1876.66t/km~2·a~(-1).The soil erosion modulus in bamboo forest was the minimum(85.8 t/km~2·a~(-1)),which was decreased by 95.6%compared with slope land.Next came mixed conifer and broadleaved forest, which decreased by 93.1%.The maximum was tea garden(352.63 t/km~2·a~(-1)).
     The research showed that most of the soil in study areas was a bit acidic,and nutrient content of soil organic matter,N,P,K,exchangeable Ca~(2+) and exchangeable Mg~(2+) trended to increase compared with slope land.The massion pine forest had the biggest increase in hydrolytic nitrogen(192%) and available phosphorus(129%).The chestnut plantation had the biggest increase in total nitrogen(354%),available potassium (176%) and soil organic matter(189%).The citrus plantation had the biggest increase in total phosphorus(810%).Variation range of exchangeable cation in different patterns was limited.
     5.Eleven factors(soil organic matter,hydrolytic nitrogen,total nitrogen,available phosphorus,total phosphorus,available potassium,exchangeable Ca~(2+),exchangeable Mg~(2+),pH,bulk density and non capillary porosity) were chosen as the evaluation index of the principal component analysis to evaluate the soil quality in different vegetation restoration models.Compared with the soil of slope land,the soil quality in seven models were better than slope land.The soil quality index of different models was respectively: masson pine forest(1.6170),chestnut plantation(1.0239),oak stand(0.7764),mixed conifer and broadleaved forest(0.2902),citrus plantation(-0.3007),bamboo forest (-0.7028),tea garden(-1.1719),slope land(-1.5320).The soil quality of models under less human disturbance such as chestnut plantation and masson pine forest was obviously better than those influenced by cultivation activities.So recommended ecological forest models in research area were masson pine forest and chestnut plantation,recommended economic forest models were citrus plantation and bamboo forest.
引文
1.安永锋.我国主要生态环境问题及其对策探讨.辐射防护通讯,2003,23(2):21-26
    2.鲍士旦.土壤农化分析.北京:中国农业出版社,2000,153-156
    3.曹敏,唐勇,张建侯,盛才余.西双版纳热带森林的土壤种子库储量及优势成分.云南植物研究,1997,19(2):177-183
    4.车克钧,傅辉恩,贺红元.祁连山水源涵养林效益的研究.林业科学,1992,28(6):544-548
    5.车克钧,傅辉恩,贺红元.祁连山水源涵养林综合效能的计量研究.林业科学,1992,28(4):290-296
    6.陈俊华,慕长龙.长江中上游防护林综合效益评价及时的模型数据库及软件系数.四川林业科技,1998,19(4):37-39
    7.程根伟,钟详浩.防护林生态效益定量指标体系研究.水土保持学报,1992,6(3):79-86,90
    8.邓宏海.森林生态效能经济评价的理论和方法.林业科学,1985,3(1):61-67
    9.董全.生态功益:自然生态过程对人类的贡献.应用生态学,1999,10(2):233-240
    10.董铁狮,赵雨森,党宏忠.黑龙江省东部地区水曲柳天然林水源涵养功能.东北林业大学学报,2004,32(5):1-3
    11.高军.乌拉特中起退耕还林工程试点阶段性社会经济效益评价.内蒙古林业调查设计,2003,26(1):20-22
    12.宫伟光.防护林系区域性生态效益的评价.东北林业大学学报,1997,28(1):1-7
    13.古丽努尔·沙布尔哈孜.塔里木河中下游退耕还林还草综合生态效益评价研究.水土保持学报,2004,18(5):80-83
    14.国家林业重点工程社会经济效益快速调查课题.国家林业重点工程社会经济效益评价报告.林业经济,2003,(8):34-38
    15.郝仕龙,安韶山,李壁成,赵小敏.黄土丘陵区退耕还林(草)土壤环境效应.水土保持研究,2005,12(3):29-30
    16.侯军岐,张社梅.黄土高原地区退耕还林还草效果评价.水土保持通报,2002,22(6):29-31
    17.侯宁.从青海大通县看退耕还林效益.林业经济,2003,5(3):29-30
    18.侯元兆.中国森林资源核算研究.北京:中国林业出版社,1995
    19.皇甫祯富,成格尔,国润才等.西北地区退耕还林工程综合效益分析——以内蒙古和格尔县为例.内蒙古林业科技,2003(增刊):53-55
    20.黄明斌,李玉山,康绍忠.坡地单元降雨产流分析及平均入渗速率计算.土壤侵 蚀与水土保持学报,1999,5(1):63-68
    21.蒋定生.黄土高原坡耕地水土保持措施效益评价试验研究(Ⅲ)坡耕地水土保持措施综合效益评价.水土保持学报,1990,(4):8-13
    22.蒋延玲,周广胜.中国主要森林生态系统公益的评估.植物生态学报,1999,23(5):426-432
    23.康立新.沿海防护林体系功能及其效益.北京:北京科学技术文献出版社,1994.
    24.孔繁文,戴广翠.森林环境资源核算及补偿政策研究.林业经济,1994,(4):34-47
    25.郎奎建.森林生态效益价值核算的市场逼近理论和技术研究.林业科学,2003,39(6):8214
    26.郎璞玫,王相国.在AutoCAD平台建立具有GIS特征的森林图形系统.北京林业大学学报,2001,23(3):90-93
    27.雷孝章,黄礼隆.长江上游防护林体系保土效益研究.北京林业大学学报,1997,19(2):25-29
    28.黎锁平.水土保持综合治理效益的灰色系统评价方法.水土保持科技情报,1995,(4):23-26
    29.李德生,张水龙,鲁法典.森材植被对库区水质净化作用问题的研究.水利水电技术,2003,34(9):53-55
    30.李金昌.要重视森林资源价值的计量和应用,林业资源管理,1999,(5):43-46
    31.李世东.中外退耕还林之比较及其启示.世界林业研究,2002,15(2):23-27
    32.李卫忠等.生态公益林建设效益评价指标体系初探.内蒙古大学学报,2001,22(2):12-15
    33.李卫忠等.生态公益林效益评价方法的研究与进展.西北林学院学报,2001,16(4):88-92
    34.李智广,李锐.小流域治理综合效益评价方法刍议.水土保持通报,1998,18(5):19-23
    35.林杰斌,陈湘,刘明德.SPSS11统计分析实务设计宝典.北京:中国铁道出版社,2002,230-244
    36.刘创民,李昌哲,史敏华,梁海英.多元统计分析在森林土壤肥力类型分辨中的应用.生态学报,1996,16(4):444-447
    37.刘寿波.黑龙江南部次生林区森林土壤肥力的研究.土壤通报.1964,(2):13-16
    38.马克平,刘玉明.生物多样性的测度方法,Ⅰ.α多样性的测度方法(下),生物多样性,1994,2(4):162-168
    39.马克平,生物多样性的测度方法,Ⅰ.α多样性的测度方法(上),生物多样性,1994,2(3):162-168
    40.梅再美,熊康宁.喀斯特地区水土流失动态特征及生态效益评价——以贵州清镇退耕还林示范区为例.中国岩溶,2003,22(2):136-143
    41.彭少麟,方炜,曹洪麟.人为干扰对热带人工桉林生态系统的影响.生态学报,1995,115(增刊):31-37
    42.任烨,张丰.中沟流域水土保持综合治理经济分析与效益评价.中国水土保持,1995(10):24-26
    43.沈慧,姜凤岐.水土保持林效益评价研究综述,应用生态学报,1999,10(4):492-496.
    44.孙波,张桃林,赵其国.我国东南丘陵山区土壤肥力的综合评价,土壤学报,1995,32(4):362-369
    45.孙立达,孙保平.小流域综合治理的动态监测与效益评价研究进展.水土保持学报,1993,7(4):84-96
    46.唐勇,曹敏,盛才余.西双版纳热带森土壤种子库的季节变化.广西植物,2000,20(4):371-376
    47.王鹏程,肖文发,张守攻,潘磊,史玉虎,黄志霖.三峡库区主要森林植被类型土壤渗透性能研究.水土保持学报,2007,21(6):51-56
    48.王淑元,林升寿.中国森林生态系统定位研究进展.见周晓峰主编.中国森林生态系统定位研究.哈尔滨:东北林业大学出版社,1994:1-30
    49.王珠娜,王晓光,史玉虎,潘磊,余雪标,唐章国.三峡库区秭归县退耕还林工程水土保持效益研究.中国水土保持科学,2007,5(1):68-72.
    50.韦权辉.象州县2002年度退耕还林工程建设及效益分析.中南林业调查规划,2003,22(2):28-30
    51.邢小芳,杨德福.退耕还林对农民收入和结构的影响.林业财务与会计,2002,3(11):76
    52.徐孝庆,唐小平.世界森林环境的持续发展战略.世界林业研究,1995,8(2):1-7
    53.薛达元,包浩生.长白山自然保护区生物多样性旅游价值评估研究.自然资源学报,1999,14(2):140-145
    54.杨海龙,朱金兆,毕利东.三峡库区森林流域生态系统土壤渗透性能的研究.水土保持学报,2003,17(3):63-69
    55.杨建波,王利.退耕还林生态效益评价方法.中国土地科学,2003,17(5):54-58
    56.杨旭东.退耕还林工程效益评价案例分析——以湖北省秭归县中坝村为案例.绿色中国,2005,(04):27-29
    57.杨玉盛,李振问,刘爱琴,张春能,邸道生.人工阔叶林取代格氏栲天然林后土壤肥力变化的研究.东北林业大学学报,1993,21(5):14-21
    58.杨再强,王立新,谢以萍,李金菊.攀西干旱干热河谷退耕还林立地类型的划分及经营模式探讨.特产研究,2003,4(1):54-56
    59.余新晓,鲁绍伟,靳芳.中国森林生态系统服务功能价值评估.生态学报,2005,25(8):2096-2102
    60.余新晓,张建军,朱金兆.黄土地区防护林生态系统土壤水分条件的分析与评价.林业科学,1996,32(4):289-296
    61.张建国,杨建洲.福建森林综合效益计量与评价.生态经济,1994(5):1-6
    62.张建国,杨建洲.福建森林综合效益计量与评价.生态经济,1994(6):10-16
    63.张庆费,宋永昌,由文辉.浙江天童植物群落次生演替与土壤肥力的关系.生态学报,1999,2(2):174-179
    64.张祥明,孙义祥.淮北砂姜黑土区不同种养结合模式综合效益评价,农业环境保护,2000,19(6):352-355
    65.郑华,欧阳志云,王效科,彭廷柏,李振新,赵同谦,李锡泉.红壤丘陵区不同森林恢复类型土壤种子库特征研究.自然资源学报,2004,19(3):361-368
    66.中山哲之助[日].森林公益效能的计量及评价.陈大夫译.生态经济,1987(1)
    67.周红,缪杰,安和平.贵州省退耕还林工程试点阶段社会经济效益初步评价.林业经济,2003(3):23-24
    68.朱红春,张友顺.陕北黄土高原坡耕地生态退耕经济效益评价与分析.水土保持研究,2003,10(2):4-43
    69.Alvarez-Buylla E R.Seed bank versus seed rain in the regeneration of a tropical pioneer tree.Oecologia,1990,84:314-325.
    70.Bigwood D W,Inouye D W.Spatial pattern analysis of seed banks:animal proved method and optimized sampling.Ecology,1988,69(2):497-507.
    71.Cavers P B.Seed banks:Memory in soil.Canada Journal of Science,1995,75:11-13.
    72.Cavers P B.Seed demography.Canada Journal of Botany,1983,61:3578-3590.
    73.Chang E R,Jefferies R L,Carleton T J.Relationship between vegetation and soil seed banks in an arctic coastal marsh.Journal of Ecology,2001,89:367-384.
    74.Charles B H,helley A E,Sarah N.Soil seed banks in young,closed-canopy forests of the Olympic Peninsula,Washington:potential contributions to understory reinitiation.Canada Journal of Botany,1999,77:922-935.
    75.Coffin D P,Lauenroth W K.Spatial and temporal variation in the seed bank of semiaried grassland.Am.J.Bot.,1989,76:53-58.
    76.Costanza R,et al.The value of the world's eco-system services and natural capital.Nature,1997,387:253-260
    77.Dobson A P,Bradshaw A D,Baker A J M.Hopes for the Future:Restoration Ecology and Conservation Biology. Science, 1997, 277:515-522.
    78. Ellert B H, Bettany J R. Calculation of organic matter and nutrients stored in soil under contrasting management regimes. Canada. Soil Society, 1995, 75:529-538.
    79. Fenner, M. Seed: the ecology of regeneration in plant community. 1992. UK: C.A.B.
    80. Fu B J, Liu S L, Chen L D, LuY H, Qiu J. Soil quality regime in relation to land cover and slope position across a highly modified slope landscape. Ecological Research, 2004,19:111-118.
    81. Gross K L. A comparison of methods for estimating seed numbers in the soil Journal of Ecology, 1990,78:1079-1093.
    82. Harper J L, 1977. The seed bank. In: Harper J L. Population Biology of Plants. London: Academic Press, 83-110
    83. IPCC. In: Watson R T, Noble I R, Bolin B, Ravindranath N H, Verardo D J, Dokken D J (eds.). Land Use, Land-use Change and Forestry. Cambridge: Cambridge University Press, 2000. 31.
    84. Kalamees R, Zobel, M. The role of the seed bank in gap regeneration in a calcareous grassland community. Ecology, 2002, 83(4): 1017-1025.
    85. Keeley J E. Population Biology of Plants. London and New York: Academic Press, 1977.33-51
    86. Leck MA, Parker V T, Simpson, R L. Ecology of Soil Seed Banks. London Academic Press, 1989,3-8.
    87. Mary T, Lohengrin A C. Persistent soil seed bank and standing vegetation at a high alpine site in the central Chilean Andes. Oecologia, 1999,119:126-132
    88. Munasing M. Biodiversity protection policy: environmental valuation and distribution issues. Ambio, 1992, 21 (3):227-236
    89. Pearce D. Economic values and the natural world [M]. London: Earchscan, 1993.
    90. Pennck D J, Kessel C V. Clear-cut forest harvest impacts on soil quality indicators in the mixedwood forest of Sacktchewam. Canada Ceodema, 1997(5): 13-32.
    91. Perrings C, Folke C, Maeler K G. The ecology and economics of biodiversity loss: The research agenda. Ambio, 1992, 21(3):201-211
    92. Putuhena W M, Cordery I. Estimation of interruption capacity of the forest floor. J. Hydrol. ,1996, 180: 283-299
    93. Roberts H A. Seed banks in soils [A].In: Coaker TH, ed. Advances in Applied Biology[C].London: Academic Press, 1981:1-55.
    94. Simpson R L.1989.Ecology of Soil Seed Bank [M]. San Diego: Academic Press, 149-209.
    95. Thompson K, Band S R, Hodgson J G. Seed size and shape predict persistence in the soil. Func. Ecol, 1993, 7:236-241.
    96. Thompson K, Grime J P. Seasonal variation in the seed banks of herbaceous species in ten contrasting habitats. Journal of Ecology, 1979, 67:893-921.
    97. Tobias D, Mendelsohn R. Valuing ecotourism in a tropical rainforest reserve. Ambio, 1991,20:91-93
    98. Tobias D, Mendelsohn R. Valuing ecotourism in a tropical rainforest reserve. Ambio, 1991,20:91-93
    99. Vander Valkl. The role of seed banks in the vegetation dynamics of prairie glacialm ashers. Ecology, 1978, 59:322-325.
    100. Wang X J, Gong Z T. Assessment and analysis of soil quality changes after eleven years of reclamation in subtropical China. Geogema, 1998, 81: 339-355.
    101. Wilde S A. Forest soils-their properties and relation to silviculture. New York: Ronald Press, 1958,8-11
    102. Yakovchenko V I, Sikora L J, Kaufman D D.A biologically based indicator of soil quality. Biology and Fertility of Soils, 1996, 21:245-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700