用户名: 密码: 验证码:
前列腺癌冷冻免疫反应与原位肿瘤疫苗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景:冷冻消融技术逐渐发展成为局限性前列腺癌的一线治疗手段,冷冻免疫反应研究将冷冻消融局部治疗与全身免疫治疗有机结合起来,为肿瘤综合治疗提供理论和实验依据。目的:评价冷冻消融治疗前列腺癌移植瘤后对机体抗肿瘤免疫状态的影响,探讨冷冻消融联合GM-CSF制作体内原位肿瘤疫苗的可行性与有效性。材料与方法:复制RM-1细胞激素非依赖性前列腺癌肺转移模型,将动物随机分为对照组、手术切除组、冷冻治疗组、GM-CSF治疗组、冷冻+GM-CSF治疗组。利用Endocare公司氩氦冷冻系统直径2mm冷冻针行皮下移植瘤冷冻消融治疗。HE染色观察肿瘤引流淋巴结和肺转移发生率;免疫组织化学、流式细胞术评价肿瘤局部、引流淋巴结、脾脏DC的数量及活化比例;ELISPOT法检测引流淋巴结、脾脏CD4+T细胞肿瘤特异性IFN-γ分泌情况;LDH法检测引流淋巴结、脾脏CD8+CTL细胞肿瘤杀伤活性;ELISA法检测外周血IFN-γ、IL-12、IL-4、IL-10水平,以IFN-γ/IL-4计算Th1/Th2。结果:(1)冷冻消融术前、术后7天、术后14天、术后21天外周血Th1/Th2比值分别为6.24±0.58、9.30±0.73、13.71±0.57、10.31±0.30(P<0.05);(2)冷冻消融术前、术后7天、术后14天、术后21天,肿瘤引流淋巴结CD4+T细胞由前列腺癌细胞刺激后IFN-γ分泌阳性细胞数每10~6T细胞分别为23.2±1.48、243.4±46.21、95.8±6.83、25.2±1.64(P<0.05),而肾癌细胞刺激后IFN-γ分泌无变化。脾脏CD4+T细胞由肾癌细胞、前列腺癌细胞刺激后IFN-γ分泌均没有明显变化;(3)冷冻消融术前、术后7天、术后14天、术后21天,肿瘤引流淋巴结CD8+CTL对前列腺癌细胞杀伤活性分别为(14.8±0.84)%、(62.6±2.30)%、(49.8±3.70)%、(15.6±1.14)%,对肾癌细胞杀伤活性无明显变化,而脾脏CD8+CTL对前列腺癌细胞、肾癌细胞杀伤活性均没有明显变化;(4)冷冻消融治疗术前、术后7天、术后14天、术后21天肿瘤局部DC数量分别为每高倍视野下(1.6±0.55)个、(8.6±1.14)个、(4.4±1.14)个、(1.8±0.84)个(P<0.05),引流淋巴结DC比例分别为(3.84±0.50)%、(8.56±0.50)%、(5.32±0.39)%、(3.66±0.51)%(P<0.05),DC活化比例分别为(11.2±0.84)%、(25.8±0.84)%、(18.6±1.52)%、(11.6±1.14)% (P<0.05),而脾脏DC数量及活化比例无明显变化;(5)相关性分析表明引流淋巴结CD4+T细胞、CD8+CTL细胞的肿瘤特异性免疫反应与DC比例及活化直接相关(P<0.05);(6)冷冻+GM-CSF治疗术前、术后7天、术后14天、术后21天肿瘤局部DC数量分别为每高倍视野下(1.6±0.55)个、(18.4±1.14)、(15.8±0.84)、(8.2±1.30)个(P<0.05),引流淋巴结DC数量比例分别为(3.88±0.31)%、(13.38±1.18)%、(11.08±0.84)%、(9.14±0.34)%(P<0.05),DC活化比例分别为(11.2±0.84)%、(31.4±1.82)%、(24.8±0.84)%、(19.0±1.58)%(P<0.05);而脾脏DC数量比例分别为(4.80±0.20)%、(13.2±1.30)%、(9.16±0.47)%、(6.94±0.32)%(P<0.05),DC活化比例分别为(12.8±1.3)%、(32.8±2.39)%、(26.4±1.14)%、(21.0±1.58)%(P<0.05);(7)冷冻+GM-CSF治疗术前、术后7天、术后14天、术后21天,肿瘤引流淋巴结CD4+T细胞由前列腺癌细胞刺激后IFN-γ分泌阳性细胞数每10~6T细胞分别为23.2±1.48、360.4±4.28、239.8±4.66、109.8±6.94(P<0.05),而肾癌细胞刺激后IFN-γ分泌无变化。脾脏CD4+T细胞由前列腺癌细胞刺激后IFN-γ分泌阳性细胞数每10~6T细胞分别为23.6±1.14、129.8±3.49、91.0±2.92、46.6±3.29(P<0.05),而肾癌细胞刺激后IFN-γ分泌无变化;(8)冷冻+GM-CSF治疗术前、术后7天、术后14天、术后21天,肿瘤引流淋巴结CTL对前列腺癌细胞杀伤活性分别为(14.8±0.84)%、(75.6±1.14)%、(64.6±1.52)%、(37.6±2.07)%(P<0.05),对肾癌细胞杀伤活性治疗前后无明显变化。脾脏CTL对前列腺癌细胞杀伤活性分别为(12.8±0.84)%、(47.4±1.14)%、(40.4±1.82)%、(32.2±1.48)%(P<0.05),对肾癌细胞杀伤活性治疗前后无明显变化;(9)冷冻+GM-CSF治疗术前、术后7天、术后14天、术后21天外周血Th1/Th2比值分别为6.24±0.58、13.16±0.38、14.91±0.63、15.13±0.50(P<0.05);(10)冷冻消融组、冷冻+GM-CSF治疗组术后21天淋巴结转移率分别为80%、40%,肺转移率分别为80%、20%,中位生存期分别为(55.0±1.38)天、(72.4±1.84)天。结论:冷冻消融治疗可升高Th1/Th2比值,诱导机体抗肿瘤免疫向Th1优势转化,但随时间延长有逐渐降低趋势。冷冻消融可诱导局部引流淋巴结T细胞的特异性抗肿瘤免疫反应,但不能诱导脾脏T细胞的特异性抗肿瘤免疫反应。冷冻消融诱导的肿瘤特异性免疫反应与DC数量及活化比例有关。冷冻联合GM-CSF治疗可增加肿瘤组织局部DC浸润、增加局部淋巴结、脾脏DC数量及活化比例,明显增强局部引流淋巴结以及脾脏T细胞的特异性抗肿瘤免疫反应,提高Th1/Th2比值,有效降低肺转移率,延长生存期,达到原位DC肿瘤疫苗的疗效。
Backgroud:Cryoablation is becoming the primary theray for local prostate cancer,while the exploration of cryoimmunology response will provide the combination oflocal therapy with immunnol therapy,and would provide rationale and experimentalfoundation for synthetic therapy of advanced cancer.Objective:To make the modelsof hormone refractory prostate cancer (HRPC) with lung metastasis.To assess theanti-tumor immune response after cryoablation,and to assess the possibility andavailability of making in-situ tumor vaccine by combined cryoablation and GM-CSFtreatment.Material and Methods:Mouse models of HRPC were made bysubcutaneouly injection of RM-1 prostate cancer cells,and the tumor-bearing micewere divided into different groups:control group,surgery group,GM-CSF group,cryoablation group,cryoablation+GM-CSF group.Cryoablation was applied bycryosurgery needle with 1.7mm diameter from Endocare Argon-Helium cryosurgerysystem.The rate of lung or lymponode metastasis were assessed by pathology,serumcytokine (IFN-γ、IL-12、IL-4、IL-10) levels were analyzed by enzyme-linkedimmunosorbent assay (ELISA),and the Th1/Th2 ratio was estimated from theIFN-γ/IL-4 ratio.The number and maturation changes of dendritic cells in tumor,draining lymph nodes (DLN),spleens were assessed by immunohistochemistry andflow cytometry.Lymphocytes of DLN and spleen were isolated,the numbers oftumor-specific IFN-γ~+CD4+cells after treatment were measured by enzyme linkedimmunospot assay (ELISPOT),and tumor-specific cytolytic activity of cytotoxic Tlymphocyte (CTL) was measured by LDH assay.Result:(1) The Th1/Th2 ratioswere 6.24±0.58,9.30±0.73,13.71±0.57,10.31±0.30 on the day before cryoablation,seventh days,14th day,21st day after cryoablation;(2) The number of IFN-γ~+cellsevery 10~6 CD4+ T cells stimulated by prostate cancer cells in DLN was 23.2±1.48,243.4±46.21,95.8±6.83,25.2±1.64 on the day before cryoablation,seventh day after,14th day after,21 st day after cryoablation respectively,there were no changes inIFN-γ~+cells after stimulated by renal cancer cells,and there were no changes in IFN-γ~+cells in spleen after stimulated by renal cancer cells or prostate cancer cells;(3)Cytolytic activities of CTL in DLN against prostate cancer cells were (14.8±0.84)%, (62.6±2.30)%,(49.8±3.70)%,(15.6±1.14)% on the day before cryoablation,sevenday after,14th day after,21 st day after cryoablation respectively,There were nochanges in cytolytic activity of CTL in DLN against renal cancer cells,and Therewere no changes in cytolytic activity of CTL in spleen against renal cancer cells orprostate cancer cells;(4) On the day before cryoablation,seventh day after,14th dayafter,21st day after cryoablation,the DC numbers per high power field in tumor were1.6±0.55,8.6±1.14,4.4±1.14,1.8±0.84 respectively,and the ratios of DC in D LNwere (3.84±0.50)%,(8.56±0.50)%,(5.32±0.39)%,(3.66±0.51)% respectively,thematuration ratios of DC in DLN were (11.2±0.84)%,(25.8±0.84)%,(18.6±1.52)%,(11.6±1.14)% respectively,but there were no changes in the number or maturationratios of DC in spleen;(5) Relation analysis proved that there was direct correlationbetween the tumor-specific immune response and DC ratio or DC maturation in DLN;
     (6) On the day before,seventh day after,14th day after,21 st day aftercryoablation+GM-CSF treatment,the DC numbers per high power field in tumorwere 1.6±0.55,18.4±1.14,15.8±0.84,8.2±1.30 respectively,and The ratios of DC inDLN were (3.88±0.31)%,(13.38±1.18)%,(11.08±0.84)%,(9.14±0.34)% respectively,the maturation ratio of DC in DLN were (11.2±0.84)%,(31.4±1.82)%,(24.8±0.84)%,(19.0±1.58)% respectively,the ratios of DC in spleen were (4.80±0.20)%,(13.2±1.30)%,(9.16±0.47)%,(6.94±0.32)% respectively,the maturation ratio of DCin spleen were (12.8±1.3)%,(32.8±2.39)%,(26.4±1.14)%,(21.0±1.58)% respectively;
     (7) On the day before,seventh day after,14th day after,21st day aftercryoablation+GM-CSF treatment,the numbers of IFN-γ~+cells every 10~6 CD4+ T cellsstimulated by prostate cancer cells in DLN were 23.2±1.48,360.4±4.28,239.8±4.66,109.8±6.94 respectively,the numbers of IFN-γ~+cells every 10~6 CD4+ T cellsstimulated by prostate cancer cells in spleen were 23.6±1.14,129.8±3.49,91.0±2.92,46.6±3.29 respectively,there were no changes in IFN-γ~+ cells in DLN or spleen afterstimulated by renal cancer cells;(8) On the day before,seventh day after,14th dayafter,21st day after cryoablation+GM-CSF treatment,cytolytic activities of CTL inDLN against prostate cancer cells were (14.8±0.84)%,(75.6±1.14)%,(64.6±1.52)%,(37.6±2.07)% respectively,cytolytic activities of CTL in spleen against prostatecancer cells were (12.8±0.84)%,(47.4±1.14)%,(40.4±1.82)%,(32.2±1.48)% respectively,there were no changes in cytolytic activity of CTL in DLN or spleenagainst renal cancer cells;(9) The Th1/Th2 ratios were 6.24±0.58,13.16±0.38,14.91±0.63,15.13±0.50 on the day before,seventh days after,14th day after,21st dayafter cryoablation+GM-CSF treatment;(10) On The 21st day after cryoablation orcryoablation+GM-CSF treatment,the rates of DLN metastasis were 80% vs 40%,Therates of lung metastasis were 80% vs 20%,the median survival times were (55.0±1.38)days vs (72.4±1.84) days respectively.Conclusion:Cryoablation could increase theratio of Th1/Th2,inducing the Th1 advantage transformation of anti-tumorimmunology response,although gradually lowered by time.Cryoablation couldinduce tumor-specific immune response in DLN not in spleen,while thetumor-specific immune response was related with the number and activation ratio ofDC.Combined cryoablation with GM-CSF treatment could increase the number ofDC in tumor microenvironment,DLN and spleen,increase the activation of DC inDLN and spleen,then increase The tumor-specific immune response in DLN andspleen,improve the systemic anti-tumor immune response,increase the ratio ofTh1/Th2,decrease the rate of lung metastasis,prolong the median survival times,achieve the therapeutic effect of an in-situ tumor vaccine.
引文
[1]Jemal A,Siegel R,Ward E,et al.Cancer statistics,2006[J].CA Cancer J Clin,2006,56(2):106-130.
    [2]Petrylak DP,Tangen CM,Hussain MH,et al.Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer[J].N Engl J Med,2004,351(15):1513-1520.
    [3]Gonder MJ,Soanes WA,Smith V.Experimental prostate cryosurgery[J].Invest Urol,1964,1:610-619.
    [4]Onik GM,Cohen JK,Reyes GD,et al.Transrectal ultrasound-guided percutaneous radical cryosurgical ablation of the prostate[J].Cancer,1993,72(4):1291-1299.
    [5]Ismail M,Ahmed S,Kastner C,et al.Salvage cryotherapy for recurrent prostate cancer after radiation failure:a prospective case series of The first 100 patients[J].BJU Int,2007,100(4):760-764.
    [6]Cohen JK,Miller R.J,Jr.,Ahmed S,et al.Ten-year biochemical disease control for patients with prostate cancer treated with cryosurgery as primary therapy[J].Urology,2008,71(3):515-518.
    [7]邢文阁,郭志,王海涛,等.42例直肠超声引导经皮氩氦冷冻治疗中晚期前列腺癌.中华放射学杂志[J],2008,42(8):807-811.
    [8]Soanes WA,Ablin RJ,Gonder MJ.Remission of metastatic lesions following cryosurgery in prostatic cancer:immunologic considerations[J].J Urol,1970,104(1):154-159.
    [9]Misao A,Sakata K,Saji S,et al.Late appearance of resistance to tumor rechallenge following cryosurgery,a study in an experimental mammary tumor of the rat[J].Cryobiology,1981,18(4):386-389.
    [10]Shibata T,Yamashita T,Suzuki K,et al.Enhancement of experimental pulmonary metastasis and inhibition of subcutaneously transplanted tumor growth following cryosurgery[J].Anticancer Res,1998,18(6A):4443-4448.
    [11]den Brok MH,Sutmuller RP,Nierkens S,et al.Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity [J]. Br J Cancer, 2006, 95(7):896-905.
    
    [12] Machlenkin A, Goldberger O, Tirosh B, et al. Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity [J]. Clin Cancer Res,2005,11(13):4955-4961.
    
    [13] Ravindranath MH, Wood TF, Soh D, et al. Cryosurgical ablation of liver tumors in colon cancer patients increases the serum total ganglioside level and Then selectively augments antiganglioside IgM [J]. Cryobiology, 2002,45(1):10-21.
    
    [14] Osada S, Imai H, Tomita H, et al. Serum cytokine levels in response to hepatic cryoablation [J]. J Surg Oncol, 2007, 95(6):491-498.
    
    [15] Udagawa M, Kudo-Saito C, Hasegawa G, et al. Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation [J]. Clin Cancer Res, 2006,12(24):7465-7475.
    
    [16] den Brok MH, Sutmuller RP, Nierkens S, et al. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine [J]. Cancer Res, 2006, 66(14):7285-7292.
    
    [17] Redondo P, del Olmo J, Lopez-Diaz de Cerio A, et al. Imiquimod enhances The systemic immunity attained by local cryosurgery destruction of melanoma lesions [J].J Invest Dermatol, 2007, 127(7): 1673-1680.
    
    [18] Bassukas ID, Gamvroulia C, Zioga A, et al. Cryosurgery during topical imiquimod: a successful combination modality for lentigo maligna [J]. Int J Dermatol,2008,47(5):519-521.
    
    [19] Cooper IS, Lee AS. Cryostatic congelation: a system for producing a limited,controlled region of cooling or freezing of biologic tissues [J]. J Nerv Ment Dis, 1961,133:259-263.
    
    [20] Onik G, Cobb C, Cohen J, et al. US characteristics of frozen prostate [J].Radiology, 1988,168(3):629-631.
    
    [21] Muldrew K, Hurtig M, Novak K, et al. Localization of freezing injury in articular cartilage [J]. Cryobiology, 1994, 31(1):31-38.
    
    [22] Cohen JK, Miller RJ, Shuman BA. Urethral warming catheter for use during cryoablation of the prostate [J]. Urology, 1995,45(5):861-864.
    [23] Bales GT, Williams MJ, Sinner M, et al. Short-term outcomes after cryosurgical ablation of the prostate in men with recurrent prostate carcinoma following radiation therapy [J]. Urology, 1995,46(5):676-680.
    
    [24] Pisters LL, von Eschenbach AC, Scott SM, et al. The efficacy and complications of salvage cryotherapy of the prostate [J]. J Urol, 1997,157(3):921-925.
    
    [25] Ghafar MA, Johnson CW, De La Taille A, et al. Salvage cryoTherapy using an argon based system for locally recurrent prostate cancer after radiation therapy: the Columbia experience [J]. J Urol, 2001, 166(4):1333-1338.
    
    [26] Chin JL, Pautler SE, Mouraviev V, et al. Results of salvage cryoablation of the prostate after radiation: identifying predictors of treatment failure and complications [J]. J Urol, 2001,165(6 Pt 1):1937-1941.
    
    [27] Chin JL, Touma N, Pautler SE, et al. Serial histopathology results of salvage cryoablation for prostate cancer after radiation failure [J]. J Urol, 2003, 170(4 Pt 1):1199-1202.
    
    [28]Bahn DK, Lee F, Silverman P, et al. Salvage cryosurgery for recurrent prostate cancer after radiation Therapy: a seven-year follow-up [J]. Clin Prostate Cancer, 2003,2(2):111-114.
    
    .
    [29] Sanderson KM, Penson DF, Cai J, et al. Salvage radical prostatectomy: quality of life outcomes and long-term oncological control of radiorecurrent prostate cancer [J].J Urol, 2006,176(5):2025-2032.
    
    [30]Darras J, Joniau S, Van Poppel H. Salvage radical prostatectomy for radiorecurrent prostate cancer: indications and results [J]. Eur J Surg Oncol, 2006,32(9):964-969.
    
    [31]Bahn DK, Lee F, Badalament R, et al. Targeted cryoablation of The prostate:7-year outcomes in The primary treatment of prostate cancer [J]. Urology, 2002, 60(2 Suppl 1):3-11.
    
    [32] Eggener SE, Scardino PT, Carroll PR, et al. Focal Therapy for localized prostate cancer: a critical appraisal of rationale and modalities [J]. J Urol, 2007,178(6):2260-2267.
    
    [33] Ellis DS, Manny TB, Jr., Rewcastle JC. Focal cryosurgery followed by penile rehabilitation as primary treatment for localized prostate cancer: initial results [J]. Urology, 2007, 70(6 Suppl):9-15.
    
    [34]Onik G Rationale for a "male lumpectomy," a prostate cancer targeted approach using cryoablation: results in 21 patients with at least 2 years of follow-up [J].Cardiovasc Intervent Radiol, 2008, 31(1):98-106.
    
    [35] Thompson TC, Southgate J, Kitchener G, et al. Multistage carcinogenesis induced by ras and myc oncogenes in a reconstituted organ [J]. Cell, 1989,56(6):917-930.
    
    [36]Kawakita M, Rao GS, Ritchey JK, et al. Effect of canarypox virus (ALVAC)-mediated cytokine expression on murine prostate tumor growth [J]. J Natl Cancer Inst, 1997, 89(6):428-436.
    
    [37] Griffith TS, Kawakita M, Tian J, et al. Inhibition of murine prostate tumor growth and activation of immunoregulatory cells with recombinant canarypox viruses [J]. J Natl Cancer Inst, 2001, 93(13):998-1007.
    
    [38] Yantorno C, Soanes WA, Gonder MJ, et al. Studies in cryo-immunology. I. The production of antibodies to urogenital tissue in consequence of freezing treatment [J].Immunology, 1967,12(4):395-410.
    
    [39] Shulman S, Brandt EJ, Yantorno C. Studies in cryo-immunology. II. Tissue and species specificity of the autoantibody response and comparison with iso-immunization [J]. Immunology, 1968, 14(2):149-158.
    
    [40]Tanaka S. Immunological aspects of cryosurgery in general surgery [J].Cryobiology, 1982,19(3):247-262.
    
    [41] Neel HB, Ketcham AS, Hammond WG Experimental evaluation of in situ oncocide for primary tumor therapy: comparison of tumor-specific immunity after complete excision, cryonecrosis and ligation [J]. Laryngoscope, 1973, 83(3):376-387.
    
    [42] Muller LC, Micksche M, Yamagata S, et al. Therapeutic effect of cryosurgery of murine osteosarcoma—influence on disease outcome and immune function [J].Cryobiology, 1985,22(1):77-85.
    
    [43] Hayakawa K, Yamashita T, Suzuki K, et al. Comparative immunological studies in rats following cryosurgery and surgical excision of 3-methylcholanthrene-induced primary autochthonous tumors [J]. Gann, 1982, 73(3):462-469.
    
    [44] Mosmann TR, Cherwinski H, Bond MW, et al. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins [J]. J Immunol, 1986, 136(7):2348-2357.
    
    [45]Macchia D, Parronchi P, Piccinni MP, et al. In vitro infection with HIV enables human CD4+ T cell clones to induce noncognate contact-dependent polyclonal B cell activation [J]. J Immunol, 1991, 146(10):3413-3418.
    
    [46] Glimcher LH, Murphy KM. Lineage commitment in the immune system: the T helper lymphocyte grows up [J]. Genes Dev, 2000,14(14):1693-1711.
    
    [47]Sparano A, Lathers DM, Achille N, et al. Modulation of Th1 and Th2 cytokine profiles and their association with advanced head and neck squamous cell carcinoma [J]. Otolaryngol Head Neck Surg, 2004,131(5):573-576.
    
    [48]Yamamura M, Modlin RL, Ohmen JD, et al. Local expression of antiinflammatory cytokines in cancer [J]. J Clin Invest, 1993, 91(3):1005-1010.
    
    [49]Kharkevitch DD, Seito D, Balch GC, et al. Characterization of autologous tumor-specific T-helper 2 cells in tumor-infiltrating lymphocytes from a patient with metastatic melanoma [J]. Int J Cancer, 1994, 58(3):317-323.
    
    [50] Agarwal A, Rani M, Saha GK, et al. Disregulated expression of The Th2 cytokine gene in patients with intraoral squamous cell carcinoma [J]. Immunol Invest,2003, 32(1-2):17-30.
    
    [51]Lauerova L, Dusek L, Simickova M, et al. Malignant melanoma associates with Th1/Th2 imbalance that coincides with disease progression and immunotherapy response [J]. Neoplasma, 2002,49(3):159-166.
    
    [52] To WC, Seeley BM, Barthel SW, et al. Therapeutic efficacy of Thl and Th2 L-selectin--CD4+ tumor-reactive T cells [J]. Laryngoscope, 2000, 110(10 Pt 1):1648-1654.
    
    [53] Ohe G, Okamoto M, Oshikawa T, et al. Th1-cytokine induction and anti-tumor effect of 55 kDa protein isolated from Aeginetia indica L, a parasitic plant [J]. Cancer Immunol ImmunoTher, 2001, 50(5):251-259.
    
    [54] O'Garra A, Arai N. The molecular basis of T helper 1 and T helper 2 cell differentiation [J]. Trends Cell Biol, 2000,10(12):542-550.
    
    [55] Yamazaki K, Yano T, Kameyama T, et al. Clinical significance of serum TH1/TH2 cytokines in patients with pulmonary adenocarcinoma [J]. Surgery, 2002, 131(1 Suppl):S236-241.
    
    [56] Sabel MS, Nehs MA, Su G, et al. Immunologic response to cryoablation of breast cancer [J]. Breast Cancer Res Treat, 2005, 90(1):97-104.
    
    [57] Roy A, Lahiri S, Lahiri P, et al. Immunologic and survival studies in mice immunised with cryodestroyed ascites fibrosarcoma (AFS) cells [J]. Indian J Exp Biol, 1990,28(11):1026-1030.
    
    [58] Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution [J]. J Exp Med, 1973,137(5):1142-1162.
    
    [59] Vieira PL, de Jong EC, Wierenga EA, et al. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction [J]. J Immunol,2000, 164(9):4507-4512.
    
    [60] Sallusto F, Lanzavecchia A. Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression [J]. Immunol Rev, 2000,177:134-140.
    
    [61] Lu L, Thomson AW. Manipulation of dendritic cells for tolerance induction in transplantation and autoimmune disease [J]. Transplantation, 2002, 73(1 Suppl):S19-22.
    
    [62] Norbury CC, Chambers BJ, Prescott AR, et al. Constitutive macropinocytosis allows TAP-dependent major histocompatibility complex class I presentation of exogenous soluble antigen by bone marrow-derived dendritic cells [J]. Eur J Immunol,1997,27(1):280-288.
    
    [63] Adema GJ, Hartgers F, Verstraten R, et al. A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells [J]. Nature, 1997,387(6634):713-717.
    
    [64] Lopez-Rodriguez C, Zubiaur M, Sancho J, et al. An octamer element functions as a regulatory element in the differentiation-responsive CD11c integrin gene promoter: OCT-2 inducibility during myelomonocytic differentiation [J]. J Immunol,1997,158(12):5833-5840.
    
    [65] Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs [J]. Nature, 1998, 392(6671):86-89.
    [66]Kumi-Diaka J, Butler A. Caspase-3 protease activation during the process of genistein-induced apoptosis in TM4 testicular cells [J]. Biol Cell, 2000,92(2):115-124.
    
    [67] Smyth MJ, Godfrey DI, Trapani JA. A fresh look at tumor immunosurveillance and immunotherapy [J]. Nat Immunol, 2001,2(4):293-299.
    
    [68]Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer [J]. Clin Cancer Res, 2000,6(5):1755-1766.
    
    [69]Lissoni P, Vigore L, Ferranti R, et al. Circulating dendritic cells in early and advanced cancer patients: diminished percent in the metastatic disease [J]. J Biol Regul Homeost Agents, 1999,13(4):216-219.
    
    [70] Huang A, Gilmour JW, Imami N, et al. Increased serum transforming growth factor-betal in human colorectal cancer correlates with reduced circulating dendritic cells and increased colonic Langerhans cell infiltration [J]. Clin Exp Immunol, 2003,134(2):270-278.
    
    [71]Hasebe H, Nagayama H, Sato K, et al. Dysfunctional regulation of the development of monocyte-derived dendritic cells in cancer patients [J]. Biomed PharmacoTher, 2000, 54(6):291-298.
    
    [72]Lissoni P, Malugani F, Bonfanti A, et al. Abnormally enhanced blood concentrations of vascular endothelial growth factor (VEGF) in metastatic cancer patients and their relation to circulating dendritic cells, IL-12 and endothelin-1 [J]. J Biol Regul Homeost Agents, 2001, 15(2): 140-144.
    
    [73]Pirtskhalaishvili G, Shurin GV, Esche C, et al. TNF-alpha protects dendritic cells from prostate cancer-induced apoptosis [J]. Prostate Cancer Prostatic Dis, 2001,4(4):221-227.
    
    [74]Takahashi A, Kono K, Itakura J, et al. Correlation of vascular endothelial growth factor-C expression with tumor-infiltrating dendritic cells in gastric cancer [J].Oncology, 2002, 62(2):121-127.
    
    [75]Ishigami S, Aikou T, Natsugoe S, et al. Prognostic value of HLA-DR expression and dendritic cell infiltration in gastric cancer [J]. Oncology, 1998, 55(1):65-69.
    
    [76]Schwaab T, Weiss JE, Schned AR, et al. Dendritic cell infiltration in colon cancer [J]. J Immunother (1991), 2001,24(2): 130-137.
    [77] Coventry BJ, Lee PL, Gibbs D, et al. Dendritic cell density and activation status in human breast cancer -- CD1a, CMRF-44, CMRF-56 and CD-83 expression [J]. Br J Cancer, 2002, 86(4):546-551.
    
    [78]Inoshima N, Nakanishi Y, Minami T,et al. The influence of dendritic cell infiltration and vascular endoThelial growth factor expression on the prognosis of non-small cell lung cancer [J]. Clin Cancer Res, 2002, 8(11):3480-3486.
    
    [79]Eisenthal A, Polyvkin N, Bramante-Schreiber L, et al. Expression of dendritic cells in ovarian tumors correlates with clinical outcome in patients with ovarian cancer [J]. Hum Pathol, 2001, 32(8):803-807.
    
    [80]Troy A, Davidson P, Atkinson C, et al. Phenotypic characterisation of the dendritic cell infiltrate in prostate cancer [J]. J Urol, 1998,160(1):214-219.
    
    [81]Berlyn KA, Schultes B, Leveugle B, et al. Generation of CD4(+) and CD8(+) T lymphocyte responses by dendritic cells armed with PSA/anti-PSA (antigen/antibody) complexes [J]. Clin Immunol, 2001, 101(3):276-283.
    
    [82]Kono K, Takahashi A, Sugai H, et al. Dendritic cells pulsed with HER-2/neu-derived peptides can induce specific T-cell responses in patients with gastric cancer [J]. Clin Cancer Res, 2002, 8(11):3394-3400.
    
    [83]Holtl L, Rieser C, Papesh C, et al. Cellular and humoral immune responses in patients with metastatic renal cell carcinoma after vaccination with antigen pulsed dendritic cells [J]. J Urol, 1999,161(3):777-782.
    
    [84]Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines [J]. J Exp Med, 1996,183(1):87-97.
    
    [85]Lespagnard L, Mettens P, Verheyden AM, et al. Dendritic cells fused with mastocytoma cells elicit therapeutic antitumor immunity [J]. Int J Cancer, 1998,76(2):250-258.
    
    [86] Gong J, Avigan D, Chen D, et al. Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells [J]. Proc Natl Acad Sci U S A, 2000,97(6):2715-2718.
    
    [87] Gong J, Nikrui N, Chen D, et al. Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity [J]. J Immunol, 2000, 165(3):1705-1711.
    
    [88]Ribas A, Butterfield LH, McBride WH, et al. Characterization of antitumor immunization to a defined melanoma antigen using genetically engineered murine dendritic cells [J]. Cancer Gene Ther, 1999, 6(6):523-536.
    
    [89]Pecher G, Haring A, Kaiser L, et al. Mucin gene (MUC1) transfected dendritic cells as vaccine: results of a phase I/II clinical trial [J]. Cancer Immunol Immunother,2002,51(11-12):669-673.
    
    [90]Boczkowski D, Nair SK, Snyder D, et al. Dendritic cells pulsed with RNA are potent antigen-presenting cells in vitro and in vivo [J]. J Exp Med, 1996,184(2):465-472.
    
    [91] Zhang W, He L, Yuan Z, et al. Enhanced Therapeutic efficacy of tumor RNA-pulsed dendritic cells after genetic modification with lymphotactin [J]. Hum Gene Ther, 1999, 10(7):1151-1161.
    
    [92]Heiser A, Dahm P, Yancey DR, et al. Human dendritic cells transfected with RNA encoding prostate-specific antigen stimulate prostate-specific CTL responses in vitro [J]. J Immunol, 2000,164(10):5508-5514.
    
    [93]Cao X, Zhang W, Wang J, et al. Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulating factor genetically modified dendritic cells [J]. Immunology, 1999, 97(4):616-625.
    
    [94]Mach N, Gillessen S, Wilson SB, et al. Differences in dendritic cells stimulated in vivo by tumors engineered to secrete granulocyte-macrophage colony-stimulating factor or Flt3-ligand [J]. Cancer Res, 2000, 60(12):3239-3246.
    
    [95]Murphy G, Tjoa B, Ragde H, et al. Phase I clinical trial: T-cell therapy for prostate cancer using autologous dendritic cells pulsed with HLA-A0201-specific peptides from prostate-specific membrane antigen [J]. Prostate, 1996, 29(6):371-380.
    
    [96] Small EJ, Fratesi P, Reese DM, et al. ImmunoTherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells [J]. J Clin Oncol, 2000,18(23):3894-3903.
    
    [97]Heiser A, Coleman D, Dannull J, et al. Autologous dendritic cells transfected with prostate-specific antigen RNA stimulate CTL responses against metastatic prostate tumors [J]. J Clin Invest, 2002,109(3):409-417.
    [98]McNeel DG Prostate cancer immunotherapy [J]. Curr Opin Urol, 2007,17(3):175-181.
    
    [99] Sabel MS, Arora A, Su G, et al. Adoptive immunotherapy of breast cancer with lymph node cells primed by cryoablation of the primary tumor [J]. Cryobiology, 2006,53(3):360-366.
    
    [100] Cravens PD, Lipsky PE. Dendritic cells, chemokine receptors and autoimmune inflammatory diseases [J]. Immunol Cell Biol, 2002, 80(5):497-505.
    
    [101] Disis ML, Bernhard H, Shiota FM, et al. Granulocyte-macrophage colony-stimulating factor: an effective adjuvant for protein and peptide-based vaccines [J]. Blood, 1996, 88(1):202-210.
    
    [102] Vieweg J. Immunotherapy for advanced prostate cancer [J]. Rev Urol, 2007, 9 Suppl 1:S29-38.
    
    [103] Ito A, Tanaka K, Kondo K, et al. Tumor regression by combined immunoTherapy and hyperThermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma [J]. Cancer Sci, 2003, 94(3):308-313.
    
    [104] Rini BI, Fong L, Weinberg V, et al. Clinical and immunological characteristics of patients with serologic progression of prostate cancer achieving long-term disease control with granulocyte-macrophage colony-stimulating factor [J]. J Urol, 2006,175(6):2087-2091.
    [1]Onik G.Rationale for a “Male Lumpectomy,” a prostate cancer targeted approach using cryoablation:results in 21 patients with at least 2 years of follow-up[J].Cardiovasc Intervent Radiol,2008,31 ( 1 ):98-106.
    [2]Soanes WA,Ablin R J,Gonder MJ.Remission of metatatic lesions following cryosurgery in prostatic cancer.J Urol 1970,104(1 ):154-159
    [3]Hoffmann NE,Coad JE,Huot CS,et al.Investigation of the mechanism and the effect of cryoimmunology in the copenhagen rat.Cryobiology,2001,42(1 ):59-68.
    [4]Machlenkin A,Goldberger O,Tirosh B,et al.Combined dendritic cell cryotherapy of tumor induces systemic antimetastatic immunity.Clin Cancer Res 2005;11(13):4955-4961
    [5]Udagawa M,Kudo-Saito C,Hasegawa G,et al,Enhancement of immunologic tumor regression by intratumoral administration of dendritic cells in combination with cryoablative tumor pretreatment and Bacillus Calmette-Guerin cell wall skeleton stimulation.Clin Cancer Res 2006,12(24):7465-7475.
    [6]Sabel MS,Nehs MA,Su G,et al.Immunologic response to cryoablation of breast cancer.Breast Cancer Res Treat 2005,90(1):97-104.
    [7]Ravindranath MH,Wood TF,Soh D,et al.Cryosurgical ablation of liver tumors in colon cancer patients increases the serum total ganglioside level and Then selectively augments antiganglioside IgM.Cryobiology 2002,45(1 ):10-21.
    [8]Osada S,Imai H,Tomita H,et al.Serum cytokine levels in response to hepatic cryoablation.J Surg Oncol 2007,95(6):491-498.
    [9]Si T,Guo Z,Hao X.Immunologic response to primary cryoablation for high-risk prostate cancer.Cryobiology,2008,57(1):66-71.
    [10]Aarntzen EH,Figdor CG,Adema GJ et al.Dendritic cell vaccination and immune monitoring. Cancer Immunol ImmunoTher. 2008;57(10):1559-68.
    
    [11] den Brok MH, Sutmuller RP, Nierkens S, et al. Synergy between in situ cryoablation and TLR.9 stimulation results in a highly effective in vivo dendritic cell vaccine [J]. Cancer Res, 2006,66(14): 7285-92.
    
    [12] den Brok MH, Sutmuller RP, Nierkens S, et al. Efficient loading of dendritic cells following cryo and radiofrequency ablation in combination with immune modulation induces anti-tumour immunity. Br J Cancer 2006,95(7):896 - 905
    
    [13] de Gruijl TD, van den Eertwegh AJ, Pinedo HM, et al. Whole-cell cancer vaccination: from autologous to allogeneic tumor- and dendritic cell-based vaccines [J]. Cancer Immunol ImmunoTher, 2008;57(10):1569-1577.
    
    [14] Redondo P, del Olmo J, Lopez-Diaz de Cerio A, et al. Imiquimod enhances The systemic immunity attained by local cryosurgery destruction of melanoma lesions [J].J Invest Dermatol, 2007, 127(2):1673-1680.
    
    [15] Bassukas ID, Gamvroulia C, Zioga A, et al. Cryosurgery during topical imiquimod: a successful combination modality for lentigo maligna. Int J Dermatol.2008;47(5):519-21.
    
    [16] Georgiades CS, Hong K, Bizzell C, et al. Safety and efficacy of CT-guided percutaneous cryoablation for renal cell carcinoma. J Vasc Interv Radiol,2008;19(9):1302-1310.
    
    [17] Ismail M, Ahmed S, Kastner C, et al. Salvage cryoTherapy for recurrent prostate cancer after radiation failure: a prospective case series of The first 100 patients. BJU Int 2007,100(4):760-4.
    
    [18] Liu Y , Bi X, Xu S, et al. Tumor infiltrating dendritic cell subsets of progressive or regressive tumors induce suppressive or protective immune responses. Cancer Res,2005,65(11): 4955-4962.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700