用户名: 密码: 验证码:
Salmonella enterica中心代谢关键酶的赖氨酸可逆乙酰化修饰研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质翻译后修饰是表观遗传学的重要内容,赖氨酸可逆乙酰化修饰由于同组蛋白修饰、热量限制、细胞凋亡、寿命延长和转录沉默等生理过程密切相关逐渐成为人们研究的热点。近年来,有关真核生物的乙酰化调控研究成果日新月异,而原核生物的乙酰化调控研究由于手段的缺乏和基础的薄弱几乎是处于停滞不前的状态。
     本论文利用赖氨酸乙酰化抗体的特异性,结合免疫沉淀和质谱技术的高效分离特性,首次对原核生物Salmonella enterica的乙酰化底物蛋白进行了蛋白组学水平的扫描,揭示乙酰化修饰与各种代谢关系密切;以可发酵碳源葡萄糖和不可发酵碳源柠檬酸为碳源,研究乙酰化修饰与不同代谢途径之间的关系,并且从表型、生化和遗传三个水平深入研究了乙酰化修饰对S. enterica中心代谢的调控机制,首次揭示赖氨酸可逆乙酰化修饰是中心代谢在整体水平上的一种调控方式;同时结合我们合作实验室关于真核生物乙酰化修饰的研究结果,提出赖氨酸可逆乙酰化修饰是一种广泛存在于真核和原核生物中的非常保守的中心代谢的调控机制。
     整个研究分为以下四个部分展开。
     第一部分我们利用免疫沉淀的高灵敏性富集赖氨酸乙酰化肽段,并利用质谱技术的高分辨率,首次对原核生物S. enterica的赖氨酸乙酰化修饰底物蛋白在蛋白组学水平上进行了扫描研究,得到一系列与能量代谢、转录调控、氨基酸和核酸合成等密切相关的乙酰化修饰底物蛋白。本试验结果发现有166个蛋白的190个肽段是乙酰化的,且其中的77个蛋白是与代谢相关的,这大大超出了我们对乙酰化修饰的预期,为原核生物的乙酰化研究开辟了一个新的天地。
     第二部分我们采用Red重组技术成功获得了S. enterica的乙酰基转移酶(Pat)和/或去乙酰化酶(CobB)缺失的突变株,并对它们在葡萄糖和柠檬酸为唯一碳源的基本培养基上的生长表型进行了研究,结果发现S. enterica及其衍生菌株在不同碳源基本培养基中展示出截然不同的生长表型,确认了乙酰化修饰与S. enterica能量代谢之间的密切关系,并提出乙酰基转移酶(Pat)和去乙酰化酶(CobB)可能是目前唯一已知的能够对S. enterica中心代谢关键酶起可逆乙酰化修饰调控的乙酰化修饰酶。
     第三部分我们克隆并表达了乙酰基转移酶(Pat)和去乙酰化酶(CobB)以及中心代谢关键酶,如3-磷酸甘油醛脱氢酶(GapA)、异柠檬酸脱氢酶激酶/磷酸化酶(AceK)和异柠檬酸裂解酶(AceA),并在体外重构Pat/CobB介导的乙酰化/去乙酰化修饰体系,研究乙酰化修饰对这些酶活性的调控方式;同时构建GapA、AceK和AceA乙酰化修饰位点的点突变蛋白和敲除突变株,体外测定酶活力变化,研究这三个酶的具体乙酰化修饰位点,并进行表型互补试验。结果发现GapA的脱氢酶活力与乙酰化修饰正相关,而AceK的激酶活力和AceA裂解酶活力与乙酰化修饰负相关,且GapA的第108、115、321和331位赖氨酸,AceK的第72、83和553位赖氨酸,AceA的第13和308位赖氨酸与乙酰化修饰密切相关。
     第四部分我们以核糖体RNA 16S rRNA为内参基因,利用定量荧光实时PCR研究乙酰基转移酶(Pat)和去乙酰化酶(CobB)的转录与不同代谢途径乙酰化修饰之间的关系,结果显示:在葡萄糖为碳源的情况下,pat和cobB的转录水平要高于柠檬酸为碳源;不管是葡萄糖还是以柠檬酸为碳源,对数期pat和cobB的转录水平均要高于它们在稳定期和迟滞期的转录水平;提出存在一个乙酰化潜能(pat mRNA/cobB mRNA)的概念,即pat和cobB的转录水平决定了不同时期的乙酰化修饰水平。通过qRT-PCR试验,在转录水平验证了乙酰化修饰与不同碳源代谢之间的相互关系。
     综上所述,本论文综合乙酰化修饰在生理、生化和遗传三个方面的证据,验证了乙酰化修饰是一种广泛存在于原核生物S. enterica中的调控方式;提出S.enterica不同代谢通路转换的分子机制是通过乙酰基转移酶(Pat)和去乙酰化酶(CobB)的共同作用,对中心代谢关键酶类如GapA, AceA和AceK等进行可逆的乙酰化修饰,从整体水平上调控中心代谢;结合我们合作伙伴在真核生物中的研究结果,我们认为代谢关键酶类赖氨酸残基的可逆乙酰化修饰不管是在原核生物还是在真核生物中,在进化上都是一种非常保守的调控机制。
     以上结果为原核生物的乙酰化修饰研究开辟了一个新的领域。
Protein post-translation modification is an important content of epigenetics. The pivotal importance of lysine-acetylation and its regulatory enzymes to the several fundamental cellular processes in mammalian cells, including histone modification, calorie restriction, cell apoptosis, life span extension, transcription silencing and so on, continues to be revealed at a remarkable pace. Recently, the study of lysine-acetylation in eukaryote changes with each passing day, and while the extent and function of this modification in prokaryotic remain largely unexplored because of the absence of research means and weak basis, thereby presenting a hurdle to further functional study of this modification in prokaryotic systems.
     Here we reported the first global scanning of lysine-acetylation in the prokaryote S. enterica by efficient affinity enrichment of lysine acetylated peptide with homemade lysine-acetylation antibody, combining with the high resolving power of immunoprecipitation and mass spectrum, and subsequently do the further study of these acetylation substrate enzymes of S. enterica central metabolism and energy metabolism from the physiological, biochemical, and genetic levels. Integrating with our collaborator's eukaryote results, we propose that reversible lysine acetylation of metabolic enzymes is the mechanism of global regulation of the central metabolism circuits and represents an evolutionarily conserved universal mechanism in metabolic regulation in both eukaryote and prokaryotes.
     Our study includes four parts.
     In the first part, we firstly applied the high sensitivity of immunoprecipitation to enrich the lysine acetylated peptides and did the proteomics screening of lysine-acetylation substrate proteins in S. enterica, whereafter used the high resolution of HPLC/mass spectrometer to identify acetylated peptides. The screening identified a series of acetylated substrate proteins correlated with energy metabolism, transcription modulation, amino acid and nucleic acid biosynthesis and so on. We discover that 190 modification sites in 166 proteins from S. enterica are acetylated, of which 77 proteins are correlated with metabolism. All these findings totally go beyond our expectation and open up a bran-new world for prokaryote lysine-acetyaltion modulation.
     In order to check the physiology of the lysine-acetylation on fermentation or non-fermentation carbon sources, in the second part, we constructed the null strains of S. enterica protein acetyltransferase (Pat) and the deacetylase (CobB) by using PCR mediated Red recombination technology and then cultured them on the glucose or citrate minimal medium. We find out S. enterica and its derivates exhibit different phenotypes on different carbon source minimal media and confirm the closer relation between revisable acetylation modification and energy metabolism. Moreover, we propose that so far the Pat and CobB may be the only known enzymes responsible for the revisable acetylation modification of the key metabolism enzymes.
     In the third part, we cloned and expressed the Pat, CobB and other proteins concerned with central energy metabolism, such as glyceraldehydes-3-phosphate dehydrogenase (GapA), isocitrate dehydrogenase kinase/phosphatase (AceK) and isocitrate lyase (AceA) in E. coli and S. enterica, then reconstructed the acetylation/deacetylation modification system in vitro by Pat or/and CobB to check whether these enzymes' activity regulated by lysine-acetylation. Furthermore, we constructed the GapA, AceK and AceA's site-directed mutant protein and null mutant strains and assayed their activities in vitro to study the specific modification sites. The results indicate that the GapA's dehydrogenation activity is directly proportioned with its acetylation level, and while the AceK's kinase activity and AceA's lyase activity are negative related with acetylation level. Moreover, the108,115,321 and 331 lysines of GapA, the 72,83 and 553 lysines of AceK, and the 13 and 308 lysines of AceA are closely correlated with acetylation modification.
     In the fourth part, we used the quantity Real-time PCR, choosing the 16S rRNA as internal transcriptional controls, to check the transcription of Pat and CobB in different metabolism pathways. The results reveal that S. enterica in glucose medium has higher pat and cobB transcription levels than that in citrate medium under either mid log phase or stationary phas; Furthermore, for cells grew in either citrate or glucose, the transcription levels of pat and cobB in log phase were uniformly higher than that in stationary phase. Therefore, we put forward that the change of the ratio of pat mRNA/cobB mRNA, designed acetylation potential, between cells in the mid log phase versus in the stationary phase. Through qRT-PCR study, we validate the relation between acetylation modification are coordinated with the change of carbon sources.
     In summary, the findings described in this thesis provide direct biochemical, physiological, and genetic data supporting the hypothesis that reversible lysine acetylation modification plays is a key and extensive role of global regulation of central metabolic circuits. Taking the advantage of a single pair of acetylase and deacetylase targeting metabolic enzymes in S. enterica, we demonstrate that the molecular mechanism achieving this regulation is through coupled transcription variation of de/acetylase (cobB/pat) genes and reversible lysine acetylation of metabolic enzymes in response to the change of carbon sources. Consistent with our collaborator's study in mammalian cells that showed a general role of acetylation in metabolism regulation, we propose that reversible lysine acetylation of metabolic enzymes represents an evolutionarily conserved universal mechanism in metabolic regulation in both eukaryote and prokaryotes.
     All these results open up a new field of acetyaltion modification in prokaryote.
引文
[1]Rodenhiser D, M.M. Epigenetics and human disease:translating basic biology into clinical applications[J]. Canadian Medical Association Journal 2006,174 (3):341-48.
    [2]薛京伦,汪旭,吴超群,姚纪花,陈金中.表观遗传学—原理、技术与实践[M].上海:上海科学技术出版公司,2006.
    [3]Waddington C.H. Canalization of Development and the Inheritance of Acquired Characters[J]. Nature 1942,150(3811):563-65
    [4]Holiday R, J.E. P. DNA modification mechanisms and gene activity during development[J]. Science 1975,187(4173):226-32.
    [5]Holiday R. DNA methylation and epigenetic defects in carcinogenesis[J]. Mutation Res 1987,181:215-17.
    [6]Peterson C.L, Laniel M-A. Histones and histone modifications[J]. Curr Biol 1999, 14(14):546-51.
    [7]Jenuwein T, C.D. A. Translating the histone code[J]. Science 2001,293:1074-80.
    [8]Allfrey V.G., Faulkner R.M., A.E. M. Aeetylation and methylation of histonesa their possible role in the regulation of RNA synthesis[J]. Proc Natl Aead Sei 1964, 51(786-793).
    [9]Suganuma T, Gutierrez J.L, Li B, Florens L, Swanson SK, Washburn MP, et al. ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding[J]. Nat Struct Mol Biol 2008,15(4):364-72.
    [10]Marks P.A., Miller T., V.M. R. Histone deacetylases[J]. Curr Opin Pharmacol 2003,3(4):344-51.
    [11]Thiagalingam S., Cheng K.H., Lee H.J., Mineva N., Thiagalingam A., Ponte J.F. Histone deacetylases:Unique players in shaping the epigenetic histone code[J]. Epigenetics in Cancer Prevention:Early Detection and Risk Assessment 2003, 983:84-100.
    [12]沈珝琲.染色质与表观遗传调控[M].北京:高等教育出版社,2006.1.
    [13]Strahl B.D., C.D. A. The language of covalent histone modlfieations[J]. Nature 2000,403:41-45.
    [14]Anckar J, Sistonen L.. SUMO:getting it on[J]. Biochem Soc T 2007,35:1409-13.
    [15]Kingston RE, GJ. N. ATP-dependent remodeling and acetylation as regulators of chromatin fluidity[J]. Genes Dev 1999,13(18):2339-52.
    [16]La D, Fuente R, Viveiros M.M, Wigglesworth K, JJ. E. ATRX, a member of the SNF2 family of helicase/ATPases, is required for chromosome alignment and meiotic spindle organization in metaphase Ⅱ stage mouse oocytes[J]. Dev Biol 2004 272(1):1-14.
    [17]Ferreira R, Eberharter A, Bonaldi T, Chioda M, Imhof A, PB B.. Site-specific acetylation of ISWI by GCN5[J]. BMC Mol Biol 2007,8:73.
    [18]Carre C, Ciurciu A, Komonyi O, Jacquier C, Fagegaltier D, Pidoux J, et al. The Drosophila NURF remodelling and the ATAC histone acetylase complexes functionally interact and are required for global chromosome organization[J]. EMBO Rep 2008,9(2):187-92.
    [19]Kouzarides T. Histone acetylases and deacetylases in cell proliferation [J]. Curr Opin Genet Dev 1999,9(1):40-48.
    [20]Brownell J.E, Allis C.D. An activity gel assay detects a single, catalytically active histone acetyltransferase subunit in Tetrahymena macronuclei[J]. PNAS 1995,92 (14):6364-68.
    [21]Brownell J, Zhou J, Ramalli T, Kobayashi R. Tetrahymena Histone Acetyltransferase A:A Homolog to Yeast Gcn5p Linking Histone Acetylation to Gene Activation[J]. Cell 1996,84:843-51.
    [22]Roth S.Y, Denu J.M, Allis C.D. Histone acetyltransferase[J]. Annu Rev Biochem 2001,70:81-120.
    [23]Taunton J, Hassig C.A, Schreiber S.L. A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p[J]. Science 1996,272:408-11.
    [24]Landry J S.A, Tafrov S.T, Heller R.C, Stebbins J, Pillus L, Sternglanz R. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases[J]. PNAS 2000 May 2000,97(11):5807-11.
    [25]Imai S., Armstrong C.M, Kaeberlein M., L. G. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J]. Nature 2000, 403(6771):795-800.
    [26]Guarente L. Diverse and dynamic functions of the Sir silencing complex[J]. Nat Genet 1999,23:281-85.
    [27]Imai S, Johnson F.B, Marciniak R.A, McVey M, Park P.U, Guarente L. Sir2:An NAD-dependent histone deacetylase that connects chromatin silencing, metabolism, and aging[J]. Cold Spring Harb Sym 2000,65:297-302.
    [28]J. M. Ivy AJKaJBH. Cloning and characterization of four SIR genes of Saccharomyces cerevisiae[J]. Mol Cell Biol 1986,6(2):668-702.
    [29]Denu. J.M. The Sir2 family of protein deacetylases[J]. Curr Opin Chem Biol 2005,9(5):431-40.
    [30]StrahlBolsinger S, Hecht A, Luo K.H, Grunstein M. SIR2 and SIR4 interactions differ in core and extended telomeric heterochromatin in yeast[J]. Gene Dev 1997, 11(1):83-93.
    [31]Frye R.A. Characterization of five human cDNAs with homology to the yeast SIR2 gene:Sir2-like proteins (sirtuins) metabolize NAD and may have protein ADP-ribosyltransferase activity[J]. Biochem Bioph Res Co 1999,260(1):273-79.
    [32]Frye R.A. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins[J]. Biochem Bioph Res Co 2000,273(2):793-98.
    [33]de Nigris F, Cerutti J, Morelli C, Califano D, Chiariotti L, Viglietto G, et al. Isolation of a SIR-like gene, SIR-T8, that is overexpressed in thyroid carcinoma cell lines and tissues[J]. Brit J Cancer 2002,86(6):917-23.
    [34]樊祥山,张丽华,黄勤.Sirtuins及其在肿瘤发生发展过程中的作用[J].临床与实验病理学杂志2008,24(2):229-31.
    [35]Zhao K.H, Chai X.M, Clements A, Marmorstein R. Structure and autoregulation of the yeast Hst2 homolog of Sir2[J]. Nat Struct Biol 2003,10(10):864-71.
    [36]白亮,庞卫军,杨公社.Sirtl:一种新的脂肪细胞和肌细胞调控因子[J].遗传2006,28(11):1462-66.
    [37]Fulco M, Schiltz R.L, Iezzi S, King M.T, Zhao P, Kashiwaya Y, et al. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state[J]. Mol Cell 2003,12(1):51-62.
    [38]Blander G, Olejnik J, Olejnik E.K, Mcdonagh T, Haigis M, Yaffe M.B, et al. SIRT1 shows no substrate specificity in vitro[J]. J Biol Chem 2005,280(11):9780-85.
    [39]Luo J.Y, Nikolaev A.Y, Imai S, Chen D.L, Su F, Shiloh A, et al. Negative control of p53 by Sir2 alpha promotes cell survival under stress[J]. Cell 2001,107(2):137-48.
    [40]Yeung F, Hoberg J.E, Ramsey C.S, Keller M.D, Jones D.R, Frye R.A, et al. Modulation of NF-kappa B-dependent transcription and cell survival by the SIRT1 deacetylase[J]. Embo J 2004,23(12):2369-80.
    [41]Brunet A, Sweeney L.B, Sturgill J.F, Chua K.F, Greer P.L, Lin Y.X, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase[J]. Science 2004,303(5666):2011-15.
    [42]Takata T, Ishikawa F. Human Sir2-related protein SIRT1 associates with the bHLH repressors HES1 and HEY2 and is involved in HES1-and HEY2-mediated transcriptional repression[J]. Biochem Bioph Res Co 2003,301(1):250-57.
    [43]Cheng H.L, Mostoslavsky R, Saito S, Manis J.P, Gu Y.S, Patel P, et al. Developmental defects and p53 hyperacetylation in Sir2 homolog (SIRT1)-deficient mice[J]. PNAS 2003,100(19):10794-99.
    [44]McBurney M.W, Yang X.F, Jardine K, Bieman M, Th'ng J, Lemieux M. The absence of SIR2 alpha protein has no effect on global gene silencing in mouse embryonic stem cells[J]. Mol Cancer Res 2003, 1(5):402-09.
    [45]Rodgers J.T, Lerin C, Haas W, Gygi S.P, Spiegelman BM, Puigserver P. Nutrient control of glucose homeostasis through a complex of PGC-1 alpha and SIRT1[J]. Nature 2005,434(7029):113-18.
    [46]Michishita E, Park J.Y, Burneskis J.M, Barrett J.C, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins[J]. Mol Biol Cell 2005,16(10):4623-35.
    [47]Min J.R, Landry J, Sternglanz R, Xu R.M. Crystal structure of a SIR2 homolog-NAD complex[J]. Cell 2001,105(2):269-79.
    [48]Min J, J.Landry, R.Sternglanz, al e. Crystal structure of a SIR2 homolog NAD complex[J]. Cell 2001,105(2):269-79.
    [49]Avalos J.L, Celic I, Muhammad S, Cosgrove M.S, Boeke J.D, Wolberger C. Structure of a Sir2 enzyme bound to an acetylated p53 peptide[J]. Mol Cell 2002, 10(3):523-35.
    [50]Marmorstein R. Structure and chemistry of the Sir2 family of NAD(+)-dependent histone/protein deactylases[J]. Biochem Soc T 2004,32:904-09.
    [51]Zhao K.H, Chai X.M, Marmorstein R. Structure of a Sir2 substrate, Alba, reveals a mechanism for deacetylation-induced enhancement of DNA binding[J]. J Biol Chem 2003,278(28):26071-77.
    [52]Zhao K.H, Harshaw R, Chai X.M, Marmorstein R. Structural basis for nicotinamide cleavage and ADP-ribose transfer by NAD+-dependent Sir2 histone/protein deacetylases[J]. P Natl Acad Sci USA 2004,101(23):8563-68.
    [53]Khan AN, Lewis PN. Unstructured conformations are a substrate requirement for the Sir2 family of NAD-dependent protein deacetylases[J]. J Biol Chem 2005, 280(43):36073-78.
    [54]Denu J.M. The Sir2 family of protein deacetylases[J]. Curr Opin Chem Biol 2005, 9(5):431-40.
    [55]Tanny J.C, Dowd G.J, Huang J, Hilz H, Moazed D. An enzymatic activity in the yeast Sir2 protein that is essential for gene silencing[J]. Cell 1999,99(7):735-45.
    [56]Landry J, Sutton A, Tafrov S.T, Heller R.C, Stebbins J, Pillus L, et al. The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases[J]. PNAS 2000,97(11):5807-11.
    [57]Smith J.S, Brachmann C.B, Celic I, Kenna M.A, Muhammad S, Starai V.J, et al. A phylogenetically conserved NAD(+)-dependent protein deacetylase activity in the Sir2 protein family[J]. PNAS 2000,97(12):6658-63.
    [58]Imai S, Armstrong C.M, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase[J]. Nature 2000, 403(6771):795-800.
    [59]Tanner K.G, Landry J, Sternglanz R, Denu J.M. Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose[J]. PNAS 2000,97(26):14178-82.
    [60]Tanny J.C, Moazed D. Coupling of histone deacetylation to NAD breakdown by the yeast silencing protein Sir2:Evidence for acetyl transfer from substrate to an NAD breakdown product[J]. PNAS 2001,98(2):415-20.
    [61]Jackson M.D, Schmidt M.T, Oppenheimer N.J, Denu J.M. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases[J]. J Biol Chem 2003,278(51):50985-98.
    [62]Sauve A.A, Celic I, Avalos J, Deng H.T, Boeke J.D, Schramm V.L. Chemistry of gene silencing:The mechanism of NAD(+)-dependent deacetylation reactions[J]. Biochemistry-Us 2001,40(51):15456-63.
    [63]Margie T. Borra FJON, Michael D. Jackson, Brett Marshall, Eric Verdin, Kathy R. Foltz, and Denu J.M. Conserved Enzymatic Production and Biological Effect of O-Acetyl-ADP-ribose by Silent Information Regulator 2-like NAD+-dependent Deacetylases[J]. J Biol Chem,2002,277(12632-12641).
    [64]Denu J.M. Vitamin B-3 and sirtuin function[J]. Trends Biochem Sci 2005, 30(9):479-83.
    [65]Rafty L.A, Schmidt M.T, Perraud A.L, Scharenberg A.M, Denu J.M. Analysis of O-acetyl-ADP-ribose as a target for Nudix ADP-ribose hydrolases[J]. J Biol Chem 2002,277(49):47114-22.
    [66]Kaeberlein M, McVey M, Guarente L. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms[J]. Gene Dev 1999,13(19):2570-80.
    [67]Lustig A.J. Mechanism of silencing in saccharomyces cerevisiae[J]. Curr Opin Genet Dev 1998,8:233-39.
    [68]Imal A ACM, Kaeberiein M, Guraente L. Transcriptional silencing and longevity protein Sir2 is a NAD-dependent histone deacetylase[J]. Nature 2000,403:795-800.
    [69]Wang C.G, Chen L.H, Hou X.H, Li Z.Y, Kabra N, Ma Y.H, et al. Interactions between E2F1 and SirT1 regulate apoptotic response to DNA damage[J]. Nat Cell Biol 2006,8(9):1025-U109.
    [70]Fagerstrom-Billai F, Durand-Dubief M, Ekwall K, Wright APH. Individual Subunits of the Ssn6-Tup11/12 corepressor are selectively required for repression of different target genes[J]. Mol Cell Biol 2007,27(3):1069-82.
    [71]Minoda A, Saitoh S, Takahashi K, Toda T. BAF53/Arp4 Homolog Alp5 in Fission Yeast Is Required for Histone H4 Acetylation, Kinetochore-Spindle Attachment, and Gene Silencing at Centromere[J]. Mol Biol Cell 2005,16(1):316-27.
    [72]R.M.Anderson, Bitterman K.J, Wood J.G, et al. Manipulation of a nuclear NAD+ salvage pathway delays aging without altering steady state NAD+ levels[J]. J Biol Chem 2002,277(21):18881-90.
    [73]Vaqueroet A, Scher M, Lee D, et al. Human SirTl interacts with histone H1 and promotes formation of facultative heterochromatin[J]. Mol Cell 2004,16(1):93-105.
    [74]V.Dror, Winston F. The Swi/Snf chromatin remodeling complex is required for ribosomal DNA and telomeric silencing in saccharomyces cerevisiae[J]. Mol Cell Biol,2004,24(18):8227-35.
    [75]F.Cubizolles, F M, S.Perrod, et al. A homotrimer heterotrimer switch in Sir2 structure differentiates rDNA and telomeric silencing[J]. Mol Cell 2006, 21(6):825-36.
    [76]Tanny J C DGJ, Moazed D, et al. An enzymatic activity in the yeast sir2 protein that is essential for gene silencing[J]. Cell 1999,99:735-45.
    [77]Aparicio O.M, Billington B.L, Gottschling D.E. Modifiers of Position Effect Are Shared between Telomeric and Silent Mating-Type Loci in Saccharomyces-Cerevisiae[J]. Cell 1991,66(6):1279-87.
    [78]Machin F, Paschos K, Jarmuz A, Torres-Rosell J, Pade C, Aragon L. Condensin regulates rDNA silencing by modulating nucleolar Sir2p[J]. Curr Biol 2004, 14(2):125-30.
    [79]Ramachandran L, Burhans D.T, Laun P, Wang J.X, Liang P, Weinberger M, et al. Evidence for ORC-dependent repression of budding yeast genes induced by starvation and other stresses[J]. Fems Yeast Res 2006,6(5):763-76.
    [80]Moretti P, Freeman K, Coodly L, Shore D. Evidence That a Complex of Sir Proteins Interacts with the Silencer and Telomere Binding-Protein Rapl. Gene Dev 1994,8(19):2257-69.
    [81]Crampton A, Chang F, Pappas D.L, Frisch R.L, Weinreich M. An ARS element inhibits DNA replication through a SIR2-Dependent mechanism[J]. Mol Cell 2008, 30(2):156-66.
    [82]Cohen H.Y, Miller C, Bitterman K.J, Wall N.R, Hekking B, Kessler B, et al. Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase[J]. Science 2004,305(5682):390-92.
    [83]Anon. DNA repair of UV damage in yeast:effect of SIR2 deletion[J]. Biochem Cell Biol 2005,83(4):572-72.
    [84]Li Y, Xu W, McBurney M.W, Longo V.D. SirTl inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons[J]. Cell Metab 2008, 8(1):38-48.
    [85]Lin S.J, Defossez P.A, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae[J]. Science 2000, 289(5487):2126-28.
    [86]Avalos J.L, Bever K.M, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide:Altering the NAD+ cosubstrate specificity of a Sir2 enzyme[J]. Mol Cell 2005,17(6):855-68.
    [87]Bitterman K.J, Anderson R.M, Cohen H.Y, Latorre-Esteves M, Sinclair D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1[J]. J Biol Chem 2002,277(47):45099-107.
    [88]Sauve A.A, Schramm V.L. Sir2 regulation by nicotinamide results from switching between base exchange and deacetylation chemistry[J]. Biochemistry-Us 2003,42(31):9249-56.
    [89]Avalos J.L, Boeke J.D, Wolberger C. Structural basis for the mechanism and regulation of Sir2 enzymes [J]. Mol Cell 2004,13(5):639-48.
    [90]Sauve A.A, Moir R.D, Schramm V.L, Willis I.M. Chemical activation of Sir2-dependent silencing by relief of nicotinamide inhibition[J]. Mol Cell 2005, 17(4):595-601.
    [91]Schmidt M.T, Smith B.C, Jackson M.D, Denu J.M. Coenzyme specificity of Sir2 protein deacetylases-Implications for physiological regulation[J]. J Biol Chem 2004, 279(38):40122-29.
    [92]Revollo J.R, Grimm A.A, Imai S. The NAD+ biosynthesis pathway mediated by nicotinamide phosphoribosyltransferase regulates Sir2 activity in mammalian cells[J]. J Biol Chem 2004,279(49):50754-63.
    [93]Tsang A.W, Escalante-Semerena J.C. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2[J]. J Biol Chem 1998,273(48):31788-94.
    [94]Trzebiatowski J.R, Escalante-Semerena J.C. Purification and Characterization of CobT, the Nicotinatemononucleotide:5,6-Dimethylbenzimidazole Phospho- ribosyltransferase Enzyme from Salmonella typhimurium LT2[J]. J Biol Chem.1997, 272:17662.
    [95]Tsang A.W, Escalante-Semerena J.C. CobB, a New Member of the SIR2 Family of Eucaryotic Regulatory Proteins, Is Required to Compensate for the Lack of Nicotinate Mononucleotide:5,6-Dimethylbenzimidazole Phosphoribosyltransferase Activity in cobT Mutants during Cobalamin Biosynthesis in Salmonella typhimurium LT2[J]. J Biol Chem.1998,273(48):31788.
    [96]Starai V.J, Celic I, Cole R.N, Boeke J.D, Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science 2002, 298(5602):2390-92.
    [97]Starai V.J, Escalante-Semerena J.C. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in S. enterica[J]. J Mol Biol 2004, 340(5):1005-12.
    [98]Starai V.J, Takahashi H, Boeke J.D, Escalante-Semerena J.C. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae[J]. Genetics 2003,163(2):545-55.
    [99]Starai V.J, Celic I, Cole R.N, Boeke J.D, Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science 2002, 298(5602):2390-2.
    [100]Textor S, Wendisch V.F, DeGraaf A, Muller U, Linder M.I, Linder D, et al. Propionate oxidation in Escherichia coli:evidence for operation of a methylcitrate cycle in bacteria[J]. Archives of Microbiology 1997,168(5):428-36.
    [101]Sergio P, Starai V.J, Escalante-Semerena J.C. Propionyl Coenzyme A Is a Common Intermediate in the 1,2-Propanediol and Propionate Catabolic Pathways Needed for Expression of the prpBCDE Operon during Growth of Salmonella enterica on 1,2-Propanediol[J]. J Bacteriol 2003,185(9):2802-10.
    [102]Garrity J, Gardner J.G, Hawse W, Wolberger C, Escalante-Semerena J.C. N-Lysine propionylation controls the activity of propionyl-CoA synthetase[J]. J Biol Chem 2007,282(41):30239-45.
    [103]Bell S.D, Botting C.H, Wardleworth B.N, Jackson S.P, White M.F. The interaction of Alba, a conserved archaeal, chromatin protein, with Sir2 and its regulation by acetylation[J]. Science 2002,296(5565):148-51.
    [104]Marsh V.L, Peak-Chew S.Y, Bell S.D. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba[J]. J Biol Chem 2005, 280(22):21122-28.
    [105]Gardner J.G, Grundy F.J, Henkin T.A, Escalante-Semerena J.C. Control of acetyl-coenzyme A synthetase (AcsA) activity by acetylation/deacetylation without NAD(+) involvement in Bacillus subtilis[J]. J Bacteriol 2006,188(15):5460-68.
    [106]Yu B.J, Kim J.A, Moon J.H, Ryu S.E, Pan J.G. The Diversity of Lysine-Acetylated Proteins in Escherichia coli[J]. J Microbiol Biotechnol 2008, 18(9):1529-36.
    [107]Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in E. coli[J]. Mol Cell Proteomics 2008.
    [108]Yan J.S, Barak R, Liarzi O, Shainskaya A, Eisenbach M. In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli[J]. J Mol Biol 2008, 376(5):1260-71.
    [109]Kim S.C S.R, Chen Y, Xu Y, Ball H, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell 2006,23(4):607-18.
    [110]Revollo J.R, Korner A, Mills K.F, Satoh A, Wang T, Garten A, et al. Nampt/PBEF/Visfatin regulates insulin secretion in beta cells as a systemic NAD biosynthetic enzyme[J]. Cell Metab 2007,6(5):363-75.
    [111]Vaziri H, Dessain S.K, Eagon E.N, Imai S.I, Frye R.A, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell 2001,107(2):149-59.
    [112]Borra M.T, Tanner K.G, Landry J, Sternglanz R, Denu J.M. Molecular mechanisms of SIR2 NAD-dependent histone deacetylation[J]. Faseb J 2001, 15(4):A185-a85.
    [113]Borra M.T, O'Neill F.J, Jackson M.D, Marshall B, Verdin E, Foltz K.R, et al. Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases[J]. J Biol Chem 2002,277(15):12632-41.
    [114]Smith B.C, Denu J.M. Chemical mechanism of sir2 NAD-dependent protein deacetylases[J]. Abstr Pap Am Chem S 2006,231:-
    [115]Grubisha O, Smith B.C, Denu J.M. Small molecule regulation of Sir2 protein deacetylases[J]. Febs J 2005,272(18):4607-16.
    [116]Smith B.C, Denu J.M. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide[J]. Biochemistry-Us 2007,46(50):14478-86.
    [117]Hoppe G.J, Tanny J.C, Rudner A.D, Gerber S.A, Danaie S, Gygi S.P, et al. Steps in assembly of silent chromatin in yeast:Sir3-independent binding of a Sir2/Sir4 complex to silencers and role for Sir2-dependent deacetylation[J]. Mol Cell Biol 2002,22(12):4167-80.
    [118]Shou W.Y, Sakamoto K.M, Keener J, Morimoto K.W, Traverso E.E, Azzam R, et al. Netl stimulates RNA polymerase I transcription and regulates nucleolar structure independently of controlling mitotic exit[J]. Mol Cell 2001,8(1):45-55.
    [119]Liou G.G, Tanny J.C, Kruger R.G, Walz T, Moazed D. Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation[J]. Cell 2005,121(4):515-27.
    [120]Guarente L, Picard F. Calorie restriction-the SIR2 connection[J]. Cell 2005, 120(4):473-82.
    [121]Tissenbaum H.A, Guarente L. Increased dosage of a sir-2 gene extends lifespan in C. elegans[J]. Nature 2001,410(6825):227-30.
    [122]Allen W.Tsang J.S. cobB Function Is Required for Catabolism of Propionate in Salmonella typhimurium LT2:Evidence for Existence of a Substitute Function for CobB within Pdu Operon[J]. J Bacteriol 1996,178(23):7106-09.
    [123]Starai V.J, Gardner J.G, Escalante-Semerena J.C. Residue Leu-641 of acetyl-CoA synthetase is critical for the acetylation of residue Lys-609 by the protein acetyltransferase enzyme of S. enterica[J]. J Biol Chem 2005,280(28):26200-05.
    [124]Starai V.J, Takahashi H, Boeke J.D, Escalante-Semerena J.C. A link between transcription and intermediary metabolism:a role for Sir2 in the control of acetyl-coenzyme A synthetase [J]. Curr Opin Microbiol 2004,7(2):115-19.
    [125]Starai V.J, Takahashi H, Boeke J.D, Escalante-Semerena J.C. Short-chain fatty acid activation by acyl-coenzyme A synthetases requires SIR2 protein function in Salmonella enterica and Saccharomyces cerevisiae[J]. Genetics 2003,163(2):545-55.
    [126]Wardleworth B.N, Russell R.J.M, Bell S.D, Taylor G.L, White M.F. Structure of Alba:an archaeal chromatin protein modulated by acetylation[J]. Embo J 2002, 21(17):4654-62.
    [1]Vidali G, Gershey E.L., and Allfrey V.G. Chemical studies of histone acetylation. The distribution of epsilon-A-acetyllysine in calf thymus histones[J]. J Biol Chem 1968,243:6361-66.
    [2]Gu W, Roeder R.G. Activitation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain[J]. Cell 1997,90:595-606.
    [3]Kouzarides T. Histone acetylases and deacetylases in cell proliferation[J]. Curr Opin Genet Dev 1999,9(1):40-48.
    [4]Yang X.J. The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases[J]. Nucleic Acids Res 2004 32 (3):959-76.
    [5]Vaziri H, Dessain S.K, Eagon E.N, Imai S.I, Frye R.A, Pandita T.K, et al. hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase[J]. Cell 2001, 107(2):149-59.
    [6]Brunet A, Sweeney L.B, Sturgill J.F, Chua K.F, Greer P.L, Lin Y.X, et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase[J]. Science 2004,303(5666):2011-15.
    [7]Jeong J, Juhn K, Lee H, Kim S.H, Min B.H, Lee K.M, et al. SIRT1 promotes DNA repair activity and deacetylation of Ku70[J]. Exp Mol Med 2007,39(1):8-13.
    [8]Kim S.C S.R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin N.V, White M, Yang X.J, Zhao Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey[J]. Mol Cell 2006,23(4):607-18.
    [9]Starai V.J, Celic I, Cole R.N, Boeke J.D, Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science 2002, 298(5602):2390-2.
    [10]Yan J.S, Barak R, Liarzi O, Shainskaya A, Eisenbach M. In vivo acetylation of CheY, a response regulator in chemotaxis of Escherichia coli[J]. J Mol Biol 2008, 376(5):1260-71.
    [11]Bell S.D, Botting C.H, Wardleworth B.N, Jackson S.P, White M.F. The interaction of Alba, a conserved archaeal, chromatin protein, with Sir2 and its regulation by acetylation[J]. Science 2002,296(5565):148-51.
    [12]钱峰.以减毒沙门氏菌为载体的疫苗研究[J].国外医学:寄生病分册1998,25(1):9213.
    [13]Hone D, Morona R, Attridge S, Hackett J. Construction of defined galE mutants of Salmonella for use as vaccines[J]. J Infect Dis 1987,156:167-74.
    [14]沈同,王镜岩.生物化学[M].北京:高等教育出版社,2005.
    [15]Yu B.J, Kim J.A, Moon J.H, Ryu S.E, Pan J.G. The Diversity of Lysine-Acetylated Proteins in Escherichia coli[J]. J Microbiol Biotechnol 2008, 18(9):1529-36.
    [16]Lustig A.J. Mechanism of silencing in saccharomyces cerevisiae[J]. Curr Opin Genet Dev 1998,8:233-39.
    [17]Howitz K.T, Bitterman K.J, Cohen H.Y, Lamming D.W, Lavu S, Wood J.G, et al. Small molecule activators of sirtuins extend Saccharomyces cerevisiae life span[J]. Nature 2003,425(6954):191-96.
    [18]Laura M. S, Donald G. G, Neil E.R. Salmonella enterica Serovar Typhimurium Periplasmic Superoxide Dismutases SodCⅠ and SodCⅡ Are Required for Protection against the Phagocyte Oxidative Burst[J]. Infect Immun 2002,70(9):5312-15.
    [19]Lahti R, Pohjanoksa K, Pitkaranta T, Heikinheimo P, Salminen T, Meyer P, Heinonen J. A site-directed mutagenesis study on E. coli inorganic pyrophosphatase[J]. Biochemistry-Us 1990,29(24):5761-66.
    [20]Dormeyera W, Otta M, Schnolzer M. Analysis of p300 acetyltransferase substrate specificity by MALDI-TOF mass spectrometry[J]. Method 2005,36(4):376-82.
    [21]Iwabata H, Yoshida M, Komatsu Y. Proteomic analysis of organ-specific post-translational lysine-acetylation and -methylation in mice by use of anti-acetyllysine and -methyllysine mouse monoclonal antibodies[J]. Proteomics 2005, 5(18):4653-64.
    [22]祝叶萍,樊惠芝,沈诚频,望姚,周新文,杨芃原.乙酰化蛋白的质谱鉴定研究[J].化学学报2008,66(22):2563-68.
    [23]Detlev S, Kohl J, Karwath G, Schneider K, Casaretto M, Bitter S, et al. Molecular epitope identification by limited proteolysis of an immobilized antigen-antibody complex and mass spectrometric peptide mapping[J]. PNAS 1990,87:9848-52.
    [24]Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, et al. Lysine acetylation is a highly abundant and evolutionarily conserved modification in E. coli[J]. Mol Cell Proteomics 2008.
    [25]Driscoll R, Hudson A, Jackson S.P. Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56[J]. Science 2007,315(5812):649-52.
    [1]Datsenko K.A, Wanner B.L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products[J]. PNAS 2000,97(12):6640-45.
    [2]张全,高会杰,佟明友.Red重组技术研究进展[J].中国生物工程杂志2006,26(1):81-86.
    [3]Gutnick D, C. J.M, Klopotowski T, Ames B.N. Compounds Which Serve as the Sole Source of Carbon or Nitrogen for Salmonella typhimurium LT2[J]. J Bacteriol 1969,100(1):215-19.
    [4]Crasnier-Mednansky M. Is there any role for cAMP-CRP in carbon catabolite repression of the Escherichia coli lac operon[J]? Nat Rev Microbiol,2008,6(12):954.
    [5]Lee N.L, Gielow W.O, Wallace R.G. Mechanism of araC autoregulation and the domains of two overlapping promoters, Pc and PBAD, in the L-arabinose regulatory region of Escherichia coli[J]. PNAS 1981,78(2):752-56.
    [6]沈同,王镜岩.生物化学[M].北京:高等教育出版社,2005.
    [7]Schulz T.J, Zarse K, Voigt A, Urban N, Birringer M, Ristow M. Glucose restriction extends Caenorhabditis elegans life span by inducing mitochondrial respiration and increasing oxidative stress[J]. Cell Metab 2007,6(4):280-93.
    [8]Lin S.J, Ford E, Haigis M, Liszt G, Guarente L. Calorie restriction extends yeast life span by lowering the level of NADH[J]. Gene Dev 2004,18(1):12-16.
    [9]Kassi E, Papavassiliou A.G. Could glucose be a proaging factor[J]? J Cell Mol Med 2008,12(4):1194-98.
    [10]Starai V.J, Celic I, Cole R.N, Boeke J.D, Escalante-Semerena J.C. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science 2002, 298(5602):2390-92.
    [11]Bitterman K.J, Anderson R.M, Cohen H.Y, Latorre-Esteves M, Sinclair D.A. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast Sir2 and human SIRT1 [J]. J Biol Chem 2002,277(47):45099-107.
    [12]Avalos J.L, Bever K.M, Wolberger C. Mechanism of sirtuin inhibition by nicotinamide:Altering the NAD+ cosubstrate specificity of a Sir2 enzyme[J]. Mol Cell 2005,17(6):855-68.
    [1]J.萨姆布鲁克,拉赛尔D.W.分子克隆实验指南第三版[M].北京:科学出版社,2002.
    [2]Wang C, Maofu Fu, Pestell R.G. Histone Acetylation/Deacetylation as a Regulator of Cell Cycle Gene Expression[J]. Totowa, NJ:Humana Press Inc.,2004.
    [3]Hallows WC, Lee S, Denu J.M. Sirtuins deacetylate and activate mammalian acetyl-CoA synthetases[J]. PNAS 2006,103(27):10230-35.
    [4]Giachetti E., Pinzauti G., P. V. A new continuous optical assay for isocitrate lyase[J]. Cell Mol Life Sci 1984,40(2):227-28.
    [5]Kim J.Y, Choi Y.L, Cho Y.S, Kim C.H, Lee Y.C. Independently expressed N-terminal pro-domain of aqualysin I precursor complements the folding of its mature domain to active form in Escherichia coli[J]. J Basic Microbiol 2002,42:181-89.
    [6]Stueland C, Gorden K, LaPorte D. The isocitrate dehydrogenase phosphorylation cycle. Identification of the primary rate-limiting step[J]. J Biol Chem 1988 263(36):19475-79.
    [7]Starai V.J, Celic I, Cole R.N, Boeke J.D, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine[J]. Science 2002, 298(5602):2390-92.
    [8]Alain J. Cozzone, El-Mansi. M. Control of Isocitrate Dehydrogenase Catalytic Activity by Protein Phosphorylation in Escherichia coli[J]. J Mol Microbiol Biotechnol 2005,9:132-46.
    [9]Yuyi Lin, Jinying Lu, Junmei Zhang, Wendy Walter, Weiwei Dang, Jun Wan, et al. Protein Acetylation Microarray Reveals that NuA4 Controls Key Metabolic Target Regulating Gluconeogenesis[J]. Cell 2009,136:1073-84.
    [10]Susanne M, Jonathan S. Stamler B.B. Posttranslational Modification of Glyceraldehyde-3-phosphate Dehydrogenase by S-Nitrosylation and Subsequent NADH Attachment. J. Bio. Chem.1996,271(8):4209-14.
    [11]Prasad M.R, Pak-Lam Y, Shona S, Thomas F. The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation[J]. Research in microbiology 2005,156(2):178-83.
    [12]Kretzschmar U, Khodaverdi V, Jeoung J.H, Gorisch H. Function and transcriptional regulation of the isocitrate lyase in Pseudomonas aeruginosa[J]. Archives of Microbiology 2008,190(2):151-58.
    [13]Klumpp D.J, Plank D.W, Bowdin L.J, Stueland C.S, Chung T, Laporte D.C. Nucleotide-Sequence of Acek, the Gene Encoding Isocitrate Dehydrogenase Kinase Phosphatase[J]. J Bacteriol 1988,170(6):2763-69.
    [14]El-Mansi, E.M.T. Control of metabolic interconversion of isocitrate dehydrogenase between the catalytically active and inactive forms in Escherichia coli[J]. Fems Microbiol Lett 1998,166:333-39.
    [15]El-Mansi EMT. Free-CoA mediated regulation of intermediary and central metabolism:a hypothesis, which accounts for the excretion of a -ketoglutarate during growth of Escherichia coli on acetate[J]. Res Microbiol 2005,156:874-79.
    [1]Amplification Efficiency of TaqMan(?) Gene Expression Assays. Applied Biosystems User Bulletin #2 (part number 4303859) 1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700