用户名: 密码: 验证码:
产核黄素枯草芽孢杆菌中心碳代谢的代谢工程
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以代谢工程的理论为指导,围绕产核黄素枯草芽孢杆菌的中心碳代谢进行遗传改造,以减少酸性副产物乙酸的生成,提高碳的转化率,并构建了一系列的产核黄素枯草芽孢杆菌的基因工程菌,比较系统地研究中心碳代谢的的遗传改造对枯草芽孢杆菌的核黄素生物合成的影响,得到的主要结果如下:
     1.建立产核黄素枯草芽孢杆菌的代谢网络模型,进行了通量平衡分析和代谢通量分析的对比。发现枯草芽孢杆菌的核黄素得率最大时,不产生酸性代谢物乙酸、乳酸和丙酮酸等,并预测进一步遗传改造的靶点。
     2.构建了pta基因缺失的产核黄素工程菌,pta基因缺失工程菌与其亲株相比,pta基因缺失使得菌体生长缓慢。代谢分析表明, pta基因缺失减少乙酸的生物合成,伴随着丙酮酸积累。随后在pta基因缺失工程菌中扩增alsS基因,发现alsS基因扩增使得枯草芽孢杆菌有能力将丙酮酸导向3-羟基丁酮生物合成途径,降低丙酮酸的积累,同时改善了菌体的生长,可在0.5%葡萄糖基本培养基积累核黄素54.4 mg/L,比出发菌株RH33::[pRB63]_n提高了85.7%。遗传改造后代谢通量分析表明,中心碳代谢的遗传扰动对代谢网络关键节点的通量分配影响很小,但这些微小变化促进核黄素生物合成途径通量的改善。
     3.研究了gdh基因的扩增对枯草芽孢杆菌核黄素生物合成能力的影响。结果表明:扩增gdh基因使得菌株在0.5%葡萄糖基本培养基积累核黄素37.2 mg/L,比出发菌株RH33::[pRB63]_n提高了29.7%,同时降低酸性副产物生成速率,这表明提高葡萄糖酸支路的通量有利于核黄素的积累。
     4.对磷酸葡萄糖异构酶靶点进行遗传改造,构建pgi基因缺失工程菌。通过对其发酵和生长的研究得出结论:pgi基因缺失使菌体生长缓慢,利用葡萄糖的能力降低,但当培养基中添加适量酵母抽提物时,可以改善菌体生长和糖的利用,可在0.5%葡萄糖基本培养基积累核黄素35.9 mg/L,比出发菌株提高了25.1%。
     5.6-磷酸葡萄糖节点的代谢控制分析表明,降低糖酵解的通量能有效地提高磷酸戊糖途径的通量。
In order to reduce acetate formation and increase carbon yield, A series of genetic modified central carbon metabolism of riboflavin-production Bacillus subtilis were constructed based on the principles of metabolic engineering. The riboflavin producing capabilities of these strains were studied systematically and the major findings are:
     In this thesis, a simple metabolic network of riboflavin-producing B.subtilis was constructed. The theoretical flux distribution of maximum riboflavin production was computed through flux balance analysis. Acid metabolites such as acetate, lactate and pyruvate are not formated when maximum riboflavin production in B.subtilis is obtained. After comparisons with the metabolic flux analysis (MFA) results computed from the wet experiments data of riboflavin-producing B.subtilis, the potential improvement targets for further genetic modification were identified and selected.
     Riboflavin-producing B.subtilis pta mutant was constrcuted. The lower rates of cell growth and glucose consumption were found in the pta-disrupted mutant while the rate of acetate formation was reduced. Moreover, pyruvate accumulation was found in pta mutant by metabolic analysis. In contrast, the strain has the ablity to redirect pyruvate toward the synthesis of a nonacidic end production, acetoin, when the expression of the gene encoding acetolactate synthase was increased in the pta-disrupted mutant, and cell growth of pta mutant was restored. The riboflavin yield of B. subtilis achieved 54.4mg/l in basic medium containing 0.5% glucose , which was 85.7% enhancement compared to B. subtilis RH33::[pRB63]_n. These resultes from metabolic flux analysis showed that genetic modified central carbon metabolism of riboflavin-production B.subtilis could not significantly affect the flux distribution of key points in metabolic network, but carbon flux through the riboflavin biosynthesis pathway was improved by these changes.
     The effects of gdh gene amplification on riboflavin biosynthesis of strain B.subtilis RH33::[pRB63]_n was studied in this thesis. The results showed that riboflavin yield achieved 37.2 mg/L when the expression of gdh gene was obtained, which was 29.7% enhancement compared to the parental strain. Moreover, the formation rate of acid metabolites was reduced. These indicated that the increased carbon flow through the gluconate bypass could improve riboflavin yield.
     Riboflavin-producing B.subtilis pgi mutant was constructed by genetic modified phosphoglucose isomerase. Comparesions with the pgi mutant and the parental strain is different in physiological and fermentation products yields. The mutant showed more slowly specific growth rate, lower glucose consumption. The lower rates of cell growth and glucose consumption could be restored when yeast extract was added into the basic fermentation medium containing 0.5% glucose, and riboflavin yield achieved 35.9mg/L, which was 25.1% enhancement compared to the parental strain.
     Metabolic control analysis of 6-phosphate glucose branch point showed that carbon flux through HMP pathway could be increased by reducing carbon flux in EMP pathway.
引文
[1]中华人民共和国药典(二部),1995
    [2] EK Harde,ZI Ecler主编,闻芝梅等主译,现代营养学,人民卫生出版社,1998
    [3]王林静,核黄素与健康,广东药学院学报,2000 ,16 (3):223-225
    [4] Zuanetti C,Moncada S, Eliakim R. Protective effect of vagual stimulation on reperfusion arrhythmias in cat. Circ Res, 1987,61(3):429-435
    [5] Maclachlan I, Clara Strand T. Riboflavin in the Chicken. 5’-splice site mutation in the gene for riboflavin binding protein. J Biol Chem, 1993, 286 (31):222-226
    [6]周纯先,维生素B2拮抗HgCl2致小鼠微核作用的研究,癌变?畸变?突变,1995,7(4):220-225
    [7]杨焕民,核黄素对受冷人鼠增重、成活和有关激素的影响,营养学报,1998,20 (3):281-283
    [8]陈文根,核黄素缺乏对铁代谢的影响,国外医学一卫生学分册,1990(5):283-289
    [9]李光镐,朴英薰,韩锺权,等,生产核黄素的微生物和利用其生产核黄素的方法,中国专利, CN03143072,2004
    [10]董志岩,方桂友,维生素对妊娠母猪繁殖性能影响的试验研究,饲料研究,2000,11:31-33
    [11]杜留云,裘娟萍,核黄素在动物中的作用,江西饲料,2002,(2):17-19
    [12] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein dye building. Anal. Biochem., 1976, 72: 248?254.
    [13] Stahmann KP, Revuelta JL, Seulberger H. Three biotechnical processes using Ashbya gossypii, Candida famata or Bacillus subtilis compete with chemical riboflavin production. Appl Microbiol Biotechnol, 2000, 53:509-516
    [14] Lago BD, Kaplan L. Vitamin fermentation: B2 and B12. Adv Biotechnol ,1981, 3 :241-246
    [15] Foster, Edward W., Dale CG, et al. Riboflavin producing strains of microorganisms. U.S. patent, No.5120655, 1992
    [16] Bigelis R. Industrial products of biotechnology: application of gene technology. In Biotechnology. Rehm H J, Reed G, ed. 1989, 7: 243-256.
    [17] Heefner D, Weaver CA, Yarus MJ, et al. Riboflavin producing strains of microorganisms, method for selecting, and method for fermentation. Patent WO 09822.1988-06.
    [18] Perkins JB, Pero JG, Sloma A. Riboflavin overproducing strains of bacteria. European patent application 0405370, Januay 1991.
    [19] Perkins JB. Genetic engineering of Bacillus subtilis for the commercial production of riboflavin. Journal of Industrial Microbiology & Biotechnology, 1999, 22:8-18.
    [20] Perkins JB, Pero J. Bacillus subtilis and its closet relatives from genes to cells. ASM Press, Washington, D.C. 2002, 271-286.
    [21] Burrows RB. Presence in E. coli of deaminase and reductase involved in biosynthesis of riboflavin. J Bacteriol, 1978, 136 (2): 657-667.
    [22] Foor F, Brown GM. Purification and properties of guanosine triphosphate cyclohydrolase II. J Biol Chem, 1975, 250:3545-3551.
    [23] Humbelin M, Griesser V, Keller T, et al. GTP cyclohydrolase II and 3,4- dihydroxy-2-butanone 4-phosphate synthase are rate-limiting enzymes in riboflavin synthesis of an industrial Bacillus subtilis strain used for riboflavin production. J Ind Microbiol Biotechnol, 1999 , 22: 1-7.
    [24] Kaiser J, Schramek N. Biosynthesis of vitamin B2 an essential zinc ion at the catalytic site of GTP cyclohydrolase II. Eur J Biochem, 2002, 269:5264–5270
    [25] Bacher W. Biosynthesis of riboflavin in Bacillus subtilis. J Bacterial, 1978, 134 (2): 476-482.
    [26] Richter G, Fischer M, Krieger C, et al. Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of E. coli and Bacillus Subtilis. J Bacterial, 1997, 179 (6):2022-2028.
    [27] Shavlovskii GM. Enzyme activity in the second step of flavingensis of reductase in the yeast P. guilliermondii . Microbiologiya, 1981, 50 (6) :1008-1011
    [28] Volk R, Bacher A. Studies on the 4-carbon precursor in the biosynthesis of riboflavin. J Biol Chem, 1990, 265 (32): 19479-19485.
    [29] Nakajima K. Possibility of diacetyl and related compounds at 4-carbon compound necessary for the foemation of riboflavin in A. gossyii. Acta Vitaminal Enzymal, 1984, 6 (4):271-282.
    [30] Vladimir N, Mironov P. Functional organization of the riboflavin biosynthesis operon form Bacillus sbutilis SHgw. Mol Gen Genet, 1994, 242: 201-208.
    [31] Schott K, Ladenstein R, Konig A. The lumazine synthase-riboflavin synthase complex of Bacillus subtilis. J Bio Chem, 1990, 265 (21): 12686-12689.
    [32] Perkins J B, Pero J. Biosynthesis of riboflavin, biotin, folic acid, and cobalamin. In : sonenshein A L , Hoch J A , Losick R. Bacillus subtilis and its closest relatives : from gene to cells. Washington ASM Press ,2002. 211~271
    [33]张会图,姚斌,范云六,核黄素基因工程研究进展,中国生物工程杂志, 2004,24(12):32-38
    [34] Stulke J,Hillen W. Regulation of carbon catabolism in Bacillus species, Annu Rev microbial, 2000, 54:849-80.
    [35] Reizer J, Bachem S. Novel phosphotransferase system genes revealed by genome analysis-the complete complement of PTS proteins encoded within the genome of Bacillus subtilis, Microbiology, 1999, 145:3419-3429
    [36] Garrett RH, Grisham CM. Biochemistry, 1999, 2nd ed., pp.742-774. Saunders College Publishing, Fort Worth, Tex.
    [37] Gottschalk G. Bacterial metabolism, 2nd ed. Springer-Verlag, New York. NY. 1986
    [38] Dauner M, Sauer U. Stiochiometric growth model for riboflavin producing Bacillus subtilis, Biotechnol and Bioeng, 2001, 76 (2):132-143.
    [39] Grundy FJ, Turinsky AJ, Henkin TM. Catabolite regulation of Bacillus subtilis acetate and acetoin utilization genes by ccpA. J. Bacteriol. 1994, 176:4527–4533.
    [40] Speck EL, Freese E. Control of metabolite secretion in Bacillus subtilis. J. Gen. Microbiol. 1973, 78:261–275.
    [41] Grundy FJ, Waters DA, Allen SH, et al. Regulation of the Bacillus subtilis acetate kinase gene by ccpA J Bacteriol. 1993 ,175(22):48-55
    [42] Elena P, Galinier A, Longin R, et al. Catabolite regulation of the pta gene as part of carbon flow pathways in Bacillus subtilis. J Bacteriol, 1999,181: 6889–6897
    [43] Nakano MM, Dailly YP, Zuber P, et al. Characterization of anaerobic fermentative growth of Bacillus subtilis: identification of fermentation end products and genes required for growth. J. Bacteriol. 1997,179:6749–6755
    [44] Williams OB, Morrow MB. The bacterial destruction of acetyl–methyl -carbinol . J. Bacteriol. 1928,16:43–48.
    [45] Lopez JM, Thoms B. Role of sugar uptake and metabolic intermediates on catabolite repression in Bacillus subtilis. J Bacteriol. 1977, 129(1): 217–224.
    [46] Grundy FJ, Waters DA, Takova YT, et al. Identification of genes involved inutilization of acetate and acetoin in Bacillus subtilis. Mol. Microbiol. 1993, 10:259–271.
    [47] Zamboni N, Mouncey N, Hohmann HP, et al. Reducing maintenance metabolism by metabolic engineering of respiration improves riboflavin production by Bacillus subtilis. Metabolic Engineering, 2003, 5:49-55
    [48] Zamboni N. Knockout of the high-coupling cytochrome aa3 oxidase reduces TCA cycle fluxes in Bacillus subtilis. FEMS Microbiology Letters 2003, 226:121-126
    [49] Xuan Q. Transcriptional regulation of the Bacillus subtilis menp1 promoter. Journal of Bacteriology, 1996, 705–713
    [50] Michael D, Marco S, Michel H, et al. Intracellular carbon fluxes in riboflavin-producing Bacillus subtilis during growth on two-carbon substrate mixtures. Appl Environ Microbiol, 2002,68: 1760–1771.
    [51] Sauer U, Cameron DC, Baily JE. Metabolic capacity of Bacillus subtilis for the production of purine nucleosides, riboflavin, and folic acid. Biotechnol.Bioeng, 1998, 59(2):227-238.
    [52] Fell DA and Small JR Metabolic control analysis. Sensitivity of control coefficients to elasticities. European Journal of Biochemistry, 1994, 191: 413 -420
    [53] Rimma A, Pervmov DA. Genetic mapping of regulatory mutations of Bacillus subtilis riboflavin operon. Mol Gen Genet, 1990, 222:467-469.
    [54] Winkler WC, Nahvi A, Sudarsan N, et al. An mRNA structure that controls gene expression by binding FMN. Proc. Natu Acad Sci, 2002, 99(25): 15908-15913.
    [55] Koizumi S, Yonetani A, Maruyame ST. Production of riboflavin by metabolically engineered Corynebacterium ammoniagenes. Appl Microbiol Biotechnol,2000, 53:674-679.
    [56] Stepanov G. Production of riboflavin by bacteria. French patent 2546907. 1984-12.
    [57] Chen X. New approaches to construction of recombinant strains-riboflavin producers. Dissertation for Academic Degree of Candidate of Biological Sciences. State Scientific research institute of genetics and selection of industrial microorganisms, MOSCOW. 1997.
    [58] Van Loon A, Schurter W, Hohmann H et al. Improved riboflavin production,European patent, EP0821063,1998
    [59] Perkins JB, Alan S, Janiee G et al., Bacterial strains which overproduced riboflavin.US patent, 5925538. 1999-07.
    [60] Vitreschak AG, Rodionov DA, Mironov AA et al. Regulation of rivoflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation. Nucl. Acids Res, 2002,30(14):3141-3151.
    [61] Chen T, Chen X, Wang JY et al. Effect of riboflavin operon dosage on riboflavin productivity in Bacillus subtilis. Transactions of Tianjin University, 2005, 11 (1):1-5.
    [62] Woychik RP, Klebig ML, Justice MJ, et al. Functional genomics in the post-genome era. Mutation Research, 1998, 400:3-14
    [63]杨胜利,系统生物学研究进展,中国科学院院刊,2004,19(1):31-34.
    [64] Kitano, H. 2002“Systems Biology: A Brief Overview”, Science, 295,1662-1664
    [65] Bailey JE. Towards a science of metabolic engineering. 1991,252:1668-1674
    [66] Heinrich R, Schuster S. The modeling of metabolic systems: structure, control and optimality. Biosystems, 1998,47(1):61-77.
    [67] Varner J, Ramkrishna D. Mathmatical models of metabolic pathways. Curr Opin Biotechnol, 1999,10(2):146-150.
    [68] Gombert AK, Nielsen J. Mathematical modeling of metabolism, Curr Opin Biotechnol, 2000,11(2):180-186.
    [69]赵学明,白冬梅等译,代谢工程—原理与方法.北京:化学工业出版社,2003.
    [70] Cameron DC, Chaplen FWR. Developments in metabolic engineering. Curr Opin Biotechnol, 1997, 8:175-l80
    [71] Stephanopulos GN, Aristidou AA, Nielsen J. Metabolic Engineering Principle and Methodologies. 1998, Academic Press.
    [72] Lee SY, Hong SH, Moon SY. In silico metabolic pathway analysis and design: succinic acid production by metabolically engineered Escherichia coli as an example. Genome inform, 2002,13:214-223
    [73] Bai DM, Zhao XM, Li XG et al. Strain improvement and metabolic flux analysis in the wild-type and a mutant Lactobacillus lactis atrain for L(+)-lactic acid production. Biotechnol Bioeng, 2004,88(6):681-689
    [74]陈涛,王靖宇,周士奇,等,基于基因组重排的代谢工程用于改进产核黄素Bacillus subtilis的性能,化工学报, 2004,55(11):1842-1848
    [75] Zamboni N, Fischer E, Muffler A et al. Transient expression and flux changes during a shift from high to low riboflavin production in continuous cultures ofBacillus subtilis. Biotechnol Bioeng, 2005, 89(2):219-232
    [76] Franzén CJ. Metabolic flux analysis of RQ-controlled microaerobic ethanol production by Saccharomyces cerevisiae. Yeast, 2003, 20:117-132
    [77] Dunn WD, Ellis DI. Metabolomics: Current analytical platforms and methodologies. Trends Ana Chem, 2005, 24 (4):285-294.
    [78] Wiback SJ, Mahadevan R, Palsson B. Using metabolic flux data to further constrain the metabolic solution space and predict internal flux patterns: the Escherichia coli spectrum. Biotechnol Bioeng, 2004,86(3):317-331.
    [79] Riascos CAM, Gombert AK, Pinto JM. A global optimization approach for metabolic flux analysis based on labeling balance. Compu Chem Eng, 2005, 29:447-458
    [80] Wiechert W, M?llney M, Petersen S et al. A universal framwork for 13C metabolic flux analysis. Meta Eng , 2001,3:265-283.
    [81] Covert M, Schilling CH, Palsson B. Regulation of gene expression in flux balance models of metabolism. J theor Biol, 2001,213:73-88.
    [82] Downer J, Sevinsky J,Ahn NG, et al. Incorporating expression data in metabolic modeling: a case study of lactate dehydrogenase, Journal of Theoretical Biology , 2006, 240: 464-474
    [83] Beard DA, Liang SD, Qian H. Energy balance for analysis of complex metabolic networks. Biophys. J. 2002, 83:79–86
    [84] Hong SM, Park SJ, Moon SY et al. In silico prediction and validation of the importance of the Entner-Doudoroff pathway in poly(3-hydroxybutyrate) production by metabolically engineered Escherichia coli. Biotech Bioeng, 2003, 83(7):854-863.
    [85] Ruoyu L, Sha L, Shaoqun Z, et al. FluxExplorer: A general platform for modeling and analyses of metabolic networks based on stoichiometry. Chinese Science Bulletin. 2006,51(6):689-696
    [86] Lee DY, Oh YG, Yoon H. Exploring flux distribution profiles for switching pathways using multiobjective flux balance analysis. Genome inform, 2002, (13):363-364.
    [87] Higgins J. Analysis of sequential reactions. Ann N Y Acad Sci, 1963, 108: 305-321.
    [88] Karcser H, Burns JA. The control of flux. Symp Soc Exp Biol, 1973, 27:65-104
    [89] Heinrich R, Rapoport TA. A linear steady-state treatment of enzymatic chainsgeneral properties, control and effector strength. Eur J Biochem, 1974,42:89-95
    [90] Fell D A. Metabolic control analysis: a survey of its theoretical and experimental development. Biochem J, 1992, 286: 313~330.
    [91] Monschau N, Sahm H and Stahmann K. Threonine aldolase overexpression plus threonine supplementation enhanced riboflavin production in Ashbya gossypii. Appl Environ Microbiol, 1998, 64: 4283-4290.
    [92] Eikmanns BJ, Metzger M, Reinscheid D, et al. Amplification of three threonine biosynthesis genes in Corynebacterium glutamicum and its influence on carbon flux in different strains. Appl Microbiol Biotechnol, 1991, 34:617-622.
    [93] Niederberger P, Prasad R, Miozzari G., et al. A strategy for increasing an in vivo flux by genetic manipulations. The tryptophan system of yeast. Biochem J, 1992, 287:473-479.
    [94] Fell DA. Increasing the flux in metabolic pathways: A metabolic control analysis perspective. Biotechnol Bioeng, 1998, 58:121-124.
    [95] Hofer T, Heinrich R. A second-order approach to metabolic control analysis. J Theor Biol, 1993, 164:85-102.
    [96] Kacser H and Acerenza L. A universal method for achieving increases in metabolite production. Eur J Biochem, 1993, 216:361-367.
    [97] Snoep JL, Yomano LP, Westerhoff HV, et al. Protein burden in Zymomonas mobilis: negative flux and growth control due to overproduction of glycolytic enzymes. Microbiol, 1995, 141:2329-2337.
    [98] Stephanopoulos G and Simpson TW. Flux amplification in complex metabolic networks. Chem Engng Sci, 1997, 52:2607-2627.
    [99] Schuster S, Dandekar T and Fell DA. Detection of elementary flux modes in biochemical networks: A promising tool for pathway analysis and metabolic engineering. Trends Biotechnol, 1999, 17,53-60.
    [100] Deepak N, Marco AE, Francois B, et al. Integrated energy and flux balance based multiobjective framework for large-scale metabolic networks. 2007, 35(6):863-885
    [101] Hatzimanikatis V, Floudas CA and Bailey JE. Analysis and design of metabolic reaction networks via mixed-integer linear optimization, AIChE J, 1996, 42: 1277-1292.
    [102] Simpson TW, Shimizu H, Stephanopoulos G. Experimental determination of group flux control coefficients in metabolic networks. Biotechnol Bioeng, 1998,58:149-153.
    [103] Wouter A, van Winden, Heijnen JJ, et al. Cumulative bondomers: A new concept in flux analysis from 2D[13C,1H] COSY NMR data. Biotechnol Bioeng, 2002, 80(7):732-745
    [104] Sauer U, Hatzimanikatis V, Hohmann HP, et al. Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis, Appl Environ Microbiol, 1996, 62:3687-3696.
    [105] Sauer U, Hatzimanikatis V, Bailey JE, et al. Metabolic fluxes in riboflavin -producing Bacillus subtilis. Nat Biotechnol, 1997, 15:448-452.
    [106] Sauer U, Bailey JE. Estimation of P-to-O ratio in Bacillus subtilis and its influence on maximum riboflavin yield. Biotechnol Bioeng, 1999, 64:750-754.
    [107] Dauner M, Storni T, Sauer U. Bacillus subtilis metabolism and energetics in carbon-limited and excess-carbon chemostat culture. J Bacteriol., 2001, 183 (24):7308–7317.
    [108] Dauner M, Bailey JE, Sauer U. Metabolic flux analysis with a comprehensive isotopomer model in Bacillus subtilis. Biotechnol Bioeng, 2001, 76:144-156.
    [109]马红武,由发酵实验数据和基因组信息基于计量关系分析代谢网络,[博士学位论文],天津:天津大学,2001.
    [110] Edwards JS, Palsson BO. Metabolic flux balance analysis and the in silico analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics, 2000: 1.
    [111]陈涛,基于基因组重排的产核黄素枯草芽孢杆菌的代谢工程,[博士学位论文],天津:天津大学,2004.
    [112] Brand DM, Edward AK. Errors associated with metabolic control analysis. application of Monte Carlo Simulation of experimental data J. theor. Biol. 1998, 194:223-233
    [113] Moszer I, Jones LM, Moreira S, et al. SubtiList: the reference database for the Bacillus subtilis genome. Nucleic Acids Res, 2002, 30:62-65.
    [114]李小静,枯草芽孢杆菌核黄素操纵子及呼吸链的代谢工程改造,[博士学位论文],天津:天津大学,2006.
    [115]应明,产核黄素枯草芽孢杆菌ccpA基因敲除及发酵特性的研究,[硕士学位论文],天津:天津大学,2005.
    [116] Desvaux M, Guedon E, Petitdemange H. Metabolic flux in cellulose batch and cellulose-fed continuous cultures of Clostridium cellulolyticum in response to acidic environment. Microbiol, 2001, 147:1461-1471.
    [117] Fry B, Zhu T, Domach MM, et al. Characterization of growth and acid formation in a Bacillus subtilis pyruvate kinase mutant. Applied and Environmental Microbiology, 2000, 6:4045–4049.
    [118] Cruz-Ramos HT, Hoffmann MM, Nedjari H, et al. Fermentative metabolism of Bacillus subtilis: physiology and regulation of gene expression. J Bacteriol, 2000, 182:3072–3080.
    [119] Holms WH. The central metabolic pathways of Escherichia coli: relationship between flux and control at a branch point, efficiency of conversion to biomass, and excretion of acetate. Curr Top Cell Reg, 1986, 28:69–105.
    [120] Majewski RA, Domach MM. Simple constrained optimization view of acetate overflow in Escherichia coli. Biotechnol Bioeng, 1990, 35: 732–738.
    [121] Pamela KB, Fairoz MJ, ? Norizan L, et al. The ldhA gene encoding the fermentative lactate dehydrogenase of Escherichia coli Microbiol, 1997, 143:187–195
    [122] Reiling HE, Laurila H, Fiechter A. Mass culture of Escherichia coli: medium development for low and high density cultivation of Escherichia coli B/r in minimal and complex media. J Biotechnol, 1985, 2:191–206.
    [123] Goel A, Lee JW, Domach MM et al. Suppressed formation by cofeeding glucose and citrate in Bacillus cultures: emergence of pyruvate kinase as a potential metabolic engineering site. Biotechnol Prog, 1995, 11:380–386.
    [124] Bauer K, Bassat AB, Dawson M, et al. Improved expression of human interleukin-2 in high-cell-density fermentor cultures of Escherichia coli K-12 by a phosphotransacetylase mutant. App Environ Microbiol, 1990, 56: 1296-1302.
    [125] Dedhia NN, Hottiger T and Bailey JE. Overproduction of glycogen in Escherichia coli blocked in the acetate pathway improves cell growth. Biotech Bioeng, 1994, 44:132-139.
    [126] Aristidou AA, San K-Y, and Bennett G.N. Modification of central metabolic pathway in Escherichia coli to reduce acetate accumulation by heterologous expression of the Bacillus subtilis acetolactate synthase gene. Biotech Bioeng, 1994, 44:944.
    [127] Vierheller C, Goel A, Domach MM, et al. Sustained and constitutive high levels of protein production in continuous cultures of B. subtilis. Biotechnology and Bioengineering, 1995:47, 520–525
    [128] Chang S, Cohen SN. High-frequency transformation of Bacillus subtilisprotoplast by plasmid DNA. Mol Gen Genet, 1979, 168:111-115.
    [129]萨姆布鲁克等著,金冬雁,等译,分子克隆实验指南(第二版),北京:科学出版社,1992.
    [130]卢圣栋主编,现代分子生物学实验技术(第二版),北京:中国协和医科大学出版社,1999,213-364.
    [131] Vagner, V, Dervyn E, Ehrlich SD. A vector for systematic gene inactivation in Bacillus subtilis. Microbiology, 1998, 144: 3097–3104.
    [132] Prü? BM, Wolfe AJ. Regulation of acetyl phosphate synthesis and degradation, and the control of flagellar expression in Escherichia coli. Molecular Microbiology, 1994, 12:973–984.
    [133] Maria CR, Najimudin N, Leslie RW, et al. Regulation of the Bacillus sibtilis alsS, alsD, and alsR genes involved in post-exponential-phase production of acetoin. J. Bacteriol.,1993, 175:3863-3874.
    [134] Zamboni N, Fischer E, Laudert D, et al. The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol, 2004,14:4528-4534.
    [135] Fujita YR, Ramaleyj R, Freese E. Location and properties of glucose dehydrogenase in sporulating cells and spores of Bacillus subtilis. J Bacteriol, 1977, 132:282-293.
    [136] Sadoff HL Methods In Enzymology[M]. Academic Press, Inc., New work, NY.1996
    [137] Tobisch S, Zuhlke D, Bernhardt J, et al. Role of ccpA in regulation of the central pathways of carbon catabolism in Bacillus subtilis. J Bacteriol, 1999, 181:6996-7004.
    [138]司马迎春,酵母粉的作用及氮源对Bacillus subtilis 24/pMX45核黄素发酵的影响,[硕士学位论文],天津:天津大学,2004.
    [139] Vallino JJ, Stephanopoulos G. Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine over production. Biotechnol Bioeng, 1993, 41:633-646
    [140] Small JR, Kacser H. Response of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched chains. Europ J Biochem, 1993, 213:613-624.
    [141] Varma A, Palsson BO. Metabolic flux balancing: basic concepts, scientific and practical use. Bio-Technol, 1994, 12: 994-998.
    [142] Varma A, Boesch BW, Palsson BO. Stoichiometric interpretation of Escherichia coli glucose catabolism under various oxygenation rates. Appl Environ Microbiol, 1993, 59: 2465-2473.
    [143] Nicola Z. Toward metabolome-based 13C flux analysis: a universal tool for measuring in vivo metabolic activity. Topics in Current Genetics. 2007, DOI 10.1007/4735_2007_0220
    [144] Edwards JS, Covert MW, Palsson BO. Metabolic modelling of microbes: the flux-balance approach. Environ Microbiol, 2002, 4: 133-140.
    [145] Kauffman KJ, Prakash P, Edwards JS. Advances in flux balance analysis. Curr Opin Biotechnol, 2003, 14: 491-496.
    [146] Mahadevan R, Edwards JS, Doyle FJ 3rd. Dynamic flux balance analysis of diauxic growth in Escherichia coli. Biophys J, 2002, 83: 1331-1340.
    [147] Ramakrishna R, Edwards JS, McCulloch A, et al. Flux balance analysis of mitochondrial energy metabolism: consequences of systemic stoichiometric constraints. Am. J. Physiol. Regul. Integr. Comp Physiol, 2001, 280: 695-704.
    [148] Heijen JJ, van Gulik WM, Shimizu H, et al. Metabolic flux control analysis of branch points: an improved approach to obtain flux control coefficients from large perturbation data . Metabolic Engineering, 2004, 6:391-400
    [149] Visser D, Joachim WS, Mauch K, et al. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metabolic Engineering, 2004, 6:378-390
    [150] Kresnowati MTAP, van Winden WA, Heijnen JJ. Determination of elasticties, concentration and flux control coefficients from transient metabolite data using linlog kinetics. Metabolic Engineering, 2005, 7:142-153
    [151] Stephanopoulos G, Vallino JJ. Network rigidity and metabolic engineering in metabolite overproduction. Science, 1991, 252:1675-1681.
    [152] Visser D, Heijnen JJ. Dynamic simulation and metabolic redesign of a branched pathway using linlog kinetics. Metabolic Engineering, 2003, 5:164-176.
    [153] Goel A, Ferrance J, Jeong J, et al. Analysis of metabolic fluxes in batch and continuous cultures of Bacillus subtilis. Biotechnol. Bioeng, 1993, 42:686-696.
    [154] Yasbin RE, Wilson GA, Young FE. Transformation and transfection in lysogenic strains of Bacillus subtilis: Evidence for selective induction of prophage in competent cells. J Bacteriol, 1975, 121(1):296-304.
    [155] Marx A, de Graaf AA, Wiechert W, et al. Determination of the fluxes in the central carbon metabolism of Corynebacterium glutamicum by nuclear magnetic resonance spectroscopy combined with metabolite balancing. Biotechnol Bioeng, 1996, 49:111-129.
    [156] Goel A, Lee J, Domach MM, et al. Metabolic fluxes, pool and enzyme measurements suggest a tighter coupling of energetics and biosynthetic reactions associated with reduced pyruvate kinase flux. Biotechnol Bioeng, 1999, 64:129-134
    [157] Flint HJ, Tateson RW, Barthelmess IB, et al. Control of the arginine flux in the arginine pathway of Neurospora crassa. Biochem J, 1981, 200:231~246
    [158] Ruyter GJG, Postma PW, Van Dam K. Control of glucose metabolism by enzyme IIGlc of the phosphoenolpyruvate-dependent phosphotransferase system in Escherichia coli. Journal of Bacteriology 1991, 173:6184-6191
    [159] Torres NV. Kinetics of metabolic pathways. A system in vitro to study the control of flux. Biochemical Journal. 1986, 234:169-174
    [160] Torres NV. Analysis and characterization of transition states in metabolic systems. transition times and the passivity of the output flux. Biochemical Journal 1991, 276:231-236
    [161] Groen AK. Quantification of the contribution of various steps to the control of mitochondrial respiration. Journal of Biological Chemistry 1982, 257: 2754-2757
    [162] Kacser H, Burns J A. Molecular democracy: Who shares the control? Biochemical Society Transactions 1979, 7:1149-1160
    [163] Groen AK, Van Roermund, Vervoorn RC, et al. Control of glyconeogenesis in rat liver cell. Flux control coefficients of the enzymes in the gluconeogenic pathway in the absence and presence of glucagons. Biochemical Journal 1986, 237:379-389
    [164] Galazzo JL, Bailey JE. Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enzyme and Microbial Technology, 1990, 12: 162-172
    [165] Diana V,Schmidb JW, Mauchb K. et al. Optimal re-design of primary metabolism in Escherichia coli using linlog kinetics. Metabolic Engineering 2004, 6: 378–390
    [166] Naima OA, Joelie B, Georges R, et al. Regulation of acetoin catabolic pathway is controlled by sigma L in Bacillus subtilis. Journal of Bacteriology. 2001, 183(8):2497-2504.
    [167] Delgado J, Liao JC. Determination of flux control coefficients from transient metabolite concentrations. Biochem. J. 1992, 282, 919-927
    [168] Yan Sun, Shijun Qian Flux control analysis for biphenyl metabolism by Rhodococcus pyridinovorans R04. Biotechnology Letters 2002,24: 1525–1529
    [169] Brand MD, Brown GC. The experimental application of control analysis to metabolic systems. In: Biothermokinetics (Westerhoff, H.V. ed.) pp.27-35. Andover, U.K:Intercept
    [170] Brand MD. Top down metabolic control analysis, J. Theor. Biol. 1996,182: 351-360.
    [171] Brown GC, Hafner RP, and Brand MD. A ``top-down'' approach to the determination of control coefficients in metabolic control theory, Eur. J. Biochem. 1990,188, 321-325.
    [172] Small JR, Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. I. The linear treatment of unbranchched chains. European Journal of Biochemistry 1993, 213:613-624
    [173] Small JR, Kacser H. Responses of metabolic systems to large changes in enzyme activities and effectors. II. The linear treatment of branchched pathways and metabolite concentrations. Assessment of the general nonlinear case. European Journal of Biochemistry 1993, 213:625-640
    [174] Stephanopoulos G, Simpson TW, Flux ampli?cation in complex metabolic networks. Chem. Eng. Sci. 1997, 52, 2607–2627.
    [175] Delgado J. Experimental determination of flux control distribution in bio -chemical systems: In vitro model to analysis transient metabolite concentrations. Biotechnology and Bioengineering 1993, 41:1121-1128
    [176] Herbert M Sauro. SCAMP: A general-purpose simulator and metabolic control analysis program. Bioinformatics 1993,9:441-450.
    [177] Hatzimanikatis V, Wang LQ. Metabolic engineering under uncertainty. I: Framework development Metabolic Engineering, 2006, 8: 133–141
    [178] Malmberg LH, Hu WS. Kinetic analysis of cephalosporin biosysnthesis in Streptomaces clavuligerus. Biotechnol Bioeng. 1991, 38:941
    [179]Malmberg LH, Hu WS. Identification of rate limiting steps in cephalo -sporin C biosynthesis in Cephalosporium acremonium: A theorectical analysis. Appl Microbiol Biotechnol, 1992, 38:122
    [180] Malmberg LH, Sherman DH, Sherman DH. Precursor fluxcontrol through targeted chromosomal insertion of the lysine epsilon-aminotransferase (lac) gene in cephamycin C biosynthesis. J. Bacteriol. 1993, 175:6916
    [181]Malmberg LH, Sherman DH. Effects of enhanced lysine epsilon -aminotransferase activity on cephamycin biosynthesis in Streptomyces clavuligerus. Appl. Microbiol. Biotechnol. 1995, 44: 198
    [182] Yang YT, Peredelchuk M, Bennett GN, et al. Effect of variation of klebsiella pneumoniae acetolactate synthase expression on metabolic flux redistribution in Escherichia coli. Biotechnol Bioeng. 2000, 69: 150-159
    [183] Raamsdonk LM, Teusink B, David B, et al. A funtional genomics strategy that uses metabolome data to reveal the phenotype of silent mutations. Nat. Biotechnol. 2001, 19:45-50
    [184] Teusink B, Westerhoff HV. Metabolic control analysis as a tool in the elucidation of the funtion of novel genes. Methods Microbiol 1998, 26:297-336
    [185] Fuente A, Snoep JL, Westerhoff HV, et al. metabolic control in integrated biochemical systems. Eur.J.Biochem 2002, 269:4399-4408
    [186] Akesson M, Forster J, Nielsen J. Integration of gene expression data into genome-scale metabolic models. Metabolic Engineering, 2004, 6:285-293

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700