用户名: 密码: 验证码:
非零θ13起源问题和轻子味道普适性破坏的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
《科学》杂志在公布2012年度十大科学突破时指出:如果LHC的研究人员无法发现超越标准模型的新粒子,那么中微子物理可能会代表粒子物理学的未来。
     从1930年泡利提出中微子假说到1998年实验上发现中微子振荡,再到后来一系列的中微子实验使得人们对中微子的认识不断向前发展。从宇宙线中的超高能中微子到大气中微子,太阳中微子,超新星中微子,再到宇宙中的正反物质不对称,暗物质以及宇宙的早期演化,使得中微子在天文学和宇宙学研究中扮演着越来越重要的角色。中微子的MSW效应成功地解释了太阳中微子缺失问题;对大气中微子中ν1和νμ的观测第一次为中微子振荡提供了有力的实验证据;为了解释实验上观测到的各种反常现象,例如LSND反常,反应堆反中微子反常等,在理论上引入惰性中微子的概念。中微子物理的研究已经涉及到粒子物理理论,粒子物理实验以及天文学、宇宙学等各个方面的研究,成为了一个活跃的、激动人心的研究领域。
     以快速发展的中微子实验为基础和动力,中微子物理学,天文学和宇宙学也在蓬勃发展。中微子物理的许多重要方面都得到了广泛关注和深入研究。例如,中微子的质量起源问题,Seesaw机制,中微子味道混合及其背后的物理,高能标下的中微子物理及与中微子相关的对称性,惰性中微子的存在及其对标准模型中三代中微子的影响,CP破坏,超高能中微子,中微子与暗物质及中微子在宇宙学中的影响等等。
     目前实验以确切的证据表明,存在中微子振荡现象,这是目前唯一被实验证实的超越标准模型的新物理。实验观测到中微子振荡的存在,要求中微子必须是有质量的,三代中微子或轻子之间要存在混合,并且三代中微子之间要有较小的质量平方差。描述中微子混合的三个混合角中,只有θ13还未获得精确测量,并且在之前的许多理论框架下013的值为零。2012年,大亚湾反应堆中微子实验合作组公布了013的精确测量值sin22θ13=0.089±0.010(stat)士0.005(syst)。为了解释实验上观测到的两大一小的中微子混合角而提出了许多唯象的方案,例如μ-τ对称性,A4味道对称性,夸克-轻子互补性等。但是013以及023的精确测量表明,这些方案与现有的实验测量结果之间存在偏差。
     最近另外一个中微子物理的进展是在加速器实验MINOS中发现的θ23并不是之前认为的45o,那么接下来的问题就是确定θ23>45o还是θ23<45o,即θ23的octant问题。
     本文旨在探讨中微子混合中非零θ13的起源和轻子味道普适性破坏等问题。
     1.中微子混合在高能标下具有某种对称性,当演化到低能标的过程中对称性发生破坏,从而得到实验上观测到的中微子混合形式。在理论上提出了许多具有某种对称性的中微子混合矩阵模型,这些模型给出与当前实验不符的混合参数值,例如零值的θ13。我们考虑在理论上通过研究非零θ13的起源问题,得到与当前的实验结果相符合的中微子混合参数值:
     (1)我们尝试从几何的观点讨论PMNS矩阵的对称性以及破缺并预言或解释非零的θ13值。在Friedberg-Lee PMNS;矩阵的几何模型的基础上,我们根据总结的变形原则对tribimaximal混合所对应的混合角的几何表示一立方体进行变形,从而得到了三个混合角之间的解析表达式。以实验结果作为输入值,我们导出了θ13的具体数值。这个工作是在T2K合作组公布实验结果的时候完成的,我们的理论预测值与T2K给出的下限大体吻合,加上误差区间后与T2K的结果区间相交。
     (2)最近的T2K, RENO和大亚湾等实验组公布的数据表明,中微子的混合角θ13在9o附近,为了解释这个较大的混合角,我们用微扰的方法研究了几种常见的常数型混合矩阵在解释现有的混合参数,特别是较大的θ13时的可能性和合理性。这些常数型混合矩阵一般来自于中微子震荡的实验结果或某些对称性。尽管这些矩阵有些快被实验排除了,或者与实验结果符合得不是很好,但是,给它们作一个微扰计算之后就可能使它们与现有的实验数据相符。我们对这些矩阵作一个一般微扰,然后与中微子振荡的实验结果进行比较,在限制混合参数的同时可以挑选出比较合理混合类型,这为将来的模型构建提供了帮助。我们以tribimaximal混合为例进行详细分析,并把其他常数混合矩阵的情形在最后作了总结。
     (3)为了解释实验上观测到的反常现象而引入了惰性中微子。如果惰性中微子与活性中微子之间有混合,那么它们之间的混合就会对活性中微子的混合参数产生影响。这些影响为从具有对称性的混合矩阵到实际的混合矩阵,以及非零的θ13提供了理论上的可能性。以此作为出发点,我们讨论了由于惰性中微子的引入,而使得常数型混合矩阵可以在形式上与最新的中微子振荡实验结果相符合。
     2.惰性中微子的引入,不但可以用来解释实验上的反常现象,同时也可以与实验上直接可观测的新物理信号相联系,从而给予后者以合理的理论解释。在标准模型的框架下存在轻子味道的普适性(lepton universality),而最近的实验结果表明:可能存在轻子味道普适性的破坏。之前已经有文献提出:惰性中微子和活性中微子之间的混合或许会导致这样的轻子味道普适性破坏。我们考虑通过引入一个或两个惰性中微子来解释轻子味道普适性破坏的现有实验结果。由于μ-τ对称性的存在,实际的PMNS矩阵与μ-τ对称性下的轻子混合矩阵会有偏离;实验结果表明RD(Ds)μτ=Γ(D(Ds)→μ+vμ/Γ(D(Ds)→μ+ττ)(以及其他的重介子B±或Bc)与标准模型的计算值RD(Ds)μτSM之间会有偏差。这就使我们可以推测:μ-τ对称性破缺与轻子的味道普适性破缺之间会有联系,并且μ-τ对称性和轻子的味道普适性有着共同的高能标对称性,而两者的破坏是这个高能标对称性在低能时的不同表现。现有的BESⅢ实验以及将来的charm-tau工厂为给出更精确的实验数据来检验轻子味道普适性提供了可能。我们主要讨论D和Ds,即RD(Ds)eμ和RD(Ds)μτ并简单讨论了B±和Bc介子的情形。
     3.每年全球发生的地震、海啸等自然灾害给人类造成了无法估量的生命和财产损失。我们寄希望于中微子物理可以对这类自然灾害做出预测,从而造福人类。我们讨论了利用中微子的物质效应进行地震预测的可能性。以反应堆发出的反电子中微子做“探针”,使其穿过地震断层区。断层区物质对中微子振荡的影响便可以反映出断层区物质密度的变化。在这个初步的工作中,我们采用了简化的地震断层区物质密度模型,并计算了在存在与不存在断层区两种情况下的中微子振荡几率差。如果以反应堆发出的反电子中微子做探针,此几率差可达8.5%。如果以中微子工厂发出的的高能中微子做探针,由于这些高能中微子太大的共振长度,其几率差微乎其微。我们的结论是:以现有的反应堆设备和探测技术,尽管理论上看起来可行,但实际利用此方法进行地震预测还是比较困难的。然而,随着地质学及探测技术的发展,我们仍有希望利用此方法进行中期地震预测。
"Science" announced the top ten scientific breakthroughs of the year2012and pointed out that:if LHC researchers do not find new particles beyond those in the standard model, then neutrino physics could be the future of particle physics.
     From Pauli's neutrino conjecture in1930to the experimental discovery of neutrino oscillation in1998, and then to the subsequent series of neutrino experiments, the neutri-no physics gets great progress. From ultra-high-energy neutrino in cosmic rays to atmo-spheric neutrino, solar neutrino, supernova neutrino, and then to the matter-antimatter asymmetry in the Universe, dark matter and the evolution in the early Universe, all these make neutrino play a more and more important role in the study of astronomy and cosmology. MSW resonance succeeded in solving solar neutrino problem; The mea-surement of atmospheric ve and vμ provided powerful evidence for neutrino oscillation; In order to accommodate the anomalies in experiments, for instance, LSND anomaly, reactor antineutrino anomaly et al., sterile neutrinos are introduced in phenomenology models. The study of neutrino physics has correlation with theoretical physics, experi-ments of particle physics, astronomy and cosmology and becomes a active and exciting field.
     Based on the development of neutrino experiments, neutrino physics, astronomy and cosmology are showing repaid progress. Many aspects of neutrino physics are being studied and payed close attention. For instance, the origin of neutrino mass generation, seesaw mechanism, neutrino mixing, neutrino physics under high-energy scales, sym-metries concerning neutrino, the existence of sterile neutrino and its influence on the standard model neutrino, CP violation, ultra-high-energy neutrino, neutrino and dark matter, the effect of neutrino in the evolution of the Universe, et al.
     Current neutrino experiments provide definite evidence about the existence of neu-trino oscillation. This is the sole new physics beyond standard model which is con-firmed by experiments. The existence of neutrino oscillation requires that neutrinos are massive, they do mix and the mass-squared differences among them are relative-ly small. Among the three mixing angles depicting neutrino mixing,θ13is the last quantity which is least known and in some theories, its value is assumed to be ze-ro. In2012, Daya Bay collaboration released the precise measurement value of θ13: sin22θ13=0.089±0.010(stat)±0.005(syst).
     In order to accommodate the neutrino mixing angles, there arise lots of theories, for instance,μ-τsymmetry, A4family symmetry, quark-lepton complementarity, et al. However, the precise measurements of θ13and θ23indicate that there exist deviations between these schemes and the results from experiments.
     Recently, the result from accelerator experiment MINOS indicates that θ23is not the originally assumed45°. Then the next task of neutrino physics is to fix the problem of θ23>45°or θ23<45°, i.e. the octant of θ23.
     In this thesis we mainly study the issue about the origin of non-zero θ13, and also discuss the application of matter effect of neutrino and the violation of lepton flavor universality.
     1. There exist some symmetries for the neutrino mixing under high-energy scales. During the evolution to low-energy scale, these symmetries are broken to obtain the real mixing pattern which is consistent with the experimental results. There arise lots of mixing patterns which possess some symmetries. These models provide unfitted results about the mixing angles, e.g., the vanished θ13. We try to theoretically study the origin of non-zero θ13to obtain the viable mixing parameters which are consistent with the current neutrino oscillation experiments:
     (1) Based on Friedberg and Lee's geometric picture by which the tribimaximal PMNS leptonic mixing matrix is constructed, namely corresponding mixing angles cor-respond to the geometric angles among the sides of a cube, we suggest that the three realistic mixing angles which slightly deviate from the values determined for the cube, are due to a viable deformation from the perfectly cubic shape. Taking the best fitted results of θ12and θ23as inputs, we determine the central value of θ13, which is consistent with the T2K experimental result.
     (2) The PMNS matrix displays an obvious symmetry, but not exact. There are sev-eral textures proposed in literature, which possess various symmetry patterns and seem to originate from different physics scenarios at high energy scales. To be consistent with the experimental measurement, all of the regularities slightly decline, i.e. the symmetry must be broken. Following the schemes given in literature, we modify the matrices (9in total) to gain the real PMNS matrix by perturbative rotations. The transformations may provide hints about the underlying physics at high energies and the breaking mech- anisms which apply during the evolution to the low energy scale, especially the results may be useful for the future model builders.
     (3) In order to accommodate the experimental anomalies, sterile neutrinos are in-troduced. If there exists mixing between sterile neutrinos and active ones, then this mixing can have an influence on the mixing parameters of active neutrinos. In theory, these influence provides the possibility from the symmetric patterns to the real mixing matrix and obtaining non-zero θ13. Taking this as the starting point, we discuss the possibility of obtaining the real mixing matrix by the introducing of sterile neutrino.
     2. The introducing of sterile neutrino not only accommodates the experimental anomalies, but also has relation with the experimental signals of new physics and pro-vides an accommodation to the latter. The recent measurements on Rk and Rπ imply that there exists a possible violation of the leptonic flavor universality which is one of the cornerstones of the standard model. It is suggested that a mixing between sterile and active neutrinos might induce such a violation. We consider the scenarios with one or two sterile neutrinos to explicitly realize the data while the constraints from the available experiments have been taken into account. Moreover, as indicated in lit-erature, the deviation of the real PMNS matrix from the symmetric patterns may be due to a μ-τ asymmetry, therefore the measurements on RD(Ds)eμ=Γ(D(DS)→e+ve)/Γ(D(Ds)→μ+vμ and RD(Ds)μτ=Γ(D(Ds)→μ+vμ)/Γ(D(Ds)→μ+ττ (and for some other heavy mesons B±and Bc etc.) may shed more light on physics responsible for the violation of the leptonic flavor universality. The data of BES III are available to test the universality and that of the future charm-tau factory will provide more accurate information towards the aspect, in this work, we discuss RD(Ds)eμ and RD(Ds)μτ in all details and also briefly consider the cases for B±and Bc
     3. Earthquakes and tsunamis are natural catastrophes.. They occur in our globe so frequently and cost thousands of lives and immense loss of properties. The knowl-edge on modern physics and sophisticated detection techniques and facilities may help, as we believe. We discuss the possibility of forecasting earthquakes by means of (an-ti)neutrino tomography. Antineutrinos emitted from reactors are used as a probe. As the antineutrinos traverse through a region prone to earthquakes, observable variations of the matter effect on the antineutrino oscillation would provide a tomography of the vicinity of the region. In this preliminary work, we adopt a simplified model for the geometrical profile and matter density in a fault zone. We calculate the survival proba-bility of electron antineutrinos for cases without and with an anomalous accumulation of electrons which can be considered as a clear signal of the coming earthquake, at the geological region with a fault zone and find that the variation may reach as large as8.5%for ve emitted from a reactor. The case for a ve beam from a neutrino factory is also investigated, and it is noted that, because of the typically high energy associated with such neutrinos, the oscillation length is too large and the resultant variation is not practically observable. Our conclusion is that an intense neutrino source with energies similar to reactor neutrinos and improved detector sensitivity are needed for realizing this scheme.
引文
[1]http://www.sciencemag.org/site/special/btoy2012/
    [2]W. Pauli, Proc. Solvay Congr. P.324 (1933).
    [3]J. Chadwick, Nature 129 (1932) 312.
    [4]E. Fermi, Z. Phys.88 (1934) 161.
    [5]T. D. Lee and C. N. Yang, Phys. Rev.104 (1956) 254.
    [6]C. S. Wu et al., Phys. Rev.105 (1957) 1413.
    [7]C. L. Cowan, et al., Science 124 (1956) 103.
    [8]G. Danby et al., Phys. Rev. Lett.51 (1983) 227.
    [9]K. Kodama et al. (DONUT Collaboration) Phys. Lett. B504 (2001) 218.
    [10]R. Jr. Davis et al., Phys. Rev. Lett.20 (1968) 1205.
    [11]L. Wolfenstein, Phys. Rev. D17,2369 (1978).
    [12]S.P. Mikheev and A.Y. Smirnov, Sov. J. Nucl. Phys.42,913 (1985); Nuovo Cim. C9,17 (1986).
    [13]Y. Fukuda et al., (Super-Kamiokande Collaboration) Phys. Rev. Lett.81 (1998) 1562.
    [14]J. Beringer et al. (Particle Data Group), Phys. Rev. D86 (2012) 010001.
    [15]A. Aguilar et al. (LSND), Phys. Rev. D64 (2001) 112007.
    [16]A.A. Aguilar-Arevalo et al. (MiniBooNE Collaboration), Phys. Rev. Lett.105 (2010) 181801.
    [17]Th. A. Mueller et al. Phys. Rev. C83 (2011) 054615.
    [18]P. Anselmann et al. (GALLEX Collaboration.), Phys.Lett. B342 (1995) 440; W. Hampel et al. (GALLEX Collaboration), Phys. Lett. B420 (1998) 114; F. Kaether, W. Hampel, G. Heusser, J. Kiko, and T. Kirsten, Phys. Lett. B685 (2010) 47.
    [19]D. Abdurashitov, V. Gavrin, S. Girin, V. Gprbachev, T. V. Ibragimova, et al., Phys. Rev. Lett. 77 (1996) 4708; J. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C59 (1999) 2246; J. Abdurashitov, V. Gavrin, S. Girin, V. Gorbachev, P. Gurkina, et al., Phys. Rev. C73 (2006) 045805; J. Abdurashitov et al. (SAGE Collaboration), Phys. Rev. C80 (2009) 015807.
    [20]S.L. Glashow, Nucl. Phys.22 (1961) 579.
    [21]S. Weinberg, Phys. Rev. Lett.19 (1967) 1264.
    [22]A. Salam, inElementary Particle Theory, ed. N. Svartholm (Almquist and Wiksells, Stockholm, 1969), p.367.
    [23]P. W. Higgs, Phys. Rev. Lett.13 (1964) 508; P. W. Higgs, Phys. Lett.12 (1964) 132; P. W. Higgs, Phys. Rev.145 (1966) 1156; F. Englert and R. Brout, Phys. Rev. Lett.13 (1964) 321; G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Phys. Rev. Lett.13 (1964) 585; T. W. B. Kibble, Phys. Rev.155(1967) 1554.
    [24]B. Pontecorvo, Zh. Eksp. Theor. Fiz.33 (1957) 549; ibidem 34 (1958) 247.
    [25]Z. Maki, M. Nakagawa and S. Sakata, Prog. Theor. Phys.28 (1962) 870.
    [26]B. Pontecorvo, Sov. Phys. JETP 6 (1957) 429; B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172.
    [27]B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984.
    [28]S. Eliezer and A. R. Swift, Nucl. Phys. B105 (1976) 45.
    [29]H. Fritzsch and P. Minkowski, Phys. Lett. B62 (1976) 72.
    [30]S. M. Bilenky and B. Pontecorvo, Sov. J. Nucl. Phys.24(1976) 316; S. M. Bilenky and B. Pontecorvo, Nuovo Cim. Lett.17 (1976) 569.
    [31]W. A. Ponce, J. D. Gomez, R. H. Benavides, arXiv:1303.1338 [hep-ph].
    [32]P. Minkowski, Phys. Lett. B67(1977) 421; T. Yanagida inProc. of the Workshop on Unified Theory and Baryon Number of the Universe, KEK, Japan,1979; S.L. Glashow, Cargese Lectures (1979); M. Gell-Mann, P. Ramond and R. Slansky in Sanibel Talk, CALT-68-709, Feb 1979, and inSupergravity(North Hol-land, Amsterdam 1979); R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett.44(1980) 912.
    [33]M. Magg and C. Wetterich, Phys. Lett. B94 (1980) 61; J. Schechter and J. W. F. Valle, Phys. Rev. D 22 (1980) 2227; G. Lazarides, Q. Shafi and C. Wetterich, Nucl. Phys. B181 (1981) 287; R. N. Mohapatra and G. Senjanovi'c, Phys. Rev.D23 (1981),165; C. Wetterich, Nucl. Phys.B 187(1981),343.
    [34]R. Foot, H. Lew, X.-G. He and G. C. Joshi, Z. Phys. C44 (1989) 441. E. Ma, Phys. Rev. Lett. 81(1998) 1171; E. Ma and D. P. Roy, Nucl. Phys. B644,290 (2002); T. Hambye, L. Yin, A. Notari, M. Papucci and A. Strumia, Nucl. Phys. B695,169 (2004) [arXiv:hep-ph/0312203].
    [35]D. Wyler and L. Wolfenstein, Nucl. Phys. B218 (1983) 205; R. N. Mohapatra and J. W. F. Valle, Phys. Rev. D34 (1986) 1642; E. Ma, Phys. Lett. B191 (1987) 287.
    [36]R. Allahverdi, B. Dutta, R. N. Mohapatra, Phys. Lett. B695 (2011) 181; A. C. B. Machado, V. Pleitez, Phys. Lett. B698 (2011):128; J. Barry, R. N. Mohapatra, W. Rodejohann, Phys. Rev. D83 (2011)113012.
    [37]F. P. An et al. (Daya Bay Collaboration), Phys. Rev. Lett.108 (2012) 171803, arXiv:1203.1669.
    [38]D. Dwyer, "Improved Measurement of Electron-antineutrino Disappearance at Daya Bay", p-resented at XXV International Conference on Neutrino Physics and Astrophysics,3-9 June 2012, Kyoto, Japan.
    [39]L. Zhang, "Observation of Electron-Antineutrino Disappearance at Daya Bay", presented at International Symposium on Neutrino Physics and Beyond,23-26 September 2012, Shenzhen, China.
    [40]中国科学院战略性先导科技专项实施方案—江门中微子实验,2013.
    [41]Juan A. Aguilar (IceCube Collaboration), arXiv:1301.6504 [astro-ph.HE].
    [42]A. Ishihara, plenary talk at NU2012, Kyoto.
    [43]The OPERA Collaboration, arXiv:1109.4897 [hep-ex].
    [44]Michael J. Longo, Phys. Rev. D36 (1987) 3276.
    [45]MINOS Collaboration, arXiv:1303.5314 [hep-ex].
    [46]R. B. Patterson, for the NOvA Collaboration, arXiv:1209.0716 [hep-ex].
    [47]T2K Collaboration, arXiv:1106.1238.
    [48]T2K Collaboration, Phys. Rev. Lett.107 (2011) 041801.
    [49]LSND Collaboration, Nucl.Instrum.Meth. A388 (1997) 149.
    [50]Y.F. Li and Zhi-zhong Xing, arXiv:1009.5870[hep-ph].
    [51]H. Fritzsch and Z.Z. Xing, Phys. Lett. B 372 (1996) 265; Phys. Lett. B 440 (1998) 313; Phys. Rev. D 61 (2000) 073016.
    [52]F. Vissani, hep-ph/9708483; V. D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Phys. Lett. B 437 (1998) 107; A.J. Baltz, A.S. Goldhaber and M. Goldhaber, Phys. Rev. Lett.81 (1998) 5730; I. Stancu and D.V. Ahluwalia, Phys. Lett. B 460 (1999) 431; H. Georgi and S.L. Glashow, Phys. Rev. D 61 (2000) 097301.
    [53]P.F. Harrison, D.H. Perkins and W.G. Scott, Phys. Lett. B 530 (2002) 167; Z.Z. Xing, Phys. Lett. B 533 (2002) 85; P.F. Harrison and W.G. Scott, Phys. Lett. B 535 (2002) 163; X.G. He and A. Zee, Phys. Lett. B 560 (2003) 87; I. Stancu and D.V. Ahluwalia, Phys. Lett. B 460 (1999) 431.
    [54]R. Friedberg and T.D. Lee, Annals Phys.324 (2009) 2196.
    [55]J. Cao, Nucl. Phys. B (Proc. Suppl.) 155 (2006) 229; S.M. Chen, J. Phys.120 (2008) 052024; C. White, J. Phys.136 (2008) 022012.
    [56]Double Chooz Collaboration, C. Palomares, arXiv:0911.3227[hep-ex]; F. Ardellier et al., arXiv:hep-ex/0606025; F. Ardellier et al., arXiv:hep-ex/0405032.
    [57]R. Friedberg and T.D. Lee, Chin. Phys. C (HEP & NP) 34 (10) (2010) 1547.
    [58]S.F. Ge, H.J. He and F.R. Yin, JCAP 1005 (2010) 017; H.J. He and F.R. Yin, arXiv:1104.2654[hep-ph].
    [59]T.D. Lee, in the preceedings for the conference on the neutrino physics in the Daya Bay era, Beijing, China, Nov.,2010.
    [60]R.N. Mohapatra and A.Yu. Smirnov, Ann. Rev. Nucl. Part. Sci.56 (2006) 569.
    [61]M.C. Gonzalez-Garcia, M. Maltoni and J. Salvado, JHEP,1004 (2010) 056.
    [62]H. Ishimori, T. Kobayashi, H. Ohki, H. Okada, Y. Shimizu and M. Tanimoto, arXiv:1003.3552[hep-ph].
    [63]H. Fritzsch, Phys. Lett. B73 (1978) 317; Nucl. Phys. B155 (1979) 189.
    [64]C. S. Lam, Phys. Rev. D83 (2011) 113002; arXiv:1105.4622.
    [65]Y. Abe et al. (Double-Chooz Collaboration), Phys. Rev. Lett.108 (2012) 131801, arX-iv:1112.6353.
    [66]Y. Abe et al. (Double-Chooz Collaboration), arXiv:1207.6632.
    [67]Soo-Bong Kim et al. (RENO), Phys. Rev. Lett.108 (2012) 191802, arXiv:1204.0626.
    [68]Z.Z. Xing and S. Zhou, Neutrinos in Particle Physics, Astronomy and Cosmology (Zhejiang University Press and Springer-Verlag,2011).
    [69]C. Jarlskog, Phys. Rev. Lett.55 (1985) 1039.
    [70]D. D. Wu, Phys. Rev. D33 (1986) 860.
    [71]A. Gando et al. (KamLAND Collaboration), Phys. Rev. D83 (2011) 052002, arXiv:1009.4771.
    [72]P. Adamson et al. (MINOS Collaboration), Phys. Rev. Lett.107 (2011) 181802, arX-iv:1108.0015.
    [73]G.L. Fogli, E. Lisi, A. Marrone, D. Montanino, A. Palazzo, A.M. Rotunno, Phys. Rev. D86 (2012) 013012, arXiv:1205.5254.
    [74]Y. Kajiyama, M. Raidal, and A. Strumia, Phys. Rev. D76 (2007) 117301, arXiv:0705.4559.
    [75]W. Rodejohann, Phys. Lett. B671 (2009) 267, arXiv:0810.5239.
    [76]C. H. Albright, A. Dueck, and W. Rodejohann, Eur. Phys. J. C70 (2010) 1099, arXiv: 1004.2798.
    [77]Z.Z. Xing, Phys. Rev. D78 (2008) 011301, arXiv:0805.0416.
    [78]R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, Phys. Lett. B703 (2011) 447, arXiv: 1107.3468.
    [79]R. de Adelhart Toorop, F. Feruglio, and C. Hagedorn, arXiv:1112.1340.
    [80]G. J. Ding, arXiv:1201.3279.
    [81]K. N. Abazajian, et al. arXiv:1204.5379.
    [82]D.H. Perkins, Introduction to High Energy physics,4th edition.(Cambridge University press, 2000)
    [83]The LEP Collaborations, the LEP Electroweak Working Group, and the SLD Heavy Flavor and Electroweak Groups, CERN-EP/2003-091, hep-ex/0312023.
    [84]A. Abada, D. Das, A.M. Teixeira, A. Vicente, C. Weiland, arXiv:1211.3052[hep-ph].
    [85]W.-S. Hou, Phys. Rev. D48 (1993) 2342.
    [86]D. Lopez-Val, J. Sola, arXiv:1211.0311 [hep-ph].
    [87]A. Masiero, P. Paradisi and R. Petronzio, Phys. Rev. D74 (2006) 011701; A. Masiero, P. Para-disi and R. Petronzio, JHEP 0811 (2008) 042; J. Ellis, S. Lola and M. Raidal, Nucl. Phys. B812 (2009) 128; J. Girrbach and U. Nierste, arXiv:1202.4906 [hep-ph]; R. M. Fonseca, J. C. Romao and A. M. Teixeira, Eur. Phys. J. C72 (2012) 2228.
    [88]G.B. Zhao, arXiv:1211.3741 [astro-ph.CO].
    [89]Spasimir Balev, arXiv:1006.1201 [hep-ex].
    [90]S. Antusch, C. Biggio, E. Fernandez-Martinez, M.B. Gavela, and J. Lopez-Pavon, JHEP 0610 (2006) 084.
    [91]Z.Z. Xing, arXiv:1210.1523 [hep-ph].
    [92]R. Mohanta, Eur.Phys.J. C71 (2011) 1625.
    [93]B. Aubert et al. (The BABAR Collaboration), arXiv:0912.2453 [hep-ex]
    [94]A. Crivellin, A. Kokulu, and C. Greub, arXiv:1303.5877 [hep-ph].
    [95]A. Heister et al. (ALEPH Collaboration), Phys. Lett. B528,1 (2002).
    [96]G. Abbiendi et al. (OPAL Collaboration), Phys. Lett. B516,236 (2001).
    [97]M. Acciarri et al. (L3 Collaboration), Phys. Lett. B396,327 (1997).
    [98]P. del Amo Sanchez et al. (Babar Collaboration), Phys. Rev. D82,091103 (2010).
    [99]L. Widhalm et al. (BELLE Collaboration), Phys. Rev. Lett.100,241801 (2008).
    [100]G. Bonvicini et al. (CLEO Collaboration) Phys. Rev. D70,112004 (2004); M. Artuso et al. (CLEO Collaboration), Phys. Rev. Lett.95,251801 (2005); P. Rubin et al. (CLEO Collaboration), Phys. Rev. D73,112005 (2006); T. K. Pedlar et al. (CLEO Collaboration), Phys. Rev. D76, 072002 (2007); B. I. Eisenstein et al. (CLEO Collaboration), Phys. Rev. D78,052003 (2008); K. M. Ecklund et al. (CLEO Collaboration), Phys. Rev. Lett.100,161801 (2008); J. P. Alexander et al. (CLEO Collaboration), Phys. Rev. D79,052001 (2009); P. U. E. Onyisi et al. (CLEO Collaboration), Phys. Rev. D79,052002 (2009); P. Naik et al. (CLEO Collaboration), Phys. Rev. D80,112004(2009).
    [101]J.Z. Bai et al. (BES Collaboration), Phys. Rev. Lett.74,4599 (1995); J.Z. Bai et al. (BES Collaboration), Phys. Lett. B492,188 (1998); M. Ablikim et al. (BESIII Collaboration), Phys. Lett. B610,183(2005).
    [102]W. D. Li et al., The Offine Software for the BES Experiment, Proceeding of CHEP06 (Mum-bai, India 13-17 Febuary 2006)
    [103]M. Ablikim et al. (BESIII Collaboration), Nucl. Instrum. Meth. A614,345 (2010).
    [104]S. Agostinelli et al. (Geant4 Collaboration), Nucl. Instrum. Meth. A506,250 (2003).
    [105]Z. Y. Deng et al., High Energy Phys. Nucl. Phys.30,250 (2003).
    [106]M. Ablikim et al. (BES Collaboration), Phys. Lett. B603,130 (2004).
    [107]J. Z. Bai et al. (BES Collaboration), Phys. Rev. D62,012002 (2000).
    [108]G.J. Feldman, R.D. Cousins, Phys. Rev. D57,3873 (1998).
    [109]A.De Rujula, S.L. Glashow, R.R. Wilson and G. Charpak, Phys. Rept.99,341 (1983).
    [110]A.N. Ioannisian and A.Y. Smirnov, arXiv:hep-ph/0201012.
    [111]T. Ohlsson and W. Winter, Europhys. Lett.60(1),34 (2002) [arXiv:hep-ph/0111247].
    [112]B.L. Young, in the proceedings for the conference on the advanced topics in the interdiscip-ilinary fields of particle physics, nuclear physics and cosmology, Tengchong, China, Aug.,2008.
    [113]T.L. Wilson, Nature 309,38 (1984); M.C. Gonzalez-Garcia et al., Phys. Rev. Let-t.100,061802 (2008)[arXiv:0711.0745[hep-ph]]; E.K. Akhmedov et al., JHEP 0506,053 (2005)[arXiv:hep-ph/0502154]; M. Lindner et al., Astropart. Phys.19,755 (2003)[arXiv:hep-ph/0207238]; T. Ohlsson, W. Winter, Phys. Lett. B512,357 (2001); P. Jain et al., Astropart. Phys. 12,193 (1999)[arXiv:hep-ph/9902206]; H. Sugawara et al., arXiv:hep-ph/0305062.
    [114]C. Giunti, C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics. New York:Oxford (2007).
    [115]W. Winter, Earth Moon and Planets 99,285 (2006) [arXiv:physics.geo-ph/0602049].
    [116]S. Geer, Phys. Rev. D57,6989 (1998)[arXiv:hep-ph/9712290].
    [117]Y.X. Li et al., Chinese J. Geophys.52(2),519 (2009).
    [118]F.D. Stacey, Physics of the Earth. New York:John Wiley & Sons (1977).
    [119]Z.A. Chen et al., Chinese J. Geophys.52(2),408 (2009).
    [120]A.A. Namgaladze et al., Proc. of MSTU 12,2 (2009).
    [121]S. Pulinets, TAO 15,3 (2004).
    [122]X.B. Wang et al., Chinese J. Geophys.52(2),564 (2009).
    [123]Y.S. Zhou et al., Chinese J. Geophys.52(2),474 (2009).
    [124]S.B. Zhu, P.Z. Zhang, Chinese J. Geophys.,52(2),418 (2009).
    [125]A. Nicolaidis, M. Jannane and A. Tarantola, J. Geophys. Res.96,21811 (1991).
    [126]A.N. Ioannisian, A.Y. Smirnov, Phys. Rev. Lett.93,241801 (2004)[arXiv:hep-ph/0404060].
    [127]E.Kh. Akhmedov, Nucl. Phys. B538,25 (1999)[arXiv:hep-ph/9805272].
    [128]P.C. Holanda, W. Liao and A.Y. Smirnov, Nucl. Phys. B702,307 (2004)[arXiv:hep-ph/0404042].
    [129]Daya Bay Collaboration, arXiv:hep-ex/0701029.
    [130]Y. Ben-Zion, C.G. Sammis, Pure Appl. Geophys.160,677 (2003).
    [131]J.M. Carlson, I.S. Langer and B.E. Shaw, Rev. Mod. Phys.66,2 (1994).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700