用户名: 密码: 验证码:
山东沂南金铜铁矿床同位素地球化学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山东沂南矽卡岩-热液型金铜铁矿床位于华北板块东南缘沂沭断裂带(郯庐断裂带的中段)西侧的鲁西地区,辖相距6 km的铜井和金场两个矿区,是沂沭断裂带西侧与中生代次火山作用有关的金铜铁多金属矿床的典型代表。矿床受控于燕山期中酸性杂岩体与围岩的接触带及围岩中的构造薄弱带(不整合面、层间破碎带、滑脱带),矿体围绕岩体呈环带状产出。本文在成矿地质条件分析基础上,系统分析了沂南金矿床的氢、氧、碳、硫、铅同位素以及铷锶同位素的组成特征,探讨了成矿热液类型和成岩成矿物质来源。结合流体包裹体研究,讨论了成矿流体性质及其演化特点。运用同位素地质年代学方法(全岩Rb-Sr等时线法和单颗粒锆石LA-ICPMS法),厘定了矿床的成岩成矿年龄。
     研究表明,成矿热液期以岩浆热液为主,后期有部分大气降水的加入,且两者均与围岩发生了同位素交换作用。热液中碳主要为深源岩浆来源,少量来自海相碳酸盐岩的溶解作用。硫化物矿石中的硫同位素组成特征反映了硫源具有深源岩浆硫的特征。矿石铅主要为放射性成因的“J型铅”,其源区年龄(2.37Ga)暗示了矿床的成矿物质来源于结晶基底(新太古代泰山群)。铷锶同位素组成特征表明,含矿中酸性岩体的成岩物质来源为幔壳混合型。
     研究认为,由期成矿阶段至晚期成矿阶段,成矿流体的均一温度和盐度依次下降。成矿作用在中低压力的中浅成至浅成条件下进行,主成矿阶段的含矿流体具有中高温、高盐度的特点,流体的沸腾可能是金、铜、铁等成矿物质大量沉淀富集的主要原因。
     不同方法所测定的成岩年龄基本吻合,集中在113~135 Ma之间,表明沂南金矿床主要侵入岩体形成于白垩世中晚期。鉴于矽卡岩型矿床成岩-成矿作用在时间上的密切关系,推测沂南金矿床的成矿年龄应略晚于成岩年龄。
As a typical Mesozoic subvolcanic-related Au-Cu-Fe deposit in Western Shandong Province, the Yinan skarn-hydrothermal type gold deposit is located on the west side of the Yishu fault zone (the middle segment of the Tanlu fault zone) at the southeastern margin of the North China plate. It includes the Tongjing and Jinchang ore districts which are 6 km away from each other. The ore bodies occur in the contact zones between the Yanshanian intermediate-acidic composite intrusions and their surrounding wall rocks,and the structural weakness zones (unconformity surface, inter-layer fracture zone, slip zone) in the wall rocks. The ore bodies are zonal distribution around the intrusions. Based on the metallogenic settings, this paper has analyzed the composition characters of the H, O, C, S, Pb and Rb-Sr isotopes and the indicative meaning of these isotopes to the chemistry of the ore fluids and the sources of the ore-forming materials and the intrusions. Combining with the fluid inclusion studies, the nature and evolution characteristics of ore-forming fluids are discussed. The diagenetic and metallogenic ages are determined in the use of isotope geochronology method (Rb-Sr whole-rock isochron and single-grain zircon LA-ICPMS method).
     The composition of H and O isotopes shows that the ore fluids were most likely composed of magmatic water mixed with limited meteoric water at the later mineralization stage. Sulfur and carbon isotopic data suggest that the ore-forming materials were mainly derived from the deep magma and subordinately from the dissolution of wall rocks. The significant Pb isotopic values of the ore might have resulted from the interfusion with a large amount of radioactive anomalous Pb (“J”type Pb), whose calculated age (2.37Ga) implies that the ore-forming materials had close genetic relations with the crystalline basement (Taishan Group). It can be deduced from the composition of Rb-Sr isotopes that the ore-forming stocks might have been the remelting products of high maturity crustal materials or have resulted from the mixture of crustal materials with limited mantle components.
     Detailed study on fluid inclusions indicated that the homogenization temperature and salinity of the ore-forming fluids declined from the early to late mineralization stage, and the mineralization occurred under the low-medium pressure and epithermal conditions. The ore-bearing fluids were characterized by medium-high temperature and high salinity in the main ore-forming stages. The boiling of ore-forming fluids may have caused the precipitation and concentration of Au, Cu, and Fe.
     The diagenetic ages measured by different methods are basically consistent and concentrated in 113 ~ 135 Ma, indicating that the main intrusions formed in the middle-late Early Cretaceous. In view of the close time relationship between diagenesis and mineralization of skarn type deposits, the metallogenic age of Yinan gold deposit should be slightly later than the diagenetic age.
引文
Batchelder J N. Light stable isotope and fluid inclusion study of the porphyry copper deposit at Copper Canyon, Vevada . Econ Geol, 1977, 72 (1): 60~70
    Bowan J R, O’Neil J R and Essene J. Contact skarn formation at Elkhorn, MontanaⅡ:origin and Evolution of C-O-H skarn fluid . Econ Geol, 1985, 285 (7): 621~660
    Brookes J W, Meinert L D , Kuyper B A, et al. Petrology and geochemistry of the McCoy gold skarn, Lander Country, Nevada. In: Geology and Ore Deposits of the Great Basin, Symposium Proceedings, Geological Society of Nevada. 1990
    Brown I J and Nesbitt B E. Gold-copper-bismuth mineralization in hedenbergitic skarn, Tombstone Mountains, Yukon. Can. Jour. of Earth Sc., 1987, 24: 2362~2372
    Clayton R N. The use of bromine pentafluoride in the extraction of oxygen from oxides and silicates for isotopic analysis. Geochim. Cosmochim. Acta, 1963, 27(1): 43~52
    Defines P and Gold D P. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep seated carbon. Geochim. Cosmochim. Acta, 1973, 37: 1709~1733
    Everson C I and Read J J. Gold skarn deposits of the Elkhorn district, Jefferson County, Montana. A.I.M.E.S.M.E . 1992, 92~105
    Ewers G R and Sun S S. Genesis of the Red Dome deposit, Northeast Queensland. Bicentennial Gold 88, 1988, 110~115
    Faure G. Principles of isotope geology. New York : John Wiley & Sons. 1986
    Faure G and Mensing T M. Isotopes: Principles and Applications (the third edition). New York: John Wiley & Sons, 2005, 256~283
    Friedman I and O’Neil J R. Compilation of stable isotope fractionation factors of geochemical interest. In: Fleischer M, ed. U. S. Geological professional paper. Washington: U. S. Govst. Print. Off. 1977: 440p
    Gray N, Mandyczewsky A and Hine R. Geology of the zoned gold skarn system at Junction Reefs, New South Wales. Economic Geology, 1995, 90:1533~1552
    Griffin W L, Belousova E A, Shee S R, et al. Crustal evolution in the northern Yilarn Craton: U-Pb and Hf-isotope evidence from detrital zircons. Precambrian Research(in Press). 2003
    Hickey R J. The Buckhorn Mountain, Crown Jewel Gold Skarn Deposit, Okanogan County, Washingtone. Economic Geology, 1992, 87: 125~141
    Hoefs J. Stable Isotope Geochemistry (the forth Edition). Berlin: Springer-Verlag. 1997, 119~120
    Kuyper B A. Geology of the McCoy gold deposit, Lander Country, Nevada. Symposium on Bulk Mineable Precious Metal Deposits of the Western United States, 1987, 40
    Ludwig K R. Using Isoplot/EX, Version2: A geochronological Toolkit for Microsoft Excel. Berkley Geochronological Center Special Publication 1a, 1999, 47
    Meinert L D, Hefton K K, Mayes D, et al. Geology, zonation and fluid evolution of the Big Gossan Cu-Au skarn deposit, Ertsberg district, Irian Jaya. Econ Geol, 1997, 95(5): 509~534
    Meinert L D. A review of skarn that contain gold. In: Lentz D R, ed. Mineralized intrusion-related skarn systems. Quebec. Short Course Series. 1998, 359~414
    Nam T N, Sano Y, Terada K, et al. First SHRIMP U-Pb zircon dating of granulites from the Kontum massif (Vietnam) and tectonothermal implications. Journal of Asian Earth Sciences, 2001, 19(1-2): 77~84
    Ohmoto H and Rye R O. Isotopes of sulfur and carbon. In Barnes H L, ed. Geochemistry of hydrothermal ore deposits. New York: John Wiley & Sons. 1979: 509~567
    Ohmoto H. Stable isotope geochemistry of ore deposits. Rev. Mineral, 1986, l6(1): 491~559
    O’Neil J R and Epstein S. Oxygen isotope fractionation in the system dolomite- calcite- carbon dioxide. Science, 1966, 152(3719): 198~201
    O'Neil J R, Clayton R N and Mayeda T K. Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys, 1969, 51(12): 5547~5558
    Paladines A and Rosero G. Zonificacion mineralogénica del Ecuador, Ed. Laser, Quito, 1996, 146
    Romer R L and Soler A. U-Pb age and lead isotope characterization of Au-bearing skarn related to the Andorra granite (central Pyrenees, Spain). Mineralium Deposita, 1995, 30(5): 374~383
    Staecy J S and Kramers J D. Approximation of terrestrial lead isotope evolution by a two stage model. Earth and plant Sci. Letters, 1975, 26 (2): 207~221
    Taylor H P. The application of oxygen and hydrogen isotope studies to problems ofhydrothermal alteration and ore deposition .Econ Geol, 1974, 69(6): 843~883
    Torrey C E, Karjalainen H, Joyce P J, et al. Geology and mineralization of the Red Dome gold skarn deposit, North Queensland, Australia. In proceeding of gold’86, An international symposium of the geology of gold, Macdonald, A.J., Editor, Gold’86 Toronto, 1986, 3~22
    Wetherill G W. Discordant uranium-lead ages-Pt 2; discordant ages resulting from diffusion of lead and uranium. Geophysical Research, 1963, 68: 2957~2965
    Wilkie K M. Geology and hydrothermal evolution of the Beal Mountain gold deposit, Silver Bow County, Montana: unpub. Ph. D thesis, Washington State Unversity, 1996, 371
    Zartman R E and Doe B R. Plumbtectonics: The model .Tectonophysics, 1981, 75 (1-2): 135~162
    Zheng Y F. Carbon-oxygen isotope covariation in hydrothermal calcite during degassing of CO2: A quantative evalution and application to the Kushikino gold mining area in Japan. Mineralium Deposita, 1990, 25: 246~250
    Zheng Y F and Hoefs J. Caron and oxygen isotope covariation in hydrothermal calcite: Theoretical modeling on mixing processes and application to Pb-Zn deposits in the Harz Mountains, Germany. Mineralium Deposita, 1993, 28: 79~89
    曹国权.鲁西山区前寒武纪地壳演化再探讨.山东地质,1995,19(2):1~14
    曹国雄,高太忠,吴有民.堡子湾金矿同位素及稀土元素地球化学研究.地质地球化学,2000,28(1):10~14
    陈常富,郭志远,胡京宇,等.山东沂南金厂金铜矿床构造、岩浆演化与成矿模式.地质找矿论丛,1995,10(1):9~14
    陈培荣,周新民,张文兰,等.南岭东段燕山期正长岩—花岗岩杂岩的成因和意义.中国科学(D辑),2004,36(6):493~503
    董树义.山东沂南金矿床成因与成矿规律和成矿预测:[博士学位论文].北京:中国地质大学(北京),2008
    顾雪祥,董树义,王银宏,等.不整合面控制内生金属成矿的新实例:山东沂南金铜铁矿床.现代地质,2008,22(2):151~161
    侯贵廷,李江海,金爱文,等.鲁西地块前寒武纪构造-岩浆活动区划及演化的新认识.高校地质学报,2004,10(2):239~249
    焦鹏,,高兴艳,刘章存.金场矿区矽卡岩型含金铜金属矿床成矿规律及深部找矿预测.有色金属(矿山部分),2006,58(4):24~26
    金振奎,刘泽容,石占中.鲁西地区断裂构造类型及其形成机制.石油大学学报(自然科学版),1999,23(5):1~5
    鞠谱.鲁西金矿类型及其基本特征.冶金地质动态,1992,1:8~10
    黎彤.化学元素的地球化学.地球化学,1976,3
    李理,张进江,钟大赉,等.鲁西地区沿寒武系/太古宇不整合面滑脱构造的主要特征及形成机制.地质科学,2007,42(2):335~352
    刘家军,何明勤,李志明,等.云南白秧坪银铜多金属矿集区碳氧同位素组成及其意义.矿床地质,2004,23(1):3~6
    刘建明,刘家军.滇黔贵金三角区微细浸染型金矿床的盆地流体成因模式.矿物学报,1997,17(4):451
    刘金友,高池兴,赵新峰.鲁中南地区燕山期侵入岩与金成矿.黄金地质,2002,8(2):54~57
    刘玉强,李洪喜,黄太岭,等.山东省金铁煤矿床成矿系列及成矿预测.北京:地质出版社,2004
    刘玉强.山东省金矿床成矿系列及成矿规律.矿产与地质,2004,18(1):1~7
    卢武长,杨绍全.利用氧键计算兰晶石、十字石等矿物的氧同位素分馏方程.矿物岩石,1982,(2):106~112
    毛景文,华仁民,李晓波.浅议大规模成矿作用与大型矿集区.矿床地质,18(4):316~322
    邱检生,王德滋,任启江.山东沂南金场矽卡岩型金铜矿床地质地球化学特征及矿床成因.矿床地质,1996,15(4):330~340
    山东省地质局第八地质队.山东省沂南铜井地区铜、金成矿地质条件及找矿方向. 1981
    山东省地质矿产局.山东省区域地质志.北京:地质出版社,1991
    沈渭洲.稳定同位素地球化学.北京:原子能出版社,1987
    沈渭洲,凌洪飞,李武显,等.中国东南部花岗岩类的Nd模式年龄与地壳演化.中国科学(D辑),2000,30(5):471~478
    宋明春,李洪奎.山东省区域地质构造演化探讨.山东地质,2001,17(6):12~21,38
    田世洪,丁悌平,侯增谦,等.安徽铜陵小铜官山铜矿床稀土元素和稳定同位素地球化学研究.中国地质,2005,32(4):604~612
    王世进.鲁西地区前寒武纪侵入岩.山东地质,1990,6(1):59~81
    王世进.鲁西地区前寒武纪地质构造.中国区域地质,1993,(3):216~222
    王小凤,李中坚,陈柏林,等.郯庐断裂带.北京:地质出版社,2000
    魏菊英,王关玉.同位素地球化学.北京:地质出版社,1988:59~80
    徐贵忠,周瑞,王艺芬,等.胶东和鲁西地区中生代成矿作用重大差异性的内在因素.现代地质,2002,16(1):9~18
    夜卫平,冯建忠.同位素地球化学研究进展及动态.陕西地质,2006,24(2):74~85
    于津生,李耀菘.中国同位素地球化学研究.北京:科学出版社,1997:314~409
    于学峰.鲁西内生金矿成矿系列及成矿规律讨论.地质与可持续发展——华东六省一市地学科技论坛文集,2003,64
    张长春,王时麒,张韬.内蒙古金厂沟梁金矿床稳定同位素组成和矿床成因讨论.地质力学学报,2002,8(2):156~164
    张国仁,陈建强,顾德林,等.山东沂水沂沭断裂带西部中下寒武统岩石地层及沉积特征.辽宁地质,1996,4:251~262
    张国仁,陈建强,胡明花,等.山东沂水地区早中寒武世露头层序地层及地层格架.辽宁地质,1996,3:195~209
    张理刚.稳定同位素在地质科学中的应用.西安:陕西科学技术出版社,1985:152~185
    张理刚.长石铅和矿石铅同位素组成及其地质意义.矿床地质,1988,7(2):55~64
    张理刚,陈振胜,刘敬秀,等.焦家式金矿水岩交换作用-成矿流体氢氧同位素组成研究.矿床地质,1994,13(3):196~197
    赵鹏大,陈永清.基于地质异常单元金矿找矿有利地段圈定与评价.地球科学-中国地质大学学报,1999,24(5):443~448
    赵一鸣,林文蔚,毕承思,等.中国矽卡岩矿床.北京:地质出版社,1990
    赵一鸣,林文蔚,毕承思,等.中国含金矽卡岩矿床的分布和主要地质特征.矿床地质,1997,16(3):193~203
    赵一鸣.夕卡岩矿床研究的某些重要新进展.矿床地质,2002,21(2):113~120
    郑永飞,陈江峰.稳定同位素地球化学.北京:科学出版社,2000:143~245
    郑子恒,罗根全.利用岩体边部构造形态预测矽卡岩型矿床盲小矿体.有色金属(矿山部分),1996,6:26~29
    郑子恒,王炳勤.铜井地区岩浆岩及含金铜多金属矿.山东沂南金矿“科技论文选集”,1989,1~9
    郑子恒.矽卡岩型小盲矿体的找矿预测—以山东山子涧矿床为例.有色金属矿产与勘查,1992,1(6):380~382
    朱炳泉.地球科学中同位素体系理论与应用—兼论中国大陆壳幔演化.北京:科学出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700