用户名: 密码: 验证码:
机动条件下时间保持方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机动时频系统是地面固定时频系统的备份和补充,在战时或特殊情况下,替代固定时频系统提供高精度的时间频率信号,满足导航系统各类导航业务的需求。机动时频系统除具有与地面固定时频系统相似的功能外,由于机动条件下的工作环境较为恶劣、原子钟数量少,这就对时间保持方法提出了更高的要求。
     机动条件下,时间保持方法主要要解决以下几个方面的问题:1.综合时间尺度是机动时频系统时间产生的依据,而且机动条件下原子钟数量少,因此,研究适合的时间尺度算法是机动时频系统时间保持中首先要解决的问题;2.由外界温度变化及震动等引起的噪声、频率跳变、相位跳变及频率漂移等问题;3.为了保证在工作环境差和系统规模受限制等诸多不利因素的条件下,仍然能够提供高精度的时间频率信号,需要设计出一套机动条件下的系统时间监控方法。
     论文针对以上问题,研究了机动条件下的综合时间尺度产生算法、基于HHT的消噪方法和奇异点检测方法、频率预报方法和主钟监控方法,同时研究了时频基准配置等关键技术,利用中国科学院时间频率基准重点实验室的原子钟资源和相关时频设备,建立了时间保持实验系统,并对机动条件下系统时间的产生和保持进行仿真实验。论文的主要内容包括:
     研究了机动时频系统中综合时间尺度TAs的产生算法。针对机动条件下钟数量少的特点,对ALGOS算法中的权重计算和钟异常检测作了改进,提出了改进的ALGOS算法。为了满足机动条件下,对综合时间尺度TAs实时性和稳定性的要求,提出了改进ALGOS方法与Kalman算法相结合的算法。
     研究了噪声平滑滤波方法。机动条件下的工作环境差,使原子钟信号噪声变大、出现频率跳变和相位跳变等问题,因此,在建立时间尺度之前,必须对信号进行消噪和奇异点检测等预处理。论文首次将HHT中的时空滤波器,用于机动条件下,恶劣工作环境引起的原子钟噪声的消噪。
     研究了机动条件下的时间监控方法。主钟频率源频率预报方法是系统时间监控的关键,根据原子钟的统计特性,提出了基于EMD分解的原子钟频率预报新方法,该方法比传统的频率预报方法更高效、更准确。
     通过分析原子钟的稳定度指标、主备主钟切换方案、数据采集及对环境的要求,根据机动时频系统的功能和特点,提出了机动时频基准的配置方案。
     最后,建立了机动时间保持仿真实验系统,开发了系统时间自动监控软件,并利用该软件实现了不同时间保持模式下,系统时间ST的自动监控,达到了预期指标。
     创新点:
     1.根据机动时频系统的任务与功能,将改进ALGOS方法与Kalman算法相结合,产生综合时间尺度TAs。改进ALGOS方法解决了原子时Kalman算法的发散性问题,同时Kalman算法弥补了改进ALGOS方法τ<30d时稳定度较差的缺陷。
     2.时空滤波器基于局部特征时间尺度参数,不需要人为指定中心频率、带宽等各种参数,避免了人为因素的影响。首次将时空滤波器用于原子钟噪声的平滑滤波,并根据远程时间比对结果的特征,提出了时空滤波器+Vondrak平滑的消噪方法,提高了比对结果的精度。
     3.频率预报方法取决于钟的统计特性和有效的预报间隔。当τ≤10d时,噪声主要表现为白色调频噪声,利用EMD可以提取信号趋势项的功能,提出了基于EMD分解的原子钟频率预报新方法。该方法比目前使用的频率预报方法更准确。
The mobile time and frequency system is necessary backup and supplement of the ground time and frequency system in the navigation system. It takes on main tasks of providing high precision time and frequency signals replacing the motive ground station in wartime or under special cases so as to meet all kinds of navigation business demands. It has the similar functions to the ground time and frequency system. However, its adverse work environment and small quantities set high demands to time-keeping methods.
     There are main several aspects need solving as follows: 1. An integrated timescale is the basis to establish the system time for motive application. While the number of clock is small. So study on an integrated timescale algorithm is the first problem need to be settled. 2. The problems of clock’s noise, signal frequency or phase jumped and frequency shift are caused by outside the temperature change, vibration and so on. 3. In order to ensure the time-frequency system providing high precision time and frequency signals for motive ground station in the disadvantage conditions of the worse working environment and limited system size. The monitor means of system time for mobile application need to be researched.
     For the above questions, this paper researches several core technologies of an integrated timescale algorithm, de-noising and singularity detecting measures based on HHT, frequency predicting and main clock monitoring techniques and configuration of time and frequency standard in motive condition. Based on atomic clocks and related time-frequency equipments at the Key Laboratory of Time and Frequency Primary Standards, Chinese Academy of Sciences, a time keeping simulation system of the experiment is established. And methods for producing and keeping the motive time-frequency system time is fufilled. The major contents include:
     An integrated timescale algorithm for motive time-frequency system is studied. For feature of clock small size in motive time-frequency system, the measures of weight calculation and clock abnormal detection in ALGOS algorithm are improved. The improve ALGOS algorithm which raisesτ≥5d stability of integrated timescale is put forward. In order to remedy a defect of poor short-term stability, a combinative algorithm between improved ALGOS and Kalman is brought upward.
     Research on the de-noise methods. The space-time filter in HHT is firstly used to solve clock noise caused by bad working conditions.
     Research on monitoring measures of the system time in motive time and frequency system. A new clock frequency predicting means based on EMD extracting signal tendency is raised. It is more efficient and more accurate than traditional one. The frequency prediction problem is solved. According to characteristics of mobile time-frequency system, the configuration
     plan of the time-frequency standard is proposed by analyzing clock performance, main and stand-by master clock switching scheme, data acquisition and demands for environment.
     The time keeping simulation system of the experiment is established. And the automatic monitor software of system is developed. They are used to do automatic monitoring experiments of the system time in different time keeping models. And the results achieve the desired targets.
     Innovations:
     In the light of features of motive time-frequency system time, an integrated timescale TAs is calculated with the combinative algorithm between improved ALGOS and Kalman, in which the former restrains the latter’s diverge while the latter improves the short-term stability of the former.
     The time-space filter is based on local character timescale parameter, and don't need specify the centre frequency, bandwidth such parameters. So some artificial factors are avoided. It is firstly used to filter and reduce atomic clock noises. And in terms of the time comparison result's feature, a de-noise means of time-space filter + Vondrak is presented which raises precision of comparison result.
     The frequency predicting method depends on atomic clock statistical property and valid forecast interval. Whenτ≤10d, the main clock noise is white FM. The function of EMD extracting trend of the signal is used to predict clock frequency. This measure is more accurate than present use.
引文
[1]中国人民解放军总装备部军事训练教材编辑工作委员会,GPS技术与应用,国防工业出版社,2005: 4-15.
    [2]B. Hofmann-Welllenhof, H. Lichtenegger, and J. Collins, Global Positioning System (Third revised edition), Springer-Verlag Wien New York, 1992:38-41.
    [3]Operating and Programming Manual of HP5071A Primary Frequency Standard, Hewlett Packard Company.
    [4]Instruction and Operations Manual of Atomic Hydrogen Maser Frequency Standard, Model MHM-2010, Symmetricom Company.
    [5]Operating and Instruction Manual of OSA 5585 PRS Primary Reference Source, Model 945 558 500, Oscilloquartz S.A.
    [6]翟造成,上海天文台原子频标研究50年,中国科学院上海天文台,No.28, 2007: 142-150.
    [7]D. Kirchner,“Two-Way Satellite Time and Frequency Transfer (TWSTFT): Principle, Implementation, and Current Performance,”Rev. of Radio Science, Oxford University Press, pp. 27-44, 1999.
    [8]Kirchner, D., Two-way time transfer via communication satellites. Proc. IEEE, Vol.79, No.7, 1991:983-989.
    [9]徐绍全,张华海等, GPS测量原理及应用.武汉大学出版社, 2008.
    [10]Z.Jiang and G.Petit, Time transfer with GPS satellites all in view. In Proc. ATF2004, Beijing, China, 2004:236-243.
    [11]高玉平,漆溢,王正明,多通道时间传递接收机NTSCGPS-1的研制与测试,全球定位系统,No.2,2004:16-23.
    [12]高玉平,漆溢,王正明,多通道单频GPS时间传递接收机NTSCGPS-1的性能分析,时间频率学报,No.2,2003:136-143.
    [13]高玉平,漆溢,王正明,用于JATC远程时间比对的双频GPS接收机,时间频率学报,No.1,2006:6-12.
    [14]李滚,GPS载波相位时间频率传递研究.国家授时中心博士论文,2007.
    [15]K.R.Brown, the Theory of the GPS Composite Clock, in Proceedings of the 4thInternational Technical Meeting of the Satellite Division of the Institute of Navigation,223-241,1991.
    [16]Mr.Steven, T.Hutsell, Refining monitor station weighting in the GPS composite clock, 29th Annual Precise Time and Time Interval (PTTI) Meeting, 131-142.
    [17]郭海荣,导航卫星原子钟时频特性分析理论与方法研究,博士论文,解放军信息工程大学,2006.
    [18]马英,G L O N A S S系统时间测量的原理与技术.信息技术,Vol.36, No.3,2007.
    [19]J.Laverty, et al., The Galileo time Service Provider: A Progress Report, Proceedings of the 19th European Frequency and Time Forum, 2005:158-163.
    [20]W.Schliiter, Timing Infrastructure for Galileo System, Proceedings of the 20th European Frequency and Time Forum, 2006:391-398.
    [21]R. Zanello, M. Mascarello, L. Galleani, et al., The Galileo Precise Timing Facility [C]. The Joint 2007 European Frequency and Time Forum & 2007 IEEE Frequency Control Symposium, 2007:458-462.
    [22]Judah L, Realizing UTC(NIST) at a Remote Location, Metrologia, 2008, 45:23-33.
    [23]卫国.原子钟噪声模型分析与原子时算法的数学原理.陕西天文台博士论文, 1991.
    [24]胡永辉,漆贯荣.时间测量原理.香港亚太科学出版社,2000.
    [25]J.A.Barnes,et al., Characterization of Frequency Stability.IEEE Transactions on Instrumentation and Measurement, Vol.20, No.2,1971:105-120.
    [26]Stable32 User Manual (Version 1.46). Hamilton Technical Services 650 Distant Island Drive Beaufort, SC 29907 USA, 2005.
    [27]D.W.Allan and J.A.Barnes, A Modified Allan Variance with the Increased Oscillator Characterization Ability, 35th Annual Frequency Control Symposium,1981:470-474.
    [28]B.Guinot,C.Thomas. Establishment of International Atomic Time. BIPM Annual Report of the Time Section,1988:1-22.
    [29]Bureau International Des poids et Mesures International Atomic time. UTC- UTC(k) of Circular T (in percent)of One Month Ending at the GivenDates:0908-0909.
    [30]Thomas C., Azoubib J., TAI computation: study of an alternative choice for implementing an upper limit of clock weights, Metrologia, Vol.33, 1996:227-240.
    [31]J.A.Barnes et al., Stochastic model for Atomic Clocks, Proc. of 14th PTTI, 1992.
    [32]Richard H.J., Peter V.T. Estimating Time from Atomic Clocks. Journal of research of the National Bureau of Standards, Vol.88, No.1,1983:17-24.
    [33]J.A.Barnes, Time Scale Stability Based on Time and Frequency Kalman Filters. 39th Annual Frequency Control Symposium,1985:107-112.
    [34]L. A. Breakiron, Kalman Filter Characterization of Cesium Clocks and Hydrogen Masers. The 34th Annual Precise Time and Time Interval (PTTI) Meeting, 2002.
    [35]C.Greenhall, Kalman plus weights: a time scale algorithm. 33th Annual Precise Time and Time Interval (PTTI) Meeting, 2001:445-454.
    [36]宋文尧,张牙,卡尔曼滤波.科学出版社,1991:112-116.
    [37]李孝辉,原子时的小波分解算法.陕西天文台硕士论文,2000.
    [38]柯熙政,李孝辉等,一种时间尺度算法的稳定度分析.天文学报,Vol.42, No.4, 2001:420-427.
    [39]李建勋,柯熙政等,一种基于小波熵的时间尺度算法.天文学报,Vol.48, No.1, 2007:84-92.
    [40]胡昌华,李国华,周涛,基于MATLAB的系统分析与设计——小波分析.西安电子科技大学出版社,2008.
    [41]程正兴,小波分析算法与应用.西安交通大学出版社,2002.
    [42]李孝辉,柯熙政,焦李成,原子时的小波分解算法.陕西天文台台刊,Vol.23, No.1,2000.
    [43]Judah L, Steering a time scale. 40th Annual Precise Time and Time Interval (PTTI) Meeting, 2008:205-218.
    [44]Bureau International Des poids et Mesures International Atomic time. Relative Weights (in percent) of the Clocks for Intervals of One Month Ending at the Given Dates:W0903.
    [45]Azoubib J., A revised way of fixing an upper limit to clock weights in TAIcomputation. Report to the 15th session of the CCTF(20-21 June 2001),2001:1-14.
    [46]Shinn Y L et al. a Paper Clock Model for the Cesium Clock Ensemble of TL, 35th Annual Precise Time and Time Interval (PTTI) Meeting, 2003: 297-307.
    [47]Azoubib J., A revised way of fixing an upper limit to clock weights in TAI computation. Report to the 15th session of the CCTF(20-21 June 2001),2001:1-14.
    [48]王正明,守时工作进展.天文学进展,Vol.22, No.2,2004:104-114.
    [49]J.A.Davis, W. Lewandowski, Comparison of two-way satellite time and frequency transfer and GPS common view time transfer during the intelsat field trial, European frequency time forum,1996:382-387.
    [50]Bureau International des Poids et Mesures, Director’s Report on the Activity and Management of the International Bureau of Weights and Measures.2008.
    [51]Tadahiro Gotoh, Improvement GPS Time Link in Asia with All in View. Proceedings of the 36th Annual Precise Time and Time Interval (PTTI) Systems and Applications Meeting, 2005:707.
    [52]江志恒,GPS全视法时间传递回顾与展望.宇航计测技术增刊,2007:53-71.
    [53]魏子卿等,GPS相对定位的数学模型.北京:测绘出版社,1998.
    [54]J. Azoubib, D. Kirchner, Two-way satellite time transfer using intelsat 706 on a regular basis: status and data evaluation, 30th Annual Precise Time and Time Interval meeting, P393-404.
    [55]BIPM Annual Report on Time Activities,2008.
    [56]Allan, D., Thomas, C.,Technical Directives for Standardization of GPS Time Receiver Software.Metrologia,31,1994:9.
    [57]刘基余,全球定位系统原理及其应用.北京测绘出版社,1999.
    [58]Werner Gurtner , RINEX: The Receiver Independent Exchange Format Version 2.10[J]. Bulletin of the American Meteorological Society. Vol.77, 1-18, 2002.
    [59]Parl r. Spofford, The National Geodetic Survey Standard GPS Format SP3. International Union of Geodesy and Geophysics,Vienna,Austria,1991, P28.
    [60]徐绍铨等. GPS测量原理及应用.武汉大学出版社, P94-96,2003.
    [61]KLOBUCHAR J A, Ionospheric Effects on GPS. GPS World,Vol.2,No.4,1991:48-51.
    [62]W.Peter and G.Petit, Use of IGS ionosphere products in TAI,31st Annual Precise Time and Time Interval(PTTI) Meeting, P419-429.
    [63]S. Schaer, W. Gurtner, IONEX: The IONosphere Map Exchange Format Version1[EB/OL].http://igscb.jpl.nasa.gov/images/world-clean.jpg, 1998.
    [64]Christine Hackman,S.R.Jefferts and Thomas E. Parker, Common-clock two-way satellite time transfer experiments, IEEE International frequency control symposium,1995:275-281.
    [65]P.M.Harris, J.A.Davis, M.G.Cox and S.L.Shemar, Least-squares analysis of time series data and its application to two-way satellite time and frequency transfer measurements, Metrologia, Vol.40, 2003: 342-347.
    [66]J.A.Davis, P.M.Harris, S.L.Shemar and M.G.Cox, The characterization of regular but unevenly spaced TWSTFT data using second-difference statistics, Metrologia, Vol.40,2003:312-318.
    [67]RECOMMENDATION ITU-R TF.1153-2. The operational use of two-way satellite time and frequency transfer employing PN codes,2003.
    [68]N.E.Huang, et al., Wave fusion as a mechanism for nonlinear evolution of water waves, J. Fluid. Mech.,1995:254-280.
    [69]N.E.Huang, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond, 1998, 454 (A): 900-995.
    [70]Norden E. Huang, Zheng Shen, et al.,A new view of nonlinear water waves: The Hilbert Speetrum, Annu. Rev. Fluid Meeh, vol.31, 1999: 417-457.
    [71]Norden E.Huang, Man-Li C.wu,et al., A confidence limit for the empirical mode decomposition and Hilbert spectral analysis Proc. Roy. Soe. LondonA, Vol.459, 2003:2317-2345.
    [72]P.Drazin, Nonlinear Systems. Cambridge, UK:Cambridge Univ. Press. 1992.
    [73]黄诚惕,希尔伯特-黄变化及其应用研究.西南交通大学硕士论文,2006.
    [74]Gabriel Rilling,Patrick Flandrin,Paulo Goncalves, On empirical mode decomposition and its algorithms.
    [75]李卿,EMD时频分析方法的研究与应用.华中师范大学硕士论文,2008:36-45
    [76]Zhaohua wu, Norden E.Huang, A study of the charaeteristics of white noiseusing the empirieal mode decomposition method, roe. Roy. Soe. LondonA, Vol.460, 2004:1594-1611.
    [77]P.Flandrin,G.Rilling and P.Gonealves, Empirical Mode Decomposition as a filter bank. IEEE Sig.Proc.Lett.,Vol.11,No.2,2004: 112-114.
    [78]A.0.Boudraa,J.C.Cexus,and Z.Saidi. EMD-Based Signal Noise Reduction. IJSP Vol.1, No.1,2004:33-37.
    [79]盖强,张海勇,徐晓刚,Hiblert-Huang变换的自适应频率多分辨分析研究.电子学报,2005,(3):563-566.
    [80]P.Flandrin and P.Gonealves, Empirical Mode Decompositions as data-driven wavelet-like expansions, Int. J. on Wavelets and Multires. Info.Proc., 2004.
    [81]郭晶,陆淑敏. MATLAB6.5辅助小波分析与应用.北京:电子工业出版社,2003.
    [82]何凤华.小波分析中信号消噪中的应用.自动监测技术,2002,21(6):22-26.
    [83]D.L.Donoho. De-noising by Soft-thresholding. IEEE Transactions on Information Theory. No.3,1995:613-627.
    [84]Vondrak,J.. Problem of Smoothing Observational Data, Bull. Astron, Inst. Czech.20, No.6,1969:349.
    [85]Vondrak,J..Problem of Smoothing Observational Data ,Bull. Astron, Inst. Czeah. 28, No.2,1977:84.
    [83]张志涌等,精通MATLAB 7.北京航空航天大学出版社,2007.
    [84]董霖,MATLAB使用详解——基础、开发及工程应用,电子工业出版社,2009.
    [85]BIPM Annual Report on Time Activities,2005.
    [86]漆贯荣.时间科学基础,高等教育出版社,2006.
    [87]Steven T.H., USNO alternate master clock steering. The 32nd Annual Precise Time and Time Interval (PTTI) Meeting,2000:289-295.
    [88]Judah L., Steering a time scale. The 40th Annual Precise Time and Time Interval (PTTI) Meeting,2008:205-218.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700