用户名: 密码: 验证码:
浅水湖泊生态类型及其生态恢复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过去20多年的恢复实践显示,恢复浅水湖泊清水状态是一个世界性难题。在深入调研国内、外文献资料的基础上,提出了治理湖泊富营养化问题必须治本的观点,生态恢复是其核心内容。论文依托滇池“863”生态恢复示范工程,通过室内模拟、野外调查和工程实践研究了浅水湖泊的生态类型及如何进行浅水湖泊生态恢复。通过研究,得出了如下结论:(1)成功设计并实施了不同生态类型湖泊的模拟实验,揭示出实验条件下水生植物生长与湖水、间隙水、沉积物营养盐浓度之间的复杂关系与变化规律;(2)研究了不同生态类型湖泊的生态特征差异;分析了草型、藻型湖区的生态特征差异及其指标体系;(3)提出了浅水湖泊五大阶段的生态演替模式,并划分出浅水湖泊的八大生态类型;(4)提出了一整套浅水湖泊生态恢复的技术路线,取得了清洁湖泥吹填技术恢复浅水湖泊直立陡岸带的初步成功。本文的研究结果,对于浅水湖泊的生态恢复具有一定的指导意义。
In the past 20 years, lake ecological restoration practices all over the world show that it is notoriously difficult to restore clear water state with abundant submerged plants. Based on analysing abundant literature data, the thesis points that lake eutrophication needs a permanent cure, and ecological restoration is its core of this problem. Relying on National Dianchi“863”program, the thesis studies shallow lake ecotypes and how to restore shallow lakes through simulation experiment, project practice and field investigation. Through this reaseach, some conclusions and cognition are drawn as follows: (1) Simulation experiment is designed and carried out successfully, discovering mutuality and variation rule among aquatic plant and nutrient concentration of water, sediment, and sediment pore water. (2) Ecological characteristics of different lake ecotypes are studied; differences of ecological characteristics and its Index System between meadow lake and algae lake are analysed. (3) Ecological succession process of shallow lakes is divided into five stages, and shallow lakes are classed into eight ecotypes. (4) A set of Technic route of shallow lake eco-restoration is put forward, and filling technology of clean sediment is applied successfully to littoral cutbank belt eco-restoration of shallow lakes. The conclusions drawn in this study is important for guiding ecological restoration of shllow lakes.
引文
1. Andersen F ?, Olsen K R. Nutrient cycling in shallow, oligotrophic Lake Kvie, Denmark[J]. Hydrobiologia, 1994,275/276: 267-276.
    2. Arend L, Reil M, K?ster M. Eutrophication of Marine Waters: effects on Benthic Microbial Communities[J]. Marine Pollution Bulletin, 2000, 1-6:255-263.
    3. Bachmann R W, Hoyer M V & Canfield D E. Evaluation of recent limnological changes at Lake Apopka[J]. Hydrobiologia, 2001, 448: 19-26.
    4. Bachmann R W, Hoyer M V, Canfield D E. Internal heterotrophy following the switch from macrophytes to algae in Lake Apopka, Florida[J]. Hydrobiologia, 2000, 418: 217–227.
    5. Bachmann R W, Hoyer M V, Canfield D E. The restoration of Lake Apopka in relation to alternative stable states[J]. Hydrobiologia, 1999, 394:219–232.
    6. Billen, G. 1978. A budget of nitrogen recycling in North Sea sediments off the Belgian coast[J]. Estuarine Coastal and Marine Science, 7, 127-146.
    7. Bostr?m B,Andersen J M,Fleiseher S,et a1.1988.Exchange of P across the sediment-water interface[J].Hydrobiologia,170:229-244.
    8. Bostr?m B. Potential Mobility of Phosphorus in Different Types of Lake Sediments[J]. Arch. Hydrobio1.,1984, 69:457-474.
    9. Carpenter S R, Brock W A. Rising variance: a leading indicator of ecological transition[J]. Ecology Letters, 2006, 9: 311–318.
    10. Carruck H J, Aldridge F J, Schelske C L. Wind influences phytoplankton biomass and composition in a shallow, productive lake[J]. Limnology and Oceanography, 1993, 38:1179-1192.
    11. Egertson C J, Kopaska J A, Downing J A. A century of change in macrophyte abundance and composition in response to agricultural eutrophication[J]. Hydrobiologia, 2004, 524:145–156.
    12. Enell M,L?fgren S. P in interstitial water: methods and dynamics[J]. Hydrobiologia, 1988, 170, l03-l32.
    13. Evans R D. Empirical evidence of the importance of sediment resuspension in lakes[J]. Hydrobiologia, 1994, 284: 5-12.
    14. Frascari F, Matteucci G, Giordano P. Evaluation of a eutrophic coastal lagoon ecosystem from the study of bottom sediments[J]. Hydrobiologia, 2002, 475/476:387-401.
    15. Gafny S, Gasith A. Spatially and temporally sporadic appearance of macrophytes in the littoral zone of Lake Kinneret, Israel: taking advantage of a window of opportunity[J]. Aquatic Botany, 1999, 62(4):249-267.
    16. Gons H J, Veeningen R, Van Keulen R Y. Effects of wind on a shallow lake ecosystem: resuspension of particles in the Loosdrecht Lakes[J]. Hydrobiological Bulletin, 1986, 20(1/2): 109-120.
    17. Hargeby A, Blindow I, Andersson G. Long-term Patterns of Shifts between Clear and Turbid States in Lake Krankesj?n and Lake T?kern[J]. Ecosystems, 2007, 10: 28–35.
    18. Harper D. Eutrophication of Freshwater[M]. London:Chapman & Hall, 1992,327p.
    19. Harwell M C, Havens K E. Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake[J]. Aquatic Botany, 2003, 77, 135–151.
    20. Havens K E, Fox D, Gornak S et al. Aquatic vegetation and largemouth bass population responses to water-level variations in Lake Okeechobee, Florida (USA) [J]. Hydrobiologia, 2005, 539:225-237.
    21. Havens K E, Jin K R, RoduskyA J,etal. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level[J]. The ScientificWorld, 2001, 1: 44-70.
    22. Havens K E. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallowsubtropical lake[J]. Hydrobiologia, 2003, 493: 173–186.
    23. Herb W R, Stefan H G. Seasonal growth of submersed macrophytes in lakes: The effects of biomass density and light competition[J]. Ecological Modelling, 2006, 193, 560–574.
    24. Horppila J, Nurminen L. Effects of submerged macrophytes on sediment resuspension and internalphosphorus loading in Lake Hiidenvesi(southern Finland)[J].Water Research, 2003, 37:4468-4474.
    25. Ibelings B W, Portielje R, Lammens E et al. Resilience of alternative stable states during the recovery of shallow lakes from eutrophication: Lake Veluwe as a case study[J]. Ecosystems, 2007, 10: 4–16.
    26. James R T, James M, Wool T et al. A sediment resuspension and water quality model of Lake Okeechobee[J]. Journal of The American Water Resources Association, 1997, 33(3): 661-680.
    27. James W F, Barko J W, Eakin H L et al. Distribution of sediment phosphorus pools and fluxes in relation to alum treatment[J]. Journal of The American Water Resources Association, 2000, 36(3): 647-656.
    28. Jeppesen E, Jensen J P, S?ndergaard M, et al. Trophic dynamics in turbid and clearwater lakes with special emphasis on the role of zooplankton for water clarity[J]. Hydrobiologia, 1999,408/409: 217–231.
    29. Kaiserli A, Voutsa D, Samara C. Phosphorus fractionation in lake sediments-Lakes Volvi and Koronia, N. Greece[J]. Chemosphere, 2002, 46:1147-1155.
    30. Kasprzak P, Benndorf J, Mehner T, et al. Biomanipulation of lake ecosystems: an introduction[J]. Freshwater Biology, 2002, 47:2277–2281.
    31. Katharine N S, Katherine L G, Gregory R H. Alternative states and positive feedbacks in restoration ecology[J]. TRENDS in Ecology and Evolution, 2004, 19(1):46-53.
    32. Keizer P& Sinke A J C. Phosphorus in the sediment of the Loosdrecht lakes and its implications for lake restoration perspectives[J]. Hydrobiologia, 1992, 233: 39-50.
    33. Kleeberg A, Kohl J G. Assessment of the long-term effectiveness of sediment dredging to reduce benthic phosphorus release in shallow Lake Müggelsee (Germany) [J]. Hydrobiologia, 1999, 394: 153–161.
    34. Krom M D, Berner R A. The diffusion coefficients of sulfate, ammonium and phosphate ions in anoxic marine sediments. Limnol. Oceanogr. 1980,25(2):327-337.
    35. Lauridsen T L, Jensen J P, Jeppesen E & S?ndergaard M. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation[J]. Hydrobiologia, 2003, 506:641-649.
    36. Lenssen J P M, Menting F B J, van der Putten W H et al. Effects of sediment type and water level on biomass production of wetland plant species[J]. Aquatic Botany,1999,64:151–165.
    37. Manuel C M. Ecology: Concepts and applications[M]. Beijing:McGraw-hill companies, Inc.&科学出版社(影印版), 2003, 1-509.
    38. Meijer M L, Boois I, Scheffer M. Biomanipulation in shallow lakes in The Netherlands:an evaluation of 18 case studies[J]. Hydrobiologia, 1999,408/409: 13-30.
    39. Moore P A Jr, Reddy K R,Fisher M M et a1. Phosphorus flux between sediment and overlying water in lake Okeechobee,Florida:spatial and temporal variations[J].J. Environ. Qua1.,1998,27:1428-1439.
    40. Morris K, Harrison K, Bailey P et al. Domain shifts in the aquatic vegetation of shallow urban lakes: the relative roles of low light and anoxia in the catastrophic loss of the submerged angiosperm Vallisneria Americana[J]. Marine and Freshwater Research ,2004,55(8) ,749-758.
    41. Moss B, Barker T, Stephen D, et al. Consequences of reduced nutrient loading on a lake system in a lowland catchment: deviations from the norm? [J]. Freshwater Biology, 2005, 50:1687–1705.
    42. Moss B, Madgwick J, Phillips G. A guide to the restoration of nutrient-enriched shallow lakes[M]. London: W W Hawes, UK, 1996, 1-179.
    43. Moss B. Shallow Lakes, Biomanipulation and Eutrophication. SCOPE (Scientific Committee on Phosphates in Europe) Newsletter, CEFIC (European Chemical Industry Council), Bruxelles, Belgium. Number 29, October1998,44.
    44. Moss B. The art and science of lake restoration[J]. Hydrobiologia, 2007, 581:15–24.
    45. Moss B.Engineering and biological approaches to the restroration from eutrophication of shallow lakes in which aquatic plant communities are important components[J].Hydrobiologia,1990,200/201:367-377.
    46. Moss, B. Ecology of fresh waters[M]. London: Blackwell Scientific Publications, 1980, 1-332.
    47. OECD. Eutrophication of waters: monitoring, assessment and control[M]. OECD, Paris, 1982: 1-154.
    48. Reddy K R, Fisher M M, Ivanoff D. Resuspension and diffusive flux of nitrogen and phosphorus in a hypereutrophic lake[J].Journal of Environmental Quality, 1996, 25:363-371.
    49. Reilly J F, Horne A J, Miller C D.Nitrate removal from a drinking water supply with large free-surface constructed wetlands prior to groundwater recharge[J]. Ecological Engineering, 2000, 14:33-47.
    50. Rip W J, Rawee N, Jong A. Alternation between clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds[J]. Aquatic Botany, 2006, 85, 184–190.
    51. Rooney N, Kalff J. Inter-annual variation in submerged macrophyte community biomass and distribution: the influence of temperature and lake morphometry[J]. Aquatic Botany, 2000,68, 321–335.
    52. Ruban V, Brigault S, Demare D et al. An investigation of the origin and mobility of phosphorus in freshwater sediments from Bort-Les-Orgues Reservoir, France[J]. J Environ Monitor, 1999, 1(4): 403-407.
    53. Ruban V, López-Sánchez JF, Pardo P et al. Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A synthesis of recent works[J]. Fresenius J Anal Chem, 2001, 370: 224-228.
    54. Ruban V, Pardo P, Rauret G, et al. Selection and evaluation of sequential extraction procedures for the determination of phosphorus forms in lake sediment[J]. J. Environ. Monit., 1999, 1, 51–56.
    55. Scheffer M, Carpenter S R, Foley J A, et al. Catastrophic shifts in ecosystems[J]. Nature, 2001, 413: 591-596.
    56. Scheffer M, Carpenter S R. Catastrophic regime shifts in ecosystems: linking theory to observation[J]. TRENDS in Ecology and Evolution, 2003, 18 (12), 648-656.
    57. Scheffer M, CarpenterS R, Foley JA,et al. Catasctrophic shifts in Ecosystems[J]. Nature, 2001, 413: 591-596
    58. Scheffer M, Egbert H. van Nes. Mechanisms for marine regime shifts: can we use lakes as microcosms for oceans? [J]. Progress in Oceanography, 2004, 60: 303-319.
    59. Scheffer M, Egbert H. van Nes. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size[J]. Hydrobiologia, 2007, 584:455–466.
    60. Scheffer M. Alternative attractors of shallow lakes[J]. The Scientific World, 2001, 1, 254–263.
    61. Scheffer M. Ecology of Shallow Lakes[M]. Dordretcht (Netherlands): Kluwer Academic Publishers, 1998. 1-313.
    62. Scheffer M. Multiplicity of stable states in freshwater systems[J]. Hydrobiologia, 1990, 200-201(1): 475-486.
    63. Scheffer M. The effect of aquatic vegetation on turbidity; how important are the filter feeders? [J]. Hydrobiologia, 1999, 408/409: 307–316.
    64. Scheffer, M., Hosper S.H., Meijer M.L, Moss B. Alternative equilibria in shallow lakes[J]. Trends in Ecology and Evolution, 1993, 8:275-279.
    65. Schelske C L, Kenney W F. Model erroneously predicts failure for restoration of Lake Apopka, a hypereutrophic, subtropical lake [J]. Hydrobiologia, 2001, 448: 1–5.
    66. Schneider S, Melzer A. Sediment and water nutrient characteristics in patches of submerged macrophytes in running waters [J]. Hydrobiologia, 2004, 527: 195–207.
    67. Schorer M, Eicele M. Accumulation of inorganic and organic pollutants by biofilm in the aquatic environment [J]. Water, Air, & Soil Pollution, 1997, 99 (4) : 651 - 659.
    68. Slomp C P, Gaast S J Van der, Raaphorst W Van.P binding by poorly crystalline iron oxides in North Sea sediments[J]. Marine Chemistry, 1996, 52, 55-73.
    69. S?ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorus in shallow lakes[J]. Hydrobiologia, 2003, 506–509: 135-145.
    70. S?ndergaard M, Jesenn J P & Jeppesen E. Internal phosphorus loading in shallow Danish lakes[J]. Hydrobiologia, 1999, 408/409: 145–152.
    71. S?ndergaard M, Jesenn J P & Jeppesen E. Seasonal response of nutrients to reduced phosphorus loading in 12 Danish lakes[J]. Freshwater Biology, 2005, 50, 1605–1615.
    72. Stephen D, Moss B, Phillips G. Do rooted macrophytes increase sediment phosphorus release? [J]. Hydrobiologia, 1997,342/343: 27–34.
    73. Stuckey R L, Moore D L. Return and Increase in Abundance of Aquatic Flowering Plants in Put-In-Bay Harbor, Lake Erie[J]. Ohio. Ohio J. Sci, 1995(3):261-166.
    74. Teasdale P R, Batley G E, Apte S C. Pore water sampling with sediment peepers[J]. Trends in Analytical Chemistry, 1995, 14(6):250-256.
    75. Toohey B D. The relationship between physical variables on topographically simple and complex reefs and algal assemblage structure beneath an Ecklonia radiata canopy[J]. Estuarine, Coastal and Shelf Science, 2007,71:232-240.
    76. Van Donk, E. Planktonic interactions: developments and perspectives[J]. Verh. Internat. Verein. Limnol. 2005. 29(1):61-72.
    77. Van Geest G J, Coops H, Scheffer M et al. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels[J]. Ecosystems, 2007, 10:36–46.
    78. Van Nes E H, Winnie J. Rip, Scheffer M. A Theory for Cyclic Shifts between Alternative States in Shallow Lakes[J]. Ecosystems, 2007, 10: 17–27.
    79. Van Nes E H., Scheffer M. Alternative attractors may boost uncertainty and sensitivity in ecological models[J]. Ecological Modelling, 2003, 159, 117-124.
    80. Wauer G, Gonsiorczyk T, Kretschmer K, et al. Sediment treatment with a nitrate-storing compound to reduce phosphorus release[J]. Water Research, 2005,39:494-500
    81. Wigand C, Stevenson J C, Cornwell J C. Effects of different submersed macrophytes on sediment biogeochemistry[J]. Aquatic Botany 56(1997)233-244.
    82. Williams J D H, Jaquet J, Thomas R. Forms of Phosphorus in the Surficial Sediments of Lake Erie[J]. J. Fish. Res. Board Can., 1976, 33, 413-429.
    83. 包先明,陈开宁,范成新. 沉水植物生长对沉积物间隙水中的氮磷分布及界面释放的影响[J]. 湖泊科学,2006,18(5):515-522.
    84. 曹建廷,王苏民,沈吉.内蒙古岱海地区近千年气候环境演变的初步研究[J].海洋地质与第四纪地质,2000,20(2):15-20.
    85. 曹立华,徐继尚,李广雪等.海南岛西部岸外沙波的高分辨率形态特征[J].海洋地质与第四纪地质,2006,26(4):15-22.
    86. 陈荷生,宋祥甫,邹国燕. 利用生态浮床技术治理污染水体[J].中国水利,2005,5,50-53.
    87. 陈荷生,张永健.太湖重污染底泥的生态疏浚[J].水资源研究,2004,25(4):29-31.
    88. 陈开宁,包先明,史龙新等.太湖五里湖生态重建示范工程-大型围隔试验[J].湖泊科学,2006,18(2):139-149.
    89. 陈中义,雷泽湘,周进等.梁子湖六种沉水植物种群数量和生物量周年动态[J].水生生物学报,2000,24(6): 582-588.
    90. 成小英,李世杰,濮培民.城市富营养化湖泊生态恢复—南京莫愁湖物理生态工程试验[J].湖泊科学,2006,
    18(3) :218 -224.
    91. 崔心红,熊秉红,蒲云海等. 5 种沉水植物无性繁殖和定居能力的比较研究[J].植物生态学报,2000,24(4) 502-505.
    92. 戴全裕.云南抚仙湖、洱海、滇池水生植被的生态特征[J].生态学报,1985,5(4).324-335.
    93. 邓新晏,赵宏. 昆明滇池轮藻植物的变化[J]. 云南大学学报,1985,s1,147-150.
    94. 滇池污染与水生生物研究课题协作组.滇池污染与水生生物[M] .昆明:云南人民出版社,1983,1-136.
    95. 范成新,季江,张文华等.贡湖水质富营养化综合评价及初步预测[J].海洋湖沼通报,1997,3,18-24.
    96. 范成新,杨龙元,张路. 太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J]. 湖泊科学, 2000,12(4)359-366.
    97. 范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000, 12(4):359-366.
    98. 范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366.
    99. 范成新,张路,秦伯强等.风浪作用下太湖悬浮态颗粒物中磷的动态释放估算.中国科学(D),2003,33(8):760-768.
    100. 范成新.滆湖沉积物理化特征及磷释放腄鈁J].湖泊科学,1995,7(4):341-350.
    101. 傅平青,吴丰昌,刘丛强.洱海沉积物间隙水中溶解有机质的地球化学特性[J].水科学进展,2005,16(3):338-344.
    102. 高磊,李道季,王延明等. 长江口最大浑浊带潮滩沉积物间隙水营养盐剖面研究[J]. 环境科学,2006, 27(9):1744-1752.
    103. 高丽, 杨浩, 周健民. 湖泊沉积物中磷释放的研究进展[J]. 土壤, 2004,36(1):12-15.
    104. 龚春生,姚琪,范成新等.城市浅水型湖泊底泥释磷的通量估算-以南京玄武湖为例[J].湖泊科学,2006,18(2):179-183.
    105. 古滨河.美国 Apopka 湖的富营养化及其生态恢复[J].湖泊科学,2005,17(1):1-8.
    106. 国家环保总局科技标准司编.中国湖泊富营养化及其防治研究[M].北京:中国环境科学出版社,2001,1-268
    107. 侯文华,宋关玲,汪群慧.浮萍在水体污染治理中的应用[J].环境科学研究,2004,17(supp1):70-73.
    108. 胡俊,刘永定,刘剑彤.滇池沉积物间隙水中氮!磷形态及相关性的研究[J].环境科学学报,2005,25(10):1391-1396.
    109. 湖泊及流域学科发展战略研究秘书组.湖泊及流域科学研究进展与展望[J].湖泊科学,2002,14(4):289-300
    110. 黄玉瑶著.内陆水域污染生态学-原理与应用.北京:科学出版社,2001,1-291.
    111. 金相灿,王圣瑞,姜霞.湖泊水- 沉积物界面三相结构模式的初步研究.环境科学研究,2004,17(S1):1-5.
    112. 金相灿,王圣瑞,庞燕.太湖沉积物磷形态及 pH 值对磷释放的影响[J].中国环境科学 2004,24(6):707-711.
    113. 金相灿. 湖泊富营养化控制和管理技术[M]. 北京:化学工业出版社,2001,1-224.
    114. 金相灿等主编.湖泊富营养化调查规范[M].北京,中国环境科学出版社,1990:1-316.
    115. 瞿文川,吴瑞金,羊向东等.龙感湖地区近 3000 年来的气候环境变迁[J].湖泊科学,1998,10(2):37-43.
    116. 李宝,范成新,丁士明等.滇池福保湾沉积物磷的形态及其与间隙水磷的关系[J].湖泊科学, 2008, 20(1): 27-32.
    117. 李磊,侯文华.荷花和睡莲种植水对铜绿微囊藻生长的抑制作用研究[J].环境科学,2007,28(10):2180-2186.
    118. 李伟, 刘贵华, 熊秉红等. 1998年特大洪水后鄱阳湖自然保护区主要湖泊水生植被的恢复[J]. 武汉植物学研究,2004,22(4):301-306.
    119. 李伟,刘贵华,熊秉红等. 1998年特大洪水后鄱阳湖自然保护区主要湖泊水生植被的恢复[J].武汉植物学研究, 2004,22(4):301~306.
    120. 李文朝,杨清心,周万平.五里湖营养状况及治理对策探讨[J].湖泊科学,1994,6(2):136-143.
    121. 李文朝. 东太湖沉水植被的演替动态及生态对策[J]. 中国科学院南京地理与湖泊研究所集刊,1992,9:83-93.
    122. 李文朝.东太湖茭草植被改造实验研究[J].中国环境科学,1997,17(3): 244-246
    123. 李文朝.浅型富营养化湖泊的生态恢复-五里湖水生植被重建实验[J].湖泊科学(增刊),科学出版社,1996,8:1-10.
    124. 李英杰,年跃刚,胡社荣等. 太湖五里湖水生植物群落演替及其驱动因素[J]. 水资源保护,2008,24(3):12-16.
    125. 李英杰,许秋瑾,金相灿等湖泊水生植被恢复物种选择及群落配置分析[J].环境污染治理技术与设备,2004,5(8):23-26.
    126. 李正魁,濮培民,胡维平等.固定化细菌技术及其在物理生态工程中的应用-固定化氮循环细菌对水生生态系统的修复[J].江苏农业学报,2001,17(4):248-252.
    127. 梁瑞驹,程文辉等.91 太湖洪涝灾害[M].南京:河海大学出版社,1993,38-96.
    128. 梁晓东,叶万辉. 林窗研究进展(综述) [J].热带亚热带植物学报 2001.9(4):355~364.
    129. 刘兵钦,王万贤,宋春雷等.菹草对湖泊沉积物磷状态的影响[J].武汉植物学研究 2004,22(5):394-399.
    130. 刘建康.高级水生生物学[M].北京:科学出版社,1993 ,1-402。
    131. 刘健康,谢平.揭开武汉东湖蓝藻水华消失之迷[J].长江流域资源与环境,1999,8(3):312~318.
    132. 刘伟龙, 胡维平, 陈永根等. 西太湖水生植物时空变化[J]. 生态学报,2007,27(1):159-170.
    133. 刘兆权,韩瑜庆,黄海波.江苏无锡自来水遭污染市民抢购纯净水[EB/OL].http://news.sina.com.cn/c/p/2007-05-30/205413114417.shtml, 2007-05-30.
    134. 刘兆权,韩瑜庆,黄海波.新华网无锡5月30日电,江苏无锡自来水遭污染市民抢购纯净水,http://news.sina.com.cn/c/p/2007-05-30/205413114417.shtml.
    135. 刘振夏,夏东兴.中国近海潮流沉积沙体[M].北京:海洋出版社.2004:49-50.
    136. 马巍,李锦秀,田向荣等.滇池水污染治理及防治对策研究[J].中国水利水电科学研究院学报,2007,5(1):8-14.
    137. 毛战坡,单保庆,彭文启等.氮素在河流生态系统中的滞留研究进展[J].长江流域资源与环境,2006,15(4):480-484.
    138. 莫美仙1 , 张世涛1 , 叶许春等.云南高原湖泊滇池和星云湖pH值特征及其影响因素分析[J].农业环境科学学报2007, 26 (增刊): 269- 273.
    139. 倪建宇, Maggiulli M, 刘小涯. 赤道东北太平洋表层沉积物间隙水中营养盐的剖面分布及其海底扩散通量[J].地球化学,2005,34(6):587-594.
    140. 年跃刚,宋英伟,李英杰等. 富营养化浅水湖泊稳态转换理论与生态恢复探讨[J]. 环境科学研究,2006,19(1):67-70.
    141. 濮培民,胡维平,逄勇等. 净化湖泊饮用水源的物理-生态工程实验研究[J]. 湖泊科学,1997,9(2):35-41.
    142. 濮培民,王国祥,胡春华等.底泥疏浚能控制湖泊富营养化吗[J].湖泊科学,2000,12(3):269-279.
    143. 濮培民,王国祥,李正魁等,健康水生态系统的退化及其修复-理论、技术及应用[J].湖泊科学,2001,13(3):193-203.
    144. 濮培民等实验小组.改善太湖马山区水厂水源区水质的物理-生态工程实验研究[J].湖泊科学,1993,5(2):171-180.
    145. 秦伯强,高光,胡维平等.浅水湖泊生态系统恢复的理论与实践思考[J].湖泊科学,2005,17(1):9-16.
    146. 秦伯强,胡维平,高光等.太湖沉积物悬浮的动力机制及内源释放的概念性模式[J].科学通报,2003,48(17):1822-1831.
    147. 秦伯强,胡维平,刘正文等. 太湖梅梁湾水源地通过生态修复净化水质的试验[J]. 中国水利,2006,17:23-29.
    148. 秦伯强.湖泊生态恢复的基本原理与实现[J].生态学报,2007,27(11):4848-4858.
    149. 邱东茹,吴振斌,邓家齐等(a).武汉东湖湖水和底泥对黄丝草生长的影响[J].植物资源与环境 1997,6(4):45-49.
    150. 邱东茹,吴振斌,刘保元等(b).武汉东湖水生植被的恢复试验研究[J]. 湖泊科学, 1997,9(2): 168-173.
    151. 全国主要湖泊水库富营养化调查研究课题组.湖泊富营养化调查规范[M].北京:中国环境科学出版社,1987,1-299.
    152. 水和废水监测分析方法编委会. 水和废水监测分析方法(第四版)[M]. 北京:中国环境科学出版社,2002:570. 
    153. 隋桂荣.太湖表层沉积物中 OM,TN,TP 的现状与评价[J].湖泊科学,1996,8(4):319-324.
    154. 孙耀,宋云利 崔毅.丁字湾沉积物问隙水中氮、磷营养盐的分布及其在沉积物一水界面的扩散通量[J].海洋水产研究,1993,14,105-112
    155. 王国祥,濮培民,张圣照等. 用镶嵌组合植物群落控制湖泊饮用水源区藻类及氮污染[J]. 植物资源与环境,1998,7(2):35-41
    156. 王圣瑞,金相灿,赵海超等.长江中下游浅水湖泊沉积物对磷的吸附特征[J].环境科学,2005,26(3):38-43.
    157. 王伟伟,范奉鑫,李成钢等.海南岛西南海底沙波活动及底床冲淤变化[J].海洋地质与第四纪地质,2007,27(4):23-28.
    158. 王晓华,刘慕凡,张家玉等.治污工程对武汉东湖生态恢复的研究与探讨[J].环境科学与技术,2002,25(2):40-42.
    159. 王晓蓉,华兆哲.环境条件变化对太湖沉积物磷释放的影响[J].环境化学, 1996,15 (1):15-19.
    160. 王雨春, 万国江, 王仕禄等.红枫湖、百花湖沉积物中磷的存在形态研究[J]. 矿物学报, 2000, 20(3): 273-278.
    161. 王雨春,万国江,尹澄清等. 红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    162. 翁焕新,刘云峰,Armstrong D. 滨海沉积物和间隙水中的磷研究-以美国墨西哥湾为例[J]. 环境科学学报,1997,17(2),148-153.
    163. 吴晓雷. 人工湿地废水处理机制[J].环境科学,1995,16(3):83-86.
    164. 谢钦春,叶银灿,陆炳文.东海陆架坡折地形和沉积作用过程 [J].海洋学报,1984,6(1):61-71.
    165. 徐骏.杭州西湖底泥磷分级分布[J].湖泊科学,2001,13(3):247-254.
    166. 严国安, 马剑敏, 邱东茹等.武汉东湖水生植物群落演替的研究[J]. 植物生态学报, 1997,21(4):319-327.
    167. 颜昌宙,许秋瑾,赵景柱等.五里湖生态重建影响因素及其对策探讨[J].环境科学研究,2004,17(3):44-47.
    168. 杨海龙.影响水生维管束植物生长与分布的主要生态因子分析[J].韩山师范学院学报 2000,2:76-79.
    169. 杨洪,易朝路,谢平等.武汉东湖沉积物碳氮磷垂向分布研究[J].地球化学,2004,33(5):507-514.
    170. 杨清心等.伊乐藻在东太湖的引种[J].中国科学院南京地理与湖泊研究所集刊,1989,6:84-92.
    171. 杨赵平,张雄,刘爱荣. 滇池水生植被调查[J].西南林学院学报,2004,24(1):27-30.
    172. 杨志峰,崔保山,黄国和等. 黄淮海地区湿地水生态过程、水环境效应及生态安全调控[J]. 地球科学进展,2006, 21(11):1119-1126.
    173. 姚 润 丰 .7 成 以 上 河 流 湖 泊 遭 受 污 染 3 亿 多 人 饮 水 不 安 全 . 新 华 网 , 2004-12-23 ,http://news.infocom.cn/html/2004-12-23/68691.html.
    174. 叶银灿,庄振业,来向华等.东海扬子浅滩砂质底形研究[J].中国海洋大学学报, 2004,34(6):1057-1062.
    175. 易朝路.洪湖及其周围三种湖相粘土的微结构特征与沉积环境[J].湖泊科学,2001,13(4):296-303.
    176. 于丹, 曾一本, 张汉华等. 淤泥湖退化水生植被恢复及其在湖泊资源天然生态库中作用的研究[J]. 应用生态学报,1996,7(4):401-406.
    177. 余国营,刘永定,邱昌强等.滇池水生植被演替及其与水环境变化关系[J].湖泊科学,2000,12(1):73~79.
    178. 喻国良, Tan S K. 底部薄板附近的水流及泥沙运动特性[J].水道港口,2006,27(3): 137-141.
    179. 袁旭音,徐乃政,陶于祥,等.太湖底泥的空间分布和富营化特征[J].资源调查与环境,2003,24(1):20.
    180. 曾海鳌,吴敬禄.长江中下游不同营养水平湖泊水体环境变化特征及机制[J].水科学进展,2007,18(6):834-841.
    181. 张路, 范成新, 池俏俏等.太湖及其主要入湖河流沉积磷形态分布研究[J].地球化学, 2004, 33(4): 423-432.
    182. 张路,范成新,王建军等. 太湖草藻型湖区间隙水理化特性比较[J].中国环境科学, 2004,24(5): 556-560.
    183. 张水元,刘瑞秋,黎道丰.保安湖沉积物和间隙水中氮和磷的含量及其分布[J].水生生物学报,2000,24(5):434-438.
    184. 张燕,邓西海,陈捷.基于 137Cs 计年法估算滇池沉积物重金属负荷[J].地理科学,2007,27(2):261-267.
    185. 张燕,彭补拙,陈捷等.借助 137Cs 估算滇池沉积量[J].地理学报,2005,60(1):71-78.
    186. 张运林,秦伯强,陈伟民等(a).不同风浪条件下太湖梅梁湾光合有效辐射的衰减[J].应用生态学报,2005,16(6)B1133~1137.
    187. 张运林,秦伯强,陈伟民等(b).龙感湖水体光学特性的观测[J].湖泊科学,2005,17(2):114-119.
    188. 张志忠,顾兆峰,刘锡清等.南黄海灾害地质及地质环境演变[J].海洋地质与第四纪地质,2007,27(5):15-22.
    189. 赵颖,王国秀,章北平.典型城内过富营养湖泊沉积物和间隙水中各形态磷的相关性研究[J]. 长江流域资源与环境,2006,15(4):490-494.
    190. 赵月霞,刘保华,李西双等.胶州湾湾口海底沙波地形地貌特征及其活动性研究[J].海洋与湖沼,2006,37(5):464-471.
    191. 浙江在线新闻网站. 引长江水治理太湖 政协委员质疑治污“效果”. http://www.zjol.com.cn, 2004 年 3 月 24日.
    192. 郑 劲 松 . 汪 局 长 在 全 国 湖 泊 水 库 污 染 防 治 工 作 上 的 讲 话 , 中 国 环 境 报 云 南 站 . http://www.ynepb.gov.cn/2004-2/2004226142027.htm
    193. 中科院南京地湖所.太湖综合调查初步报告[M].北京:科学出版社,1965:1-84.
    194. 周丹卉,贺红士,孙国臣等. 林窗模型及其在全球气候变化研究中的应用[J].生态学杂志,2007,26(8):1303-1310.
    195. 周伟华,吴云华,陈绍勇.南沙群岛海域沉积物间隙水营养盐(氮、磷、硅)的研究[J]. 热带海洋学报,2001,20(4):49-55
    196. 周易勇,傅永清.水体磷酸酶:来源、特征及生态学意义[J].湖泊科学.1999,11 (3):274-282.
    197. 朱广伟,高 光,秦伯强等.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展, 2003, 14(6): 714-719
    198. 朱广伟,秦伯强,高光.风浪扰动引起大型浅水湖泊内源磷暴发性释放的直接证据[J].科学通报,2005,50(1):66-71.
    199. 朱广伟,秦伯强,高光等.长江中磷的形态及其与水相磷的关系[J].环境科学学报,2004,24(3):381-388.
    200. 朱广伟. 水动力作用与浅水湖泊磷的内源负荷研究[博士后工作研究报告]. 南京: 中科院南京地理与湖泊所, 2003.
    201. 诸敏.五里湖-梅梁湖区水污染与防治[J].环境监测管理与技术,1995,7(1):2-5.
    202. 庄振业,林振宏,周江等.陆架沙丘(波)形成发育的环境条件[J].海洋地质动态,2004,20(4):5-10.
    203. 邹华 , 潘纲 , 阮文权.壳聚糖改性粘土絮凝除藻的机理探讨[J]. 环境科学与技术,2007,5,
    204. 邹华,潘纲,陈灏. 壳聚糖改性粘土对水华优势藻铜绿微囊藻的絮凝去除[J]. 环境科学, 2004, 25(6):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700