用户名: 密码: 验证码:
蝙蝠回声定位声波地理变化的影响因素及对噪声干扰的反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
动物的很多社群行为依赖于种内交流和物种与环境的相互作用。无脊椎动物、鸟类和哺乳动物等动物类群的种内声学信号都存在明显的地理变化。然而,对于生态系统中重要的指示生物—蝙蝠而言,尽管研究表明形态、环境和文化漂变等因子影响其回声定位声波的地理变化,但对其原因和意义仍然知之甚少。因此,开展蝙蝠回声定位声波地理变化模式及其影响因素研究,为深入揭示蝙蝠物种形成及其多样性维持机制具有重要意义。另外,环境噪声可能导致蝙蝠回声定位、性选择和交流等行为的非适应性改变,进一步直接影响蝙蝠的繁殖成功和种群增长速率,因此,对其进行研究能为蝙蝠物种多样性保护提供重要的科学依据。
     本论文通过野外采样、行为实验和室内分析,从形态、生态、文化和遗传的角度,在大地理尺度对中蹄蝠(Hipposideros larvatus)、菲菊头蝠(Rhinolophus pusillus)和大卫鼠耳蝠(Myotis davidii)的回声定位声波地理变化及其影响因素进行研究。另外,在美国加州大学洛杉矶分校神经生理学系首次研究噪声刺激对马铁菊头蝠(Rhinolophus ferrumequinum)回声定位行为的影响,主要内容如下。
     1.在广阔的地理尺度,数据挖掘技术和克鲁斯凯-沃利斯检验表明中蹄蝠静止频率存在显著的地理变化且具有经度模式,并与地理距离显著相关。同时,蝙蝠个体间静止频率存在显著差异,这支持静止频率的随机文化漂变,并反对猎物探测假说。此外,局域分布的岛屿群体间静止频率的显著差异可能暗示回声定位叫声“方言”的存在。因此,我们认为中蹄蝠每个群体具有一个“私有带宽”以为了群体身份的识别和个体交流,并进一步使其获得更大的生存适合度。
     2.研究中国广泛分布的菲菊头蝠静止频率的地理变化模式。虽然其分布范围内种群间静止频率显著不同,但与地理距离无显著相关性。广义线性模型和T检验表明菲菊头蝠静止频率存在明显的性别二态性,暗示雌雄性可能保持它们的静止频率在一个狭窄的范围以利于性别识别。Mantel检验和逐步多重线性回归分别表明蝙蝠调节静止频率来适应不同的气候条件和湿度,可能暗示降雨噪声对蝙蝠叫声频率的影响。因此,环境选择可能塑造种群间菲菊头蝠回声定位声波的多样性。同时,我们认为蝙蝠物种保护必须考虑气候变化和环境噪声。
     3.大卫鼠耳蝠是中国特有种。克鲁斯凯-沃利斯检验和Dunn’s多重比较表明群体间大卫鼠耳蝠的回声定位声波存在显著地理变化,并与群体遗传结构显著相关,但与地理距离和气候条件无显著相关性。然而,群体遗传结构却与地理距离和气候条件显著相关。因此,我们认为气候因子对回声定位叫声分歧的影响可能通过遗传结构级联传递。大卫鼠耳蝠具有高的翼展比和低的翼尖指数,和先前的研究结果类似,表明大卫鼠耳蝠在区域内频繁迁移且一些个体在区域间存在长期的殖民现象。由于蝙蝠回声定位叫声容易受到同种的影响,因此遗传漂变和社会选择可能是导致大卫鼠耳蝠群体间回声定位声波多样性的关键因素。本研究强调迁移行为对塑造回声定位声波地理变化模式的重要作用,并暗示保护管理单元应该包括遗传标记和生态适应特征。
     4.在静止状态,粉红噪声刺激促使马铁菊头蝠改变静止频率及其幅度和结构。更强的噪声刺激导致更大的叫声改变,而与不同的回声衰减无关。当噪声刺激的中心频率等于蝙蝠的基频时,与其等于静止频率和其他刺激条件相比,静止频率具有最大的变化,表明马铁菊头蝠通过自己的叫声(特别是基频)反馈,而不是其回声来维持叫声频率的稳定。当蝙蝠表现多普勒频移补偿行为时,回声衰减强度对多普勒频移补偿行为产生明显的影响,表明蝙蝠依赖回声的绝对幅度进行多普勒频移补偿行为。我们首次提出窄频带蝙蝠的回声定位声波存在明显的躲避干扰反应,这对深入理解蝙蝠的回声定位行为及其进化具有重要意义。
     回声定位声波,正如其他行为表现型一样,其地理变化都在漂变和选择的混合效应下进化,并可能最终导致种群分歧、繁殖隔离和物种形成。同时,本研究首次强调噪声对窄频带蝙蝠回声定位行为的影响,对深入理解蝙蝠回声定位行为的适应性进化和物种多样性保护具有重要意义。
Most social behaviours are dependent on intraspecific communication and the interaction between species and environment. Geographic variation in animal vocalizations provides a best opportunity to clarify the myriad factors shaping the evolution and divergence of communication signals and test fundamental hypotheses about the evolution of behaviour. Geographic variation in intraspecific acoustic signals has been observed in a range of animal groups, including invertebrates, birds and mammals. However, bats, as a biological indicator in the ecosystem, both the cause and the meaning of geographic variation in echolocation signals remains poorly understood despite some factors have been documented to explain variation in the ultrasonic frequency of bat echolocation within species among geographic isolates or islands. Therefore, study on geographic variation in echolocation calls of bats are very valuable for clarifying the mechanisms of speciation and the maintenance of biodiversity. Additionly, noise pollution may generate potential maladaptive responses of bats’echolocation, sexual selection and communication behaviours, and thus lead to direct bearings on breeding success and ultimately population growth rate. As a results, the study would provide scientific grounds for bats species conservation.
     The pattern of geographic variation and its impact factors in echolocation calls of the three bats species Hipposideros larvatus, Rhinolophus pusillus and Myotis daivdii were investigated by filed sampling, behavioral research and lab analysis on these aspects: morphology, ecology, culture and genetics from 2007 to 2010. In addition, jamming avoidance response (JAR) in Rhinolophus ferrumequinum with narrow-band echolocation pluses was studied originally at the Department of Integrative Biology and Physiology, University of California, Los Angeles, USA. The details are as followed.
     1. Variation patterns were examined in the resting frequency (RF) of echolocation calls emitted by the intermediate leaf-nosed bat, Hipposideros larvatus, on a broad geographical scale. Data mining technology and Kruskal–Wallis test both showed substantial variation with a longitudinal pattern in RF in H. larvatus among colonies, and this variation was associated with geographical distance not body size. In addition, we found that a high degree of variability between individuals was hidden under the geographical variation. The results support an effect of random cultural drift, and challenge the prey detection hypothesis. Moreover, acoustic differences among local island colonies may be indicative of a vocal dialect. We found that each colony of H. larvatus seems to maintain a‘private bandwidth’, which could be used for colony identity and individual communication thus helping individuals and colonies to get a number of fitness benefits.
     2. We investigated variation patterns in the constant frequency of echolocation calls emitted at rest and when not flying (“resting frequency”RF) of the least horseshoe bat, Rhinolophus pusillus, on a broad geographical scale and in response to local environmental variables. Significant differences in RF were observed among populations throughout the species range in Mainland China, but this variation was not associated with geographical distance. Sex dimorphism in the RF of R. pusillus may imply that females and males at each site keep their frequencies within a narrow range for sex recognition. The Mantel test and the stepwise multiple regression model showed that bats adjusted resting frequency to local weather conditions and humidity, respectively, which may imply partitioning diet by prey size or the influence of rainfall noise. These results indicated that bats adjust echolocation call frequency to adapt to enviromental selection. Therefore, environmental selection might shape the diversity of echolocation call structure of R. pusillus in geographically separated populations. Simultaneously, we suggested that conservation efforts should focus on change in local climate change and environmental noise.
     3. Myotis davidii is a Chinese endemic species with wide geographic distribution. Kruskal–Wallis and Dunn’s multiple-comparison test both showed substantial variation in call structure in M. davidii among colonies, and this variation was only associated with genetic structure not geographical distance and climate conditions. However, there were significant correlation between genetic structure and geographical distance, and genetic structure and climate conditions. Therefore, we suspected that the effect of climate conditions on call difference might be translated through genetic structure by a cascade reaction, as a bridge function. In addition, M. davidii, with high aspect ratios and low wing tip indices, and previous study both showed that David’s Myotis migrates frequently within regions and a small quantity of long-distance colonization by individuals among regions. Thus, genetic drift and social selection might be a key factor for the diversification of call structure because echolocation calls can be influenced by conspecifics. Our results highlight the importance of migration in shaping the geographical patterns of echolocation call design, and imply that defining protected management units for conservation efforts should consider both genetic marker and ecologically adaptive traits.
     4. Pink noise significantly altered the echolocation behavior at rest by shifting the call frequencies, altering call amplitude and call stracture, such as the variation in dCF and frequency modulation (FM) component. Stronger noise stumuli yields a bigger shift in echolocation pulses, but the shift was only associated with noise amplitude instead of different echo attenuation. Interestingly, the strongest frequency shifts were not observed when interfering stimuli were centered on the resting frequency (RF1) but instead on the fundamental frequency (RF0). The result showed that horseshoe bats listen to RF0 in their own calls (rather than in the echoes) to maintain call frequencies at a stable level. In general, pink noise presented during Doppler-shift compensation (DSC) yielded similar effects on call frequency and noise amplitude than for calls emitted at rest. The most significant difference to calls emitted at rest was, however, that different echo attenuations yielded a very pronounced effect on DSC performance, showing an increase in DSC depth with increasing echo intensity. Therefore, Our results suggest, that not the signal-to-noise ratio, but instead the absolute amplitude of the returning echo is necessary and sufficient for the quality of DSC performance. We show for the first time that bats with CF calls have a specific jamming avoidance response (JAR) depending on the frequency band in which the interfering acoustical stimuli were presented. These findings may provide new insights into the complexity of echolocation behaviours and will aid in understanding evolutionary aspects of echolocation and DSC behavior.
     5. In brief, echolocation calls, like any other phenotype, evolve through the combined effects of drift ans selection. Expanding these scenarios, variability of acoustic signals can facilitate population divergence, reproductive isolation and, ultimately speciation. The constrain of noise will promate the adaptive evolution of echolocation strategies. These results are vary valuable for understanding adaptive evolution of echolocation behaviours and promoting species conservation in bats.
引文
[1] Jablonski D. Extinction: past and present[J]. Nature, 2004, 427: 589.
    [2] Chesson P. Mechanisms of maintenance of species diversity[J]. Annual Review of Ecology and Systematics, 2000, 31: 343-366.
    [3] Thompson J N. Evolutionary ecology and the conservation of biodiversity[J]. Trends in Ecology and Evolution, 1996, 11 (7): 300-303.
    [4] Buchholz R. Behavioural biology: an effective and relevant conservation tool[J]. Trends in Ecology and Evolution, 2007, 22 (8): 401-407.
    [5] Wilczynski W, Ryan M J. Geographic variation in animal communication systems. In: Geographic Variation in Behaviour (Foster, S.A. & Endler, J.A.eds). [M]. Oxford: Oxford University Press, 1999. pp. 234-261.
    [6] Pedley R. Factors affecting echolocation frequency variation in insectivorous bats. Undergraduate final year dissertation[D]: Lancaster: Lancaster University 2004.
    [7] Endler J A. Natural and sexual selection on color patterns in poeciliid fishes[J]. Environmental Biology of Fishes, 1983, 9 (2): 173-190.
    [8] Carroll S P, Corneli P S. The evolution of behavioral norms of reaction as a problem in ecological genetics: theory, method, and data. In: Geographic Variation in Behaviour (Foster, S.A. & Endler, J.A.eds). [M]. Oxford: Oxford University Press, 1999.
    [9] Slabbekoorn H, Smith T B. Habitat-dependent song divergence in the little greenbul: an analysis of environmental selection pressures on acoustic signals[J]. Evolution, 2002, 56: 1849-1858.
    [10] Eiriksson T. Density dependent song duration in the grasshopper Omocestus viridulus[J]. Behaviour, 1992, 122 (1-2): 121-132.
    [11] Soha J A, Nelson D A, Parker P G. Genetic analysis of song dialect populations in Puget Sound white-crowned sparrows[J]. Behavioral Ecology, 2004, 15 (4): 636-646.
    [12] Wright T F, Rodriguez A M, Fleischer R C. Vocal dialects, sex-biased dispersal, and microsatellite population structure in the parrot Amazona auropalliata[J]. Molecular Ecology, 2005, 14 (4): 1197-1205.
    [13] Mitani J C, Hasegawa T, Gros-Louis J, et al. Dialects in wild chimpanzees?[J]. American Journal of Primatology, 1992, 27: 233-243.
    [14] Catchpole C K, Slater P J B. Bird Song: Biological Themes and Variations. [M]. Cambridge: Cambridge Press., 1995.
    [15] Yoshino H, Armstrong K N, Izawa M, et al. Genetic and acoustic population structuring in the Okinawa least horseshoe bat: Are intercolony acoustic differences maintained by vertical maternal transmission?[J]. Molecular Ecology, 2008, 17 (23): 4978-4991.
    [16] Gillam E H, McCracken G F. Variability in the echolocation of Tadarida brasiliensis: effects of geography and local acoustic environment[J]. Animal Behaviour, 2007, 74 (2): 277-286.
    [17] Griffin D R. Listening in the Dark[M]. New Haven, CT: Yale University Press., 1958.
    [18] Neuweiler G. The biology of bats[M]. New York and Oxford: Oxford University Press, 2000. 310.
    [19] Jones G, Holderied M W. Bat echolocation calls: adaptation and convergent evolution[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274 (1612): 905-12.
    [20] Jones G. Sensory Ecology: Echolocation Calls Are Used for Communication[J]. Current Biology, 2008, 18 (1): 34-35.
    [21] Kazial K A, Pacheco S, Zielinski K. Information content of sonar calls of little brown bats (Myotis Lucifugus): potential for communication[J]. Journal of Mammalogy, 2008, 89 (1): 25–33.
    [22] Ruczynski I, Kalko E K, Siemers B M. The sensory basis of roost finding in a forest bat, Nyctalus noctula[J]. Journal of Experimental Biology, 2007, 210 (20): 3607-15.
    [23] Chen S-F, Jones G, Rossiter S J. Determinants of echolocation call frequency variation in the Formosan lesser horseshoe bat (Rhinolophus monoceros)[J]. Proceedings of the Royal Society B: Biological Sciences, 2009.
    [24] Armstrong K N, Coles R B. Echolocation call frequency differences between geographic isolates of Rhinonicteris aurantia (Chiroptera: Hipposideridae): Implications of nasal chamber size[J]. Journal of Mammalogy, 2007, 88 (1): 94-104.
    [25] Yoshino H, Matsumura S, Kinjo K, et al. Geographical variation in echolocation call and body size of the Okinawan least horseshoe bat, Rhinolophus pumilus (Mammalia: Rhinolophidae), on Okinawa-jima Island, Ryukyu Archipelago, Japan[J]. Zoological Science, 2006, 23 (8): 661-667.
    [26] Aspetsberger F, Brandsen D, Jacobs D S. Geographic variation in the morphology, echolocation and diet of the little free-tailed bat, Chaerephon pumilus (Molossidae)[J]. African Zoology, 2003, 38 (2): 245-254.
    [27] Davidson S M, Wilkinson G S. Geographic and individual variation in vocalizations by male Saccopteryx bilineata (Chiroptera: Emballonuridae)[J]. Journal of Mammalogy, 2002, 83 (2): 526-535.
    [28] Heller K G, von Helversen O. Resource partitioning of sonar frequency bands in rhinolophoid bats[J]. Oecologia, 1989, 80: 178-186.
    [29] Jones G, Sripathi K, Waters D A, et al. Individual variation in the echolocation calls of three sympatric Indian hipposiderid bats, and an experimental attempt to jam bat echolocation[J]. Folia Zoologica, 1994, 43 (4): 347-362.
    [30] Guillén A, Juste B J, Ibán?z C. Variation in the frequency of the echolocation calls of Hipposideros ruber in the Gulf of Guinea: An exploration of the adaptive meaning of the constant frequency value in rhinolophoid CF bats. [J]. Journal of Evolutionary Biology 2000, 13: 70-80.
    [31] Russ J M, Racey P A. Species-specificity and individual variation in the song of male Nathusius' pipistrelles (Pipistrellus nathusii)[J]. Behavioral Ecology and Sociobiology, 2007, 61 (5): 669-677.
    [32] Barclay R M R, Fullard J H, Jacobs D S. Variation in the echolocation calls of the hoary bat (Lasiurus cinereus): influence of body size, habitat structure, and geographic location.[J]. Canadian Journal of Zoology, 1999, 77: 530-534.
    [33] Denzinger A, Siemers B M, Schaub A, et al. Echolocation by the barbastelle bat, Barbastella barbastellus[J]. Journal of Comparative Physiology - A Sensory, Neural, and Behavioral Physiology, 2001, 187 (7): 521-8.
    [34] O'Farrell M J, Corben C, Gannon W L. Geographic variation in the echolocation calls of the hoary bat (Lasiurus cinereus)[J]. Acta Chiropterologica, 2000, 2 (2): 185-196.
    [35] Matsumura S. Mother-infant communication in a horseshoe bat (Rhinolophus ferrumequinum nippon): Vocal communication in three-week-old infants[J]. Journal of Mammalogy, 1981, 62: 20-28.
    [36] Jones G, Ransome R D. Echolocation calls of bats are influenced by maternal effects and change over a lifetime[J]. Proceedings Of The Royal Society Of London Series B-Biological Sciences, 1993, 252: 125-128.
    [37] Slatkin M. Gene flow and the geographic structure of natural populations[J]. Genetics, 1987, 139: 787-792.
    [38] Jones G, Morton M, Hughesand P M, et al. Echolocation, flight morphology and foraging strategies of some Wesr African hipposiderid bats[J]. Journal of Zoology, 1993, 230: 385-400.
    [39] Jones G, Jacobs D S, Kunz T H, et al. Carpe noctem: The importance of bats as bioindicators[J]. Endangered Species Research, 2009, 8 (1-2): 93-115.
    [40] Kazial K A, Masters W M. Female big brown bats, Eptesicus fuscus, recognize sex from a caller's echolocation signals[J]. Animal Behaviour, 2004, 67 (5): 855-863.
    [41] Russo D, Mucedda M, Bello M, et al. Divergent echolocation call frequencies in insular rhinolophids (Chiroptera): a case of character displacement?[J]. Journal of Biogeography, 2007, 34: 2129–2138.
    [42] Kunz T H, Fenton M B. Bat ecology[M]. Chicago: University of Chicago Press, 2003.
    [43] Gillam E H, Ulanovsky N, McCracken G F. Rapid jamming avoidance in biosonar[J]. Proceedings of the Royal Society B: Biological Sciences, 2007, 274 (1610): 651-60.
    [44] Mickleburgh S P, Hutson A M, Racey P A. A review of the global conservation status of bats[J]. Oryx, 2002, 36: 18-34.
    [45] Tressler J, Smotherman M S. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2009, 195 (10): 923-934.
    [46] Schaub A, Ostwald J, Siemers B M. Foraging bats avoid noise[J]. Journal of Experimental Biology, 2008, 211 (19): 3174-3180.
    [47] Bates M E, Stamper S A, Simmons J A. Jamming avoidance response of big brown bats in target detection[J]. Journal of Experimental Biology, 2008, 211 (1): 106-113.
    [48] Jones G. Sensory Ecology: Noise Annoys Foraging Bats[J]. Current Biology, 2008, 18 (23): R1098-R1100.
    [49] Ulanovsky N, Fenton M B, Tsoar A, et al. Dynamics of jamming avoidance in echolocating bats[J]. Proceedings of the Royal Society of London Series B-Biological Sciences, 2004, 271: 1467-1475.
    [50] Altringham J D. Bats: Biology and Behaviour[M]. Oxford: Oxford University Press., 1996.
    [51] Grinnell A D. Hearing in bats: An overview. In: Hearing by bats (Popper, A. N. & Fay, R. R. eds). [M]. New York Springer-Verlag., 1996.
    [52] Schuller G, Pollak G D. Disproportionate frequency representation in the inferior colliculus of horseshoe bats: evidence for an“acoustic fovea”.[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1979, 132: 47–54.
    [53] Jones G, Teeling E C. The evolution of echolocation in bats[J]. Trends in Ecology and Evolution, 2006, 21 (3): 149-156.
    [54] Bates P J, Harrison D. Bats of the Indian subcontinent[M]. Sevenoaks: Harrison Zoological Museum, 1997.
    [55] Smith A, Xie Y. A guide to the mammals of China[M]. Princeton: Princeton University Press, 2008. 576.
    [56]王应祥.中国哺乳动物种和亚种分类名录和分布大全[M].北京:中国林业出版社, 2003. 394.
    [57] Csorba G, Ujhelyi P, Thomas N. Horseshoe Bats of the World (Chiroptera: Rhinolophidae) [M]. United Kingdom: Shropshire, 2003.
    [58]张劲硕,李钢,刘洋, et al.菲菊头蝠在中国北方的新纪录[J].动物学杂志, 2007, 42 (6): 102.
    [59] Simmons N B. Order Chiroptera. In: Mammal species of the World: a taxonomic and geographic reference[M]. Baltimore: Johns Hopkins University Press, 2005.
    [60] Smith A T, Johnston C H, Jones G, et al., Myotis davidii. In: IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. In www.iucnredlist.org: 2008.
    [61] Rossiter S J, Jones G, Ransome R D, et al. Genetic variation and population structure in the endangered greater horseshoe bat Rhinolophus ferrumequinum[J]. Molecular Ecology, 2000, 9 (8): 1131-1135.
    [62] Aulagnier S, Hutson A M, Spitzenberger F, et al., IUCN 2010. IUCN Red List of Threatened Species. Version 2010.1. In www.iucnredlist.org: 2008.
    [63] Endler J A. Predation, light-intensity and courtship behavior in Poecilia reticulata (Pisces, Poeciliidae)[J]. Animal Behaviour, 1987, 35: 1376-1385
    [64] Koetz A H, Westcott D A, Congdon B C. Geographical variation in song frequency and structure: the effects of vicariant isolation, habitat type and body size[J]. Animal Behaviour, 2007, 74 (5): 1573-1583.
    [65] Huihua Z, Shuyi Z, Mingxue Z, et al. Correlations between call frequency and ear length in bats belonging to the families Rhinolophidae and Hipposideridae[J]. Journal of Zoology, 2003, 259 (2): 189-195.
    [66] Schnitzler H U, Suga N, Simmons J A. Peripheral auditory tuning for fine frequency analysis by the CF-FM bat, Rhinolophus ferrumequinum. III. Cochlear microphonics and auditory nerve responses[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1976, 106 (1): 99-110.
    [67] Taniguchi I. Echolocation sounds and hearing of the greater Japanese horseshoe bat (Rhinolophus ferrumequinum nippon)[J]. Journal of Comparative Physiology A, 1985, 156 (2): 185-188.
    [68] Francis C M, Habersetzer J. Interspecific and intraspecific variation in echolocation call frequency and morphology of horseshoe bats, Rhinolophus and Hipposideros. In: Bat Biology and Conservation (Ed. by T. H. Kunz & P. A. Racey).[M]. Washington, D.C.: Smithsonian Institution Press., 1998. 169-179.
    [69] Fenton M B, Jacobs D S, Richardson E J, et al. Individual signatures in the frequency-modulated sweep calls of African large-eared, free-tailed bats Otomops martiensseni (Chiroptera: Molossidae)[J]. Journal of Zoology, 2004, 262 (1): 11-19.
    [70] Hiryu S, Katsura K, Nagato T, et al. Intra-individual variation in the vocalized frequency of the Taiwanese leaf-nosed bat, Hipposideros terasensis, influenced by conspecific colony members[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192 (8): 807-815.
    [71] Chiu C, Xian W, Moss C F. Flying in silence: Echolocating bats cease vocalizing to avoid sonar jamming[J]. Proceedings of the National Academy of Sciences of the United States of America 2008, 105 (35): 13116-21.
    [72] Obrist M K. Flexible bat echolocation: The influence of individual, habitat and conspecifics on sonar signal design[J]. Behavioral Ecology and Sociobiology, 1995, 36 (3): 207-219.
    [73] Fenton M B. Eavesdropping on the echolocation and social calls of bats[J]. Mammal Review, 2003, 33: 193-204.
    [74] Yovel Y, Melcon M L, Franz M O, et al. The Voice of Bats: How Greater Mouse-eared Bats Recognize Individuals Based on Their Echolocation Calls[J]. PLoS Computational Biology, 2009, 5 (6): e1000400.
    [75] Ma J, Kobayasi K, Zhang S, et al. Vocal communication in adult greater horseshoe bats, Rhinolophus ferrumequinum[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2006, 192 (5): 535-550.
    [76] Jones G, Barlow K E. Cryptic species of echolocating bats. Echolocation in bats and dolphins (ed. by J. Thomas, C. Moss and M. Vater). [M]. Chicago: Chicago University Press, 2004. 345–349.
    [77] Gaston K J, O'Neill M A. Automated species identification: Why not?[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359 (1444): 655-667.
    [78] Mayo M, Watson A T. Automatic species identification of live moths[J]. Knowledge-Based Systems, 2007, 20 (2): 195-202.
    [79] Moyo T, Bangay S, Foster G. The identification of mammalian species through the classification of hair patterns using image pattern recognition[A]. In: eds. ACM International Conference on Computer Graphics, Virtual Reality and Visualisation in Africa[C], 2006; 177-181.
    [80] Witten I H, Frank E. Data Mining: Practical machine learning tools and techniques[M]. 2nd Edition. San Francisco: Morgan Kaufmann, 2005.
    [81] Melendez K V, Jones D L, Feng A S. Classification of communication signals of the little brown bat[J]. The Journal of the Acoustical Society of America, 2006, 120 (2): 1095-1102.
    [82] Dunham M H. Data Mining: Introductory and Advanced Topics, 2003.
    [83] Han J W, Kamber M, Pei J. Data Mining: Concepts and Techniques[M]. Morgan Kaufmann Publishers, 2005. 770.
    [84] Thabah A, Rossiter S J, Kingston T, et al. Genetic divergence and echolocation call frequency in cryptic species of Hipposideros larvatus s.l. (Chiroptera: Hipposideridae) from the Indo-Malayan region[J]. Biological Journal of the Linnean Society, 2006, 88 (1): 119-130.
    [85] Racey P A. Ageing and assessment of reproductive status of Pipstrelle bats, Pipstrellus pipistrellus. [J]. Journa of Zoology, 1974, 173: 264-271.
    [86] Racey P A. Ecology of the reproduction of bats. In Ecology of bats: Kunz, T.H. (Ed.). [M]. New York & London: Plenum Press, 1982.
    [87] Schnitzler H U. Comparison of the echolocation behavior in Rhinolophus ferrumequinum andChikonycteris rubiginosa.[J]. Bijdr Dierk, 1970, 40: 77-80.
    [88] Siemers B M, Beedholm K, Dietz C, et al. Is species identity, sex, age or individual quality conveyed by echolocation call frequency in European horseshoe bats?[J]. Acta Chiropterologica, 2005, 7 (2): 259–274.
    [89] Russo D, Jones G, Mucedda M. Influence of age, sex and body size on echolocation calls of Mediterranean and Mehely's horseshoe bats, Rhinolophus euryale and R. mehelyi (Chiroptera: Rhinolophidae)[J]. Mammalia, 2001, 65 (4): 429-436.
    [90] Zar J H. Biostatistical analysis.[M]. Upper saddle river: Prentice hall, 1999.
    [91] Mantel N. The detection of disease clustering and a generalized regression approach[J]. Cancer Research, 1967, 27: 209–220.
    [92] Schneider S, Roessli D, Excoffier L. Arlequin, version 2.000: Software for Population Genetic Data Analysis. Genetics and Biomatry Laboratory, Univ. of Geneva, Geneva[J]. 2000.
    [93] Excoffier L G L, Schneider S. ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis[J]. Evolutionary Bioinformatics Online, 2005, 1: 47-50.
    [94] Jouventin P, Aubin T, Lengagne T. Finding a parent in a king penguin colony: the acoustic system of individual recognition.[J]. Animal Behaviour, 1999, 57: 1175—1183.
    [95] Robisson P, Aubin T, Bremond J C. Individuality in the voice of the Emperor Penguin Aptenodytes forsteri: adaptation to a noisy environment[J]. Ethology, 1993, 94: 279-290.
    [96] Burnett S C, Masters W M J A S A, 2189. The use of neural networks to classify echolocation calls of bats[J]. The Journal of the Acoustical Society of America, 1999, 106: 2189.
    [97] Parsons S, Jones G. Acoustic identification of twelve species of echolocating bat by discriminant function analysis and artificial neural networks[J]. Journal of Experimental Biology, 2000, 203: 2641–2656.
    [98] Fenton M B. Communication in the Chiroptera[M]. Bloomington: Indiana University Press, 1985.
    [99] Wilkinson G S, Boughman J W. Social calls coordinate foraging in greater spear-nosed bats[J]. Animal Behaviour, 1998, 55: 337–350.
    [100] Jones G, Gordon T, Nightingale J. Sex and age variation in echolocation calls of the lesser horseshoe bat, Rhinolophus hipposideros[J]. Mammalia, 1992, 58: 41-193.
    [101] Jones G. Variation in bat echolocation: implications for resource partitioning and communiation [J]. Le Rhinolophe, 1995, 11: 53-59.
    [102] Neuweiler G, Metzner W, Heilmann U, et al. Foraging behaviour and echolocation in the rufous horseshoe bat (Rhinolophus rouxi) of Sri Lanka[J]. Behavioral Ecology and Sociobiology, 1987, 20 (1): 53-67.
    [103] Barclay R M R, Brigham R M. Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small?[J]. American Naturalist, 1991, 137 (5): 693-703.
    [104] Jones G. Acoustic signals and speciation: the roles of natural and sexual selection in the evolution of cryptic species [J]. Advances in the Study of Behavior, 1997, 26: 317–354.
    [105] Kingston T, Lara M C, Jones G, et al. Acoustic divergence in two cryptic Hipposideros species, a role for social selection?[J]. Proceedings Of The Royal Society Of London Series B-Biological Sciences, 2001, 268: 1381-1386.
    [106] Tibbetts E A, Dale J. Individual recognition: it is good to be different[J]. Trends in Ecology and Evolution, 2007, 22 (10): 529-537.
    [107] Krebs J R, Kroodsma D E. Repertoires and geographical variation in bird song. In Advances in the Study of Behaviour (Rosenblatt, J S, Hinde R A, Beer C, et al., Eds). M. Academic Press: New York, 1980; Vol. 11, 143-177.
    [108] Cavalli-Sforza L L, Wang W S Y. Spatial distance and lexical replacement.[J]. Language, 1986, 62: 38-55.
    [109] Norberg U M, Rayner J M V. Ecological morphology and ?ight in bats (Mammalia: Chiroptera): wing adaptations, ?ight performance, foraging strategy and echolocation.[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 1987, 316: 335–427.
    [110] Payne R B, Woods J L, Siddall M E, et al. Randomization analyses: Mimicry, geographic variation and cultural evolution of song in brood-parasitic straw-tailed whydahs, Vidua fischeri[J]. Ethology, 2000, 106 (3): 261-282.
    [111] Mundinger P C. Microgeographic and macrogeographic variation in the acquired vocalizations of birds[J]. Acoustic Communication in Birds, 1982, 2: 147-208.
    [112] Shieh B S. Song structure and microgeographic variation in a population of the Grey-cheeked Fulvetta (Alcippe morrisonia) at Shoushan Nature Park, southern Taiwan[J]. Zoological Studies, 2004, 43: 132-141.
    [113] Boughman J W, Wilkinson G S. Greater spear-nosed bats discriminate group mates by vocalizations[J]. Animal Behaviour, 1998, 55 (6): 1717-1732.
    [114] Boughman J W. Greater spear-nosed bats give group-distinctive calls[J]. Behavioral Ecology and Sociobiology, 1997, 40 (1): 61-70.
    [115] Pearl D L, Fenton M B. Can echolocation calls provide information about group identity in the little brown bat (Myotis lucifugus)?[J]. Canadian Journal of Zoology, 1996, 74 (12): 2184-2192.
    [116] Dechmann D K N, Heucke S L, Giuggioli L, et al. Experimental evidence for group hunting via eavesdropping in echolocating bats[J]. Proceedings of the Royal Society B: Biological Sciences, 2009, 276 (1668): 2721-2728.
    [117] Feekes F. Colony-specific song in Cacicus cela (Icteridae, Aves): The password hypothesis[J]. Ardea, 1977, 65: 197-202.
    [118] Kunz T H, Roosting ecology. In Ecology of bats, Kunz, T H, Ed. Plenum: New York, 1982; 151-200.
    [119] Kerth G. Causes and consequences of sociality in bats[J]. BioScience, 2008, 58 (8): 737-746.
    [120] Aureli F, Schaffner C M, Boesch C, et al. Fission-fusion dynamics new research frameworks[J]. Current Anthropology, 2008, 49 (4): 627-654.
    [121] Wilkinson G S. Reciprocal food sharing in the vampire bat[J]. Nature, 1984, 308 (5955): 181-184.
    [122] Emlen S T. Benefits, constraints and the evolution of the family[J]. Trends in Ecology and Evolution, 1994, 9 (8): 282-285.
    [123] Racey P A, Swift S M. Variations in gestation length in a colony of pipistrelle bats (Pipistrellus pipistrellus) from year to year[J]. Journal of Reproduction and Fertility, 1981, 61 (1): 123-129.
    [124] Kingston T, Rossiter S J. Harmonic-hopping in Wallacea's bats[J]. Nature, 2004, 429 (6992): 654-7.
    [125] Patten M A, Rotenberry J T, Zuk M. Habitat selection, acoustic adaptation, and the evolution of reproductive isolation[J]. Evolution, 2004, 58 (10): 2144-2155.
    [126] Law B S, Reinhold L, Pennay M. Geographic variation in the echolocation calls of Vespadelus spp. (Vespertilionidae) from New South Wales and Queensland, Australia[J]. Acta Chiropterologica, 2002, 4 (2): 201-215.
    [127] Parsons S. Search-phase echolocation calls of the New Zealand lesser short-tailed bat (Mystacina tuberculata) and long-tailed bat (Chalinolobus tuberculatus)[J]. Canadian Journal of Zoology, 1997, 75: 1487-1494.
    [128] Suga N, Niwa H, Taniguchi I, et al. The personalized auditory cortex of the mustached bat: Adaptation for echolocation[J]. Journal of Neurophysiology, 1987, 58 (4): 643-654.
    [129] Huffman R F, Henson Jr O W. Cochlear and CNS tonotopy: Normal physiological shifts in the mustached bat[J]. Hearing Research, 1991, 56 (1-2): 79-85.
    [130] Corbet G B, Hill J E. The Mammals of the Indomalayan Region[M]. Oxford: Natural History Museum Publications and Oxford University Press, 1992. 488.
    [131] Masters W M, Raver K A S, Kazial. K A. Sonar signals of big brown bats, Eptesicus fuscus, contain information about individual identity, age and family affiliation[J]. Animal Behaviour 50:, 1995, 50: 1243–1260.
    [132] Ruegg K, Slabbekoorn H, Clegg S, et al. Divergence in mating signals correlates with ecological variation in the migratory songbird, Swainson's thrush (Catharus ustulatus)[J]. Molecular Ecology, 2006, 15 (11):3147-3156.
    [133] Murray K L, Britzke E R, Robbins L W. Variation in search-phase calls of bats[J]. Journal of Mammalogy, 2001, 82 (3): 728-737.
    [134] Maeda K. Variations in bent-winged bats, Miniopterus schreibersi Kuhl, and least horseshoe bats, Rhinolophus cornutus Temminck, in the Japanese Islands: I. External characters[J]. Proceedings of 4th International Bat Research Conference, 1978: 177-187.
    [135] Hartley D J. The effect of atmospheric sound absorption on signal bandwidth and energy and some consequences for bat echolocation[J]. The Journal of the Acoustical Society of America, 1989, 85: 1338-1347.
    [136] Remmert H. Body size of terrestrial arthropods and biomass of their populations in relation to the abiotic parameters of their milieu[J]. Oecologia, 1981, 50 (1): 12-13.
    [137] Rydell J, Miller L A, Jensen M E. Echolocation constraints of Daubenton's Bat foraging over water[J]. Functional Ecology, 1999, 13 (2): 247-255.
    [138] Hage S R, Jiang T L, Berquist S, et al.“Jamming avoidance”in bats with narrow-band echolocation pulses. Program No. 196.20.[A], In 2009 Neuroscience Meeting Planner[C], Chicago, IL. , 2009.
    [139] Ariettaz R, Jones G, Racey P A. Effect of acoustic clutter on prey detection by bats[J]. Nature, 2001, 414 (6865): 742-745.
    [140] Barclay R M R. Bats are not birds - a cautionary note on using echolocation calls to identify bats: a comment[J]. Journal of Mammalogy, 1999, 80: 290-296.
    [141] Bowie R C K, Jacobs D S, Taylor P J. Resource use by two morphologically similar insectivorous bats (Nycteris thebaica and Hipposideros caffer)[J]. South African Journal of Zoology, 1999, 34 (1): 27-33.
    [142] You Y Y, Sun K P, Xu L J, et al. Pleistocene glacial cycle effects on the phylogeography of the Chinese endemic bat Myotis davidii[J]. BMC Evolutionary Biology, 2010, Article in press.
    [143] Hartley D J, Suthers R A. The acoustics of the vocal tract in the Horseshoe bat Rhinolophus hildebrandti[J]. Journal of the Acoustical Society of America, 1988, 84: 1201-1213.
    [144] Jones G, Kokurewicz T. Sex and age variation in echolocation calls and flight morphology of Daubenton's bats Myotis daubentonii[J]. Mammalia, 1994, 58 (1): 41-50.
    [145] Leippert D, Goymann W, Hofer H, et al. Roost-mate communication in adult Indian false vampire bats (Megaderma lyra):an indication of individuality in temporal and spectral pattern[J]. Animal Cognition, 2000, 3: 99-106.
    [146] Wright T F, Wilkinson G S. Population genetic structure and vocal dialects in an amazon parrot[J]. Proceedings of the Royal Sccoety: B, 2001, 268: 609-616.
    [147] Knornschild M, Nagy M, Metz M, et al. Complex vocal imitation during ontogeny in a bat[J]. Biology Letters, 2010, 6 (2): 156-159.
    [148] Hunley K, Long J C. Gene flow across linguistic boundaries in Native North American populations[J]. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (5): 1312-7.
    [149] Schmalhausen I I. Factors of evolution: The theory of stabilizing selection.[M]. Philadelphia, PA: Blakiston, 1949.
    [150] Crandall K A, Bininda-Emonds O R R, Mace G M, et al. Considering evolutionary processes in conservation biology[J]. Trends in Ecology and Evolution, 2000, 15 (7): 290-295.
    [151] Fraser D J, Bernatchez L. Adaptive evolutionary conservation: Towards a unified concept for defining conservation units[J]. Molecular Ecology, 2001, 10 (12): 2741-2752.
    [152] Cryan P M, Barclay R M R. Causes of bat fatalities at wind turbines: Hypotheses and predictions[J]. Journal of Mammalogy, 2009, 90 (6): 1330-1340.
    [153] Brumm H, Todt D. Noise-dependent song amplitude regulation in a territorial songbird[J]. Animal Behaviour, 2002, 63 (5): 891-897.
    [154] Brumm H, Voss K, Kllmer I, et al. Acoustic communication in noise: Regulation of call characteristics in aNew World monkey[J]. Journal of Experimental Biology, 2004, 207 (3): 443-448.
    [155] Egnor S E R, Hauser M D. Noise-induced vocal modulation in cotton-top tamarins (Saguinus oedipus)[J]. American Journal of Primatology, 2006, 68 (12): 1183-1190.
    [156] Sinnott J M, Stebbins W C, Moody D B. Regulation of voice amplitude by the monkey[J]. Journal of the Acoustical Society of America, 1975, 58 (2): 412-414.
    [157] Metzner W, Zhang S, Smotherman M. Doppler-shift compensation behavior in horseshoe bats revisited: Auditory feedback controls both a decrease and an increase in call frequency[J]. Journal of Experimental Biology, 2002, 205 (11): 1607-1616.
    [158] Schuller G, Beuter K, Schnitzler H U. Response to frequency shifted artificial echoes in the bat Rhinolophus ferrumequinum[J]. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 1974, 89 (3): 275-286.
    [159] Smotherman M, Metzner W. Effects of echo intensity on doppler-shift compensation behavior in horseshoe bats[J]. Journal of Neurophysiology, 2003, 89 (2): 814-821.
    [160] Lopez P T, Narins P M, Lewis E R, et al. Acoustically induced call modification in the white-lipped frog, Leptodactylus albilabris[J]. Animal Behaviour, 1988, 36 (5): 1295-1308.
    [161] Penna M, Pottstock H, Velasquez N. Effect of natural and synthetic noise on evoked vocal responses in a frog of the temperate austral forest[J]. Animal Behaviour, 2005, 70 (3): 639-651.
    [162] Potash L M. Noise-induced changes in calls of the Japanese quail[J]. Psychonomic Science, 1972, 26: 252-254.
    [163] Pytte C L, Rusch K M, Ficken M S. Regulation of vocal amplitude by the blue-throated hummingbird, Lampornis clemenciae[J]. Animal Behaviour, 2003, 66 (4): 703-710.
    [164] Leonard M L, Horn A G. Ambient noise and the design of begging signals[J]. Proceedings of the Royal Society B: Biological Sciences, 2005, 272 (1563): 651-656.
    [165] Nonaka S, Takahashi R, Enomoto K, et al. Lombard reflex during PAG-induced vocalization in decerebrate cats[J]. Neuroscience Research, 1997, 29 (4): 283-289.
    [166] Scheifele P M, Andrew S, Cooper R A, et al. Indication of a Lombard vocal response in the St. Lawrence River beluga[J]. Journal of the Acoustical Society of America, 2005, 117 (3 I): 1486-1492.
    [167] Lombard E. Le signe de l’e′le′vation de la voix[J]. Ann Mal Oreille Larynx, 1911, 37: 101-119.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700