用户名: 密码: 验证码:
捕食与竞争——流溪河水库浮游动物群落的种间关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
捕食和竞争是引起生物种群波动的最主要原因,也是调节生态系统结构的主要动力。流溪河水库是一座亚热带大型深水贫中营养水库,浮游动物种类丰富,生物多样性高,本论文调查了2006~2009流溪河浮游动物(甲壳类、轮虫,以原生动物中的砂壳虫和蜗虫属中扁虫)的种群动态与时空分布,分析了捕食和竞争对浮游动物群落组成、结构和动态变化的影响,以及由捕食和竞争引起的浮游动物的的垂直迁移和垂直分布。
     流溪河水库是一座贫中营养水体,叶绿素a浓度较低,浮游动物的捕食和竞争活动激烈。甲壳类是流溪河水库浮游动物的绝对优势类群,桡足类站浮游动物比例的61.7%-82.6%,枝角类占浮游动物总生物量的15.7%~29.8%,轮虫的生物量在水库中呈逐年下降的趋势,其组成以小个体轮虫为主。水库的优势种和主要滤食者是舌状叶镖水蚤和奥氏秀体溞,其次是脆弱象鼻溞、颈沟基合溞和中剑水蚤。流溪河浮游动物的演替模式和温带水体的PEG模型比较相似,有一些温带大型滤食者如盔型溞的参与。最大生物量与最小生物量平均比为13.4,有比较明显的季节演替和季节规律,这是流溪河水库区别于其他热带水体的显著特征。同时,流溪河水库也有一些典型的热带浮游动物种类如秀体溞,网纹溞,舌状叶镖水蚤,扁虫等等,它们的演替和季节动态则具有热带水体浮游动物的特征,表现出喜高温、夏季种群数量高、种群发展快、对食物浓度要求较高等特点。
     舌状叶镖水蚤在整个华南地区分布非常广泛,是敞水浮游区最常见的优势种,也是热带地区最重要的大型滤食者,在流溪河水库中其种群数量中在桡足类所占的比例呈逐年上升趋势。种群丰度波动范围为0~36.5 ind/L,多年丰度均值为6.8 ind/L,生物量波动范围为0-926.3μg/L,生物量上是水库浮游动物的绝对优势种。舌状叶镖水蚤是暖水型滤食者,其生物量与叶绿素a有显著的负相关性(r=0.330(*);p=0.016,N=42).,而与温度呈极显著正相关性(r=-0.309(*);p=0.020,N=45).舌状叶镖水蚤是大型K-型选择者,体长大、食物浓度低、食物范围宽、逃避捕食能力强、竞争力强,故而是适应高温、高强度捕食压力的热带优势的滤食者。在贫营养条件下,其种群增长率为的盔型溞种群增长率的5倍。温度和食物浓度上升能够提高舌状叶镖水蚤的发育速度。通过提高防御能力,降低死亡率来抵御捕食压力是舌状叶镖水蚤作为大型K-型选择者适应热带高强度捕食压力的显著特征。
     奥氏秀体溞世代短,繁殖较快,对食物浓度要求比较高,与温度呈显著正相关性,动态变化随温度的变化比较明显,种群丰度波动范围在0~15.2 ind/L之间,多年均值丰度为2.3 ind/L。在水温较高的情况下,秀体溞能提高发育速度,和每胎怀卵数量,并且寿命不受影响。在热带水体中,水温高而鱼类活跃,捕食作用强烈,对浮游动物来说,最适应这种环境的生存策略是尽量缩短时代时间加快发育速度,增加繁殖率,以弥补捕食带来的种群的损失,特别是随温度升高的这种变化。
     垂直迁移是指浮游动物在整个水层一天之内进行垂直的迁移活动。流溪河水库是一座北回归线上修建有50年以上的大型深水水库,水温常年较高,水体分层显著,水库有养鱼的历史,鱼类捕食压力较大,浮游动物垂直迁移活动强烈。在流溪河水库中,优势甲壳类的垂直迁移特点随捕食压力、食物浓度、季节差异、发育阶段以及自身生活策略的不同而表现出不同的特点。
     奥氏秀体溞和无节幼体在所有季节和所有体长的个体均没有明显的垂直迁移活动,种群绝大部分停留在温水层,种群分布和叶绿素a浓度分布呈显著正相关性(r=0.305*;p=0.035;N=36)。脆弱象鼻溞,颈沟基合溞和模糊秀体溞是比较小的枝角类,受到无脊椎捕食者薄皮溞,幽蚊幼虫捕食因素的影响,在流溪河水库中在夏季呈逆向垂直迁移模式,即白天种群停留于水体表层,而晚上种群迁移至水体底层,而冬季则不进行垂直迁移活动。方形网纹溞,微型裸腹溞和盔型溞,所有个体,无论体长大小,在所有季节都进行垂直迁移活动,并且迁移幅度较大。
     舌状叶镖水蚤和中剑水蚤是流溪河水库中体长最大的浮游动物,但由于发育时间较长,迁移规律随年龄阶段的桡足幼体的不同情况较复杂。总体来说,发育阶段较早的桡足幼体垂直迁移能力微弱,或不进行垂直迁移,分布于水体食物浓度较丰富的水层,而成体和晚期桡足幼体则进行幅度较大的垂直迁移活动。博平近剑水蚤体长最小,其垂直迁移规律是夏季进行小幅度的垂直迁移,冬季则没有垂直迁移行为,种群停留在水体上表层。
     有壳变形虫是一类分布非常广泛、种类丰富的单细胞原生动物,它们的外形差异很大,并也常见于敞水区。在流溪河水库中,主要有6个种类。这些砂壳虫能够以水体中很多种类的轮虫、多甲藻为食,甚至能够摄食中型浮游生物包括无节幼体等,其摄食种类跟砂壳虫的口径大小有关:其中D. tuberspinifera偏好摄食一种直径为30μm的多甲藻,D. biwae对一种直径为25μm的多甲藻的种群则具有明显的抑制作用,砂壳虫对软体和有坚硬外壳的食物均有良好的处理方式;Asplancha, Stentor, Ploesome和中剑水蚤是砂壳虫的捕食者,其中,砂壳虫是中剑水蚤的重要食物来源,其种群跟中剑水蚤呈正相关性。砂壳虫最显著的特征是进行底栖-浮游的生活周期循环,种群高峰出现于正夏,时空差异分布显著,河流区和过渡区水体扰动较大、食物较为丰富的位置种群丰度最高。砂壳虫集中于食物较为丰富的暖水层0-12m,种群高峰出现于8m。砂壳虫受食物影响比受捕食因素影响更大,其种间种内竞争比较激烈,同类相食在砂壳虫各种类之间比较普遍。伪足对砂壳虫的生命活动具有重要意义,其口径大小决定了伪足的活跃程度与摄食能力以及砂壳虫的食物生态位范围。
     流溪河水库2004~4005年间进行了人为的高强度捕鱼导致水库鱼类的密度大幅度下降,浮游性的扁虫的种群在2006~2009年出现于每年的初夏。当扁虫一出现时,盔型溞的种群消失(7月),进入休眠状态,这比鱼类对盔型溞带来的捕食压力的种群消失时间(8月)提前了一个月,而方形网纹溞则取代了盔型溞的优势。结合实验室培养、观察、大型围格、以及野外采样数据分析,在无扁虫的情况下,盔型溞由于其滤食能力更强,其竞争优势大于网纹溞,但盔型溞对扁虫毒素非常敏感,因此在有扁虫的情况下,竞争优势被对扁虫毒素耐受性较大的网纹溞取代。扁虫对其自身产生的毒素也非常敏感,因此种群不能维持在很高的浓度,而方形网纹溞虽然也被扁虫捕食,但由于其耐受性种群反而取得与其他动物竞争优势。
Predation and competition are the main factors regulating population dynamics in freshwater organisms and also the most important structuring forces in freshwater ecosystems. Liuxihe Reservoir is a large deep oligo-mesotropic sub-tropical reservoir with high diversity of zooplankton species,. The present study investigated structures and dynamics of zooplankton communities in the reservoir from 2006~2009, explored the role of predation and competition in structuring zooplankton communities, vertical distribution patterns and population dyanmics.
     Liuxihe Reservoir is an oligo-mesotropic water body with low chlorophyll a concentration, the zooplankton suffered from food limitation, and strong competition, consequently, predation can evidently modify competition consequence.
     Zooplankton biomass composition in Liuxihe Reservoir was predominated by crustaceans, of which copepods accounted for 61.7%~82.6%. Cladocreans contributed a percentage of 15.7%~29.8%. Rotifers had a decreasing trend within the years, and they were mainly composed of small-bodied species. Among crustaceans, Phyllodiaptomus tunguidus and Diaphanosoma orhidani were the most dominant species and filter feeders, followed by Bosmina fatalis, Bosminiopsis deitorsi, and Mesocyclops sp.
     As the large fitler feeder Daphnia geleata occurred, the seasonal succession pattern of zooplankton in Liuxihe Reservoir was similar to PEG model in temporal water-bodies. The annual average ratio of the maximum biomass to minimum biomass of zooplankton was about 13.4, indicating a distinct seasonal succession pattern which is the main different characteristics different to other tropical water-bodies. On other hand, the zooplankton mainly consisted of typical tropical zooplankton species such as Phyllodiaptomus tunguidus, Diaphanosoma orhidani, Ceriodaphnia and flatworms. Their succession and dynamics were also typical tropical zooplankton species, with peak populations at high temperatures in summer, short development time, and high food concentration requirements.
     Phyllodiaptomus tunguidus distributed widely in all South China as the most dominant pelagic species and filter feeders in tropical and sub-tropical water-bodies. It had an increasing trend in the investigation years. Its abundance ranged from 0 to 36.5 ind/L, with an annual average value of 6.8 ind/L; the coorepsonding biomass range was from 0 to 926.3μg/L.. It existed a significant positive correlation to water temperature(r=0.330(*), p=0.016, N=42), and a significant negative correlations with chlorophyll a concentration (r=-0.309(*); p=0.020, N=45). P. tunguidus is a K-strategist and strong competitor with large body size, low threshold food concentration, wide food niches, and strong escaping ability. It well adapted to high water temperatures and strong fish predation pressure. The intrinsic increase rate (r) of population was 5 times of Daphnia geleata at low food concentrations. The intrinsic increase rate of Phyllodiaptomus tunguidus increased with higher temperature and food concentration. The ability to avoid predation is a characteristic feature for Phyllodiaptomus tunguidus to adapt to the tropical water with high predation.
     Diaphanosoma orhidani has a short life generation time, high reproductive rate and high requirements for food concentration, and its abundance showed a significant correlation to water temperatures. The abundance of Diaphanosoma orhidani was from 0 to 15.2 ind/L with an annual mean value of 2.3 ind/L. Diaphanosoma orhidani can speed development rate and enlarge clutch size without shortening life span under high water temperature. Because predation is comparatively stronge in tropical waterbodies, that the most effective adaptive strategies for zooplankton to survive is to shorten life generation time, increase development time and increase reproduction rate to make up for the predation loss, especially when temperature is higher.
     Many zooplankton species undergo diel vertical migration (DVM) in which they move up and down the water column within a day. The DVM activity patterns for crustaceans were distinct in Liuxuhe Reservoir. The amplitude for DVM of crustaceans in Liuxihe Reservoir were mainly induced by predation pressure, modified by species-specific life strategies, development stages, and food concentration, radiation and seasonal variations.
     Diaphanosoma orhidani and naupliar has no diel vertical migration in all seasons, regardless of their development stages. The population stayed mainly in the epilimnion, and their distributions were significantly correlated to chlorophyll a concentration Bosmina fatalis and Bosminopsis deitorsi are small body size cladocerans which are most sensitive to invertebrate predation. They showed a reverse diel vertical migration mode in the reservoir, which stayed in the surface water layer during the daytime and descend to deep layers during the night. However, they didn't show any diel vertical migration in winter. Ceriodaphnia, Daphnia geleata and Moina micrura showed strong diel vertical migration in all seasons, independent of their body size.
     Phyllodiaptomus tunguidus and Mesocyclops are the largest zooplankton in the reservoir. Their diel vertical migration behavior varied in their development stage. In general, the younger stages of Phyllodiaptomus tunguidus and Mesocyclops showed little or no diel vertical migration, and they stayed mostly in the epilimnion where food is abundant. The later stages and adults showed extended vertical migration. Tropocyclops bopingi, however, due to its small size, showed a short-range vertical migration in summer and no vertical migration in winter, with the main population stayed in the surface layers.
     Testate amoebae are an abundant and diverse polyhyletic group of shelled protozoa which are quite common and distributed widely in tropical and sub-tropical water bodies In the Liuxihe Reservoir, Difflugia are carnivorous or omnivorous which feed on a large range of food like rotifers, Peridinium or even mesozoans, the food selection mainly depended on the aperture diameter of the prey, for example, D. tuberspinifera preyed mainly on a Peridinium species with a diameter of 30μm, while D. biwae preferred the one of 25μm, and it can suppress the population of this Peridinuim. Asplancha, Stentor, Ploesome, and Mesocyclops are the predators of Difflugia, and the positive correlations between Difflugia and Mesocyclops indicated that Difflugia is an important food source for Mesocyclops when they are abundant in the water column. The characteristic of Difflugia is the bentho-planktonic cycle, with peak population in summer. They have distinct temporal and spatial distribution patterns, and they have much higher abundance in the uprivers and transition region with high water turbulence and food source. They produce gas bubble to be suspended in the pelagic and to move and prey. The vertical sample profiles showed that they don't have DVM and they distributed mostly in the epilimnion with peak population at a depth of 8m. Competition has more important effect than predation for Difflugia. There were fierce competition between species and within species, and cannibalism was common to be found in Difflugia. Pseudopodia played an important role for Difflugia. Aperture size decided the pseudopodia activity and the food niche range of Difflugia.
     In Liuxihe, a freshwater reservoir in South China with artificially reduced fish predation pressure since 2004-2005, the zooplankton showed a single yearly pulse of pelagic flatworms in the early summer periods of 2006-2009. As soon as they appear, Daphnia galeata retreats in dormancy, one month earlier (July) under a flatworm than under a fish predation regime (August), but the related Ceriodaphnia quadrangula does not and has a tendency to replace it. We show, using in situ lake sampling, by experiments in large enclosures and by laboratory observations, that Ceriodaphnia is competitively inferior to Daphnia, presumably in its ability to acquire algal food, but has a much higher tolerance to flatworm toxins. As a result, Ceriodaphnia manages to coexist with the flatworm and the balance of the competition is tipped. Observations in the laboratory suggest that flatworm populations autoregulate by being sensitive to their own toxins and that Ceriodaphnia, even though a prey to the worms, may incur less cost than benefit from their presence.
引文
1. 林国恩,2009.流溪河水库氮磷营养盐动态与收支分析,暨南大学硕士论文.
    2. 林秋奇,2007.流溪河水库后生浮游动物多样性与群落结构的时空异质性,暨南大学博士论文.
    3. 林秋奇,韩博平.水库生态系统特征及其在水库水质管理中的应用[J].生态学报,2001,21(6):1034-1040.
    4. 林彰文,2007.热带典型水库沉积物磷与硅藻的空间分布,暨南大学博士论文.
    5. 刘建康,1999.高级水生生物学[M].科学出版社.
    6. 孙儒泳,李博,诸葛阳,尚玉昌,1993.普通生态学[M].北京:高等教育出版社.
    7. 章宗涉,黄翔飞,1991.淡水浮游生物研究方法[M].科学出版社.
    8. 赵孟绪,2004.汤溪水库富营养化特征与蓝藻“水华”特征研究,暨南大学博士论文.
    9. 赵帅营,2009.营养盐加富和鲢对南亚热带贫—中营养型水库浮游生物群落的影响:大型围隔实验,暨南大学博士论文.
    10. Adler, F.R.& Harvell, C.D.,1990. Inducible defences, phenotypic variabliltiy and biotic environments[J]. Trends in Ecology and Evolution 5:407-410.
    11. Allan, J. D.,1974. Balancing predation and competition in cladocerans. Ecology 55:622-629.
    12. Amarasinghe, P.B., Vijverberg, J.& Boersma, M.,1997. Production biology of copepods and cladocerans in three south-east Sri Lankan low-land reservoirs and its comparison to other tropical freshwater bodies[J]. Hydrobiologia 350:145-162.
    13. Balcer, M.D., Korda, N.L,& Dodson, S.I.,1984. Zooplankton of the Great Lakes-A guide to the identification and ecology of the common Crustacean species[M]. The University of Wisconsin Press, Wisconsin,174pp.
    14. Bonecker, C.C., Lansac-Toha, F.A., Velho, L.F.M & Rossa, D.C.,2001. The temporal distribution pattern of copepods in Corumba Reservoir, States of Goias, Brazil[J]. Hydrobiologia 454:375-384.
    15. Broenmark, C.& Hansson, L.A.,2005. The Biology of Lakes and Ponds[M]. Oxford University Press,596pp.
    16. Brooks, J.L & Dodson, S.I.,1965. Predation, body size, and composition of plankton[J]. Science 150:28-35
    17. Canter, H.M.,1979. Fungal and protozoan parasites and their importance in the ecology of phytoplankton[J]. Freshwater Biological Association (Annual Report) 47:43-50.
    18. Carpenter, S.R.& Kitchell, J.F. (eds.),1993. The trophic cascade in lakes[M]. Cambridge University Press,399pp.
    19. Cohen, J.E., Jonsson, J.& Carpenter, S.R.,2003. Ecological community description using the food web, species abundance, and body size[J].PNAS. Vol 100 (4):1791-1786.
    20. Dawidowicz, P., Pijanowska, J.& Ciechomski, K.,1990. Vertical migration of Chaoborus larvae is induced by the presence of fish[J]. Limnology and Oceanography 35:1631-1637.
    21. Dawkins, R.& Krebs, J.R.1979. Arms races between and within species[J]. Proceedings of the Royal Society of London B 205:489-511.
    22. Dodson, S. I.1974. Zooplankton competition and predation:An experimental test of the size-efficiency hypothesis[J]. Ecology 55:605-613.
    23. Dodson, S. I.,1970. Complementary feeding niches sustained by size-selective predation[J]. Limnology and Oceanography 15:131-137.
    24. Dodson, S.I.,2003. Introduction to Limnolgoy[M]. McGraw-Hill Higer Education, New York, 400pp.
    25. Drenner, R.W.& McComas, M.,1980. The roles of zooplankton escape ability and fish size selectivity in the selective feeding and impact of planktivorous fish[J]. Am.Soc.Limnol.Oceanogr.Spec.Symp.3:587-593.
    26. Edmunds, T.J.,1974. Defence in animals[M]. Prentice Hall Press,373pp.
    27. Ehlinger, T.J.,1990. Habitat choice and phenotype-limited feeding efficiency in bluegill: individuals differences and trophic polymorphism[J]. Ecology 71:886-896.
    28. Fedorenko A.Y.1975. Feeding characteristics and predation impact of Chaoborus (Diptera, Chaoboridae) larvae in a small lake[J]. Limnology and Oceanography 20:250-258.
    29. Fernando, C. H.,1980. Some important implications for tropical limnology. In Promotion of limnology in developing countries[M]. First Workshop in Kyoto, P.103-107.
    30. Gilbert, J.J.& Stemberger R.S.1985. Control of Keratella populations by interference competition from Daphnia[J]. Limnology and Oceanography 30:180-88.
    31. Gyllstroem, M.& Hanssson, L.A.,2004. Dormancy in freshwater zooplankton:induction, termination and the importance of benthic-pelagic coupling[J]. Aquatic Sciences 66:1-22.
    32. Hairston, N.G. Jr.,1987. Diapause as a predator-avoidance adaptation. In Predation. Direct and indirect impacts in aquatic communities [M]., (eds.W.C.Kerfoot & A.Sih), pp.281-90. Univeristy of New England, Hanover, NH.
    33. Han, B.-P., Wang, T., Lin, Q.-Q.& Dumount, H.J.,2008. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera[J]. Hydrobiologia 596:197-201.
    34. Hansson, L.-A.,2000. Synergistic effects of food web dynamics and induced behavioral responses in aquatic ecosystems[J]. Ecology 81:842-851.
    35. Hrbacek J, Dvorakova M, Korinek, M.& Prochazkova, L.,1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association[J]. Verh Int Verein Limnol 14:192-195.
    36. Hutchinson, G. E.,1967. A treatise on limnology, Vol.2:Introduction to Lake Biology and the Limnoplankton[M]. John Wiley & Sons,1115pp.
    37. Hutchinson, G.E.,1951. Copepodology for the ornithologist[J]. Ecology 32:571-577.
    38. Hutchinson, G.E.,1957. Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology 22:415-27.
    39. Kerfoot, W.C.& Sih, A. (eds.),1989. Predation:Direct and indirect impacts on aquatic communities[M]. University Press of New England, Hanover, NH,394pp.
    40. Kerfoot, W.C.,1977. Competition in cladoceran communities:The cost of evolving defenses against copepod predation[J]. Ecology 58:303-313
    41. Kerfoot, W.C.,1978. Combat between predatory copepods and their prey:Cyclops, Espischura and Bosmina[J]. Limnology and Oceanography 23:1089-1202.
    42. Lampert, W.,1994. Phenotypic plasticity of the filter screens in. Daphnia:adaptation to a low-food environment[J]. Limnology and Oceanography.39:997-1006.
    43. Lewis, M.W.Jr.,1987. Tropical limnology[J]. An.Res.Ecol.Syst.18:159-184.
    44. Lynch, M.,1977. Fitness and optimal body size in zooplankton competition[J]. Ecology 58: 763-774.
    45. Makarewicz, J.C.& Likens, G.E.,1979. Niche analysis of a zooplankton community[J]. Science 190:1000-1002.
    46. Moghraby, A.,1977. A study of diapause of zooplankton in a tropical river-the Blue Nile[J]. Freshwater biology 7:207-212.
    47. Nilseen, J. P.,1984. Tropical lakes-functional ecology and future development:the need for a process-orientated approach[J]. Hydrobiologia 113:231-242.
    48. Richman, S.& Dodson, S.,1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus[J], Limnology and Oceanography 28:948-956.
    49. Sommer, U., Gliwicz, Z.M., Lampert, W.,& Duncan, A.,1986. The PEG-model of seasonal succession of planktontonic events in freshwaters[J]. Archiv fur Hydrobiologie 106:433-471.
    50. Thornton, K.W., Kimmel, B.L.& Payne, F.F.1990 Reservoir Limnology:Ecological Perspectives[M]. Wiley, New York,246 pp.
    51. Tilman, D.,1980. Resources:A graphical-mechanistic approach to competition and predation[J]. American Naturalist 116:362-393.
    52. Tilman, D.,1982. Resource competition and community structure. Monographs in Population Biology[J]. Princeton University Press, Princeton,296pp.
    53. Wetzel, R.G.,1983. Limnology.2nd edition. Saunders College Publishing, Philadelphia,860pp.
    1. 蒋燮治,堵南山,1979.中国动物志,节肢动物门·甲壳纲·淡水枝角类[M].科学出版社..
    2. 金像灿,屠清瑛,1990.湖泊富营养化调查规范[M].北京:中国环境科学出版社,第二版.
    3. 林国恩,2009.流溪河水库氮磷营养盐动态与收支分析,暨南大学硕士论文.
    4. 林秋奇,2007.流溪河水库后生浮游动物多样性与群落结构的时空异质性,暨南大学博士论文.
    5. 林娴,2006.食物对流溪河水库大型滤食性浮游动物—透明溞(Daphnia hyalina)生长与繁殖的影响.暨南大学硕士论文
    6. 林少君,贺立静,黄沛生,等2005.浮游植物叶绿素a的提取方法比较与改进[J].生态科学,24:9-11.
    7. 望甜,2007.一座热带典型抽水水库浮游动物群落结构与动态特征,暨南大学硕士论文.
    8. 望甜,王晓辉,韩博平,2009.一座抽水水库中中华窄腹剑水蚤种群动态及其对浮游甲壳类群落结构的影响.湖泊科学,21(1):110-116.
    9. 尹娟,韩博平,2008.食物浓度对模糊秀体溞生长和繁殖的影响[J]-湖泊科学(03)344-350.
    10..张贵刚,韩博平.2010.中国特有种大型桡足类舌状叶镖水蚤(Phyllodiaptomus tunguidus)在广东水库的分布特征,22 (3):in press
    11.章宗涉,黄祥飞.淡水浮游生物研究方法[M].北京:科学出版社,1991.
    12.赵孟绪,2004.汤溪水库富营养化特征与蓝藻“水华”特征研究,暨南大学博士论文.
    13.赵帅营,韩博平,2006.基于个体大小的后生浮游动物群落结构分析——以广东星湖为例[J].生态学报,26(8):2646-2654.
    14.赵帅营,韩博平,2007.大型深水贫营养水库—新丰江水库浮游动物群落分析[J].湖泊科学19(3):305-314.
    15.赵帅营,2009.营养盐加富和鲢对南亚热带贫—中营养型水库浮游生物群落的影响:大型围隔实验,暨南大学博士论文.
    16.赵志模,郭依泉.1990生境类型生态学原理和方法.重庆科学技术出版社重庆分社[M].147~172
    17. Amarasinghe, P.B., Vijverberg, J.& Boersma, M.,1997. Production biology of copepods and cladocerans in three south-east Sri Lankan low-land reservoirs and its comparison to other tropical freshwater bodies[J]. Hydrobiologia 350:145-162.
    18. Addicott JF (1974) Predation and prey community structure:an experimental study of the effect of mosquito larvae on the protozoan communities of pitcher plants[J]. Ecology 55:475-492
    19. Arndt, H.,1993. Rotifers as predators on components of the microbial web (bacteria, heterotrophic flagellates, ciliates)-a review[J]. Hydrobiologia 255/256.
    20. Ban, S.,1994. Effects of temperature and food concentration on post-embryonic development, egg production and adult body size of calanoid copepod Eurytemora affinis[J]. J. Plankton Res.16:721-735.
    21. Beavers, B.A.& Stavn, R.H.1975. Seasonal changes in diaptomid copepod populations as a function of vertebrate predation[J]. Int.Ver.Theor. Angew. Limnol. Verh.19:2966-2975.
    22. Bogdan, K.G.& McNaught, D.C.,1975. Selective feeding by Diaptomus and Daphnia[J]. Verh. Int. Ver. Limnol.19:2935-2942.
    23. Brandl, Z.B. Desortova, J. Hrbacek. V.Vyhnaleck, J.Seda & M.Straskraba.1989. Seasonal changes in zooplankton and phytoplankton and their mutual relations in some Czechoslovak reservoirs[J].Arch. Hydrobiol.33:597-604.
    24. Broenmark, C.& Hansson, L.A.,2005. The Biology of Lakes and Ponds[M]. Oxford University Press,596pp.
    25. Brooks, J.L & Dodson, S.I.1965. Predation, body size, and composition of plankton[J]. Science 150:28-35.
    26. Burns, C.W.1969. Relation between filtering rate, temperature, and body size in four species of Daphnia[J]. Limnol. Oceanogr.14(5):693-700.
    27. Cannon, H.G.1928. On the feeding mechanism of the copepods Calanus finmarchicus and Diaptomus gracilis[J]. Br.J.Exp.Biol.6:131-144.
    28. Carpenter, S.R., and J.F. Kitchell (eds.).1993. The Trophic Cascade in Lakes[M]. Cambridge Univ. Press, Cambridge, England.385 p.
    29. Cole, G.A.,1961. Some calanoid copepods from Arizona with notes on'congeneric occurrences of Diaptomus species[J]. Limnology and Oceanography 6:432-442.
    30. Cressa, C.C.,1985. Population dynamics, temporal variation and energetic of Chaoborus brasiliensis in the Lake Valencia. PhD Thesis, University of Colorado.
    31. De Mott, W. R.,1989. The role of competition in zooplankton succession. In Sommer, V. (ed.), Plankton Ecology:Succession in Plankton Communitie[M]s. Springer-Verlag, Berlin, p.195-252.
    32. De Mott, W.R.,1998. Discrimination between algae and detritus by freshwater and marine zooplankton[J]. Bull. mar. Sci. 43:486-499.
    33. Dodson, S.I.,& Frey, D.G.,1991. Cladocera and other Branchipodida. In:J.H. Thorpe & A.P. Covich, Editors, Ecology and Classification of North American Freshwater Invertebrates[M], Academic Press, Toronto, pp.723-786.
    34. Dodson, S.I.,1974. Zooplankton competition and predation:An experimental test of the size-efficiency hypothesis[J]. Ecology 55:605-613.
    35. Dodson, S.I.,1976. Zooplankton:Specific distribution and food abundance[J]. Limnology and Oceanography 21(2):309-313.
    36. Dumont, H.J.,1977. Biotic factors in the populations dynamics of rotifers[J]. Arch.Hydrobiol. 8:98-122.
    37. Dodson, S.I.,2003. Introduction to Limnolgoy[M]. McGraw-Hill Higer Education, New York, 400pp.
    38. Dumont, H. J.,1994. On the diversity of the Cladocera in the tropics[J]. Hydrobiologia 272: 27-38.
    39. Dumont, H.J.,1977. Biotic factors in the populations dynamics of rotifers [J]. Arch.Hydrobiol. 8:98-122.
    40. Dumont, H.J., Han BP, Yin, J & Lin, X.,2010. Why is Diaphansoma (Crutacea:Ctenopoda) common in the tropcics? A laboratory study and a hypothesis on the nature of tropical cladocerans[J]. Hydrobiologia, in press.
    41. Dussart, B.H.& Defaye, D.,2001. Introduction to the Copepoda:Guide to the Identification of the Microinvertebrates of the Continental Waters of the World[M]. Volume 16, SPB Academic Publishing,334pp.
    42. Ejsmont-Karabin, J.,1974. Studies on the feeding of planktonic polyphage Asplanchna priodonta Gosse (Rotatoria) [J]. Ekol. pol.22:311-317
    43. Elmore, J.L.,1983. Factors influencing Diaptomus distributions:An experimental study in subtropical Florida[J]. Limnology and Oceanography 28:522-532.
    44. Espindola, E.L.G., Matsumura-Tundisi, T., Rietzler, A.C.& Tundisi, J.G.,2000. Spatial heterogeneity of the Tucurui Reservoir (State of Para, Amazonia, Brazil) and the distribution of zooplankton species[J]. Rev. Brasil.Biol.,60(2):179-194.
    45. Ejsmont-Karabin, J.,1974. Studies on the feeding of planktonic polyphage Asplanchna priodonta Gosse (Rotatoria) [J]. Ekol. pol.22:311-317.
    46. Fernando, C.H.,1980. The species and size composition of tropical freshwater zooplankton with special reference to the. Oriental Region (Southeast Asia) [J]. Int. Revue ges. Hydrobiol. 65:411-426.
    47. Folt CL, Goldman CR (1981) Allelopathy in zooplankton:A mechanism for interference competition[J]. Science 213:1133-1135
    48. Grant JWG, Bayly IAE (1981) Predator induction of crests in morphs of the Daphnia carinata King complex[J]. Limnol Oceanogr 26:201-218
    49. Gasiunaite, Z.R.& Olenina, I.,1998. Zooplankton-phytoplankton interactions:a possible explanation of the seasonal succession in the Kursiu Marios lagoon[J]. Hydrobiologia 363: 333-229.
    50. Gerritsen, J.,1978. Instar-specific swimming patterns and predation of planktonic copepods[J]. Verh.Int.Verein.Limnol.20:2531-2536.
    51. Gilbert, J.J.1966. Rotifer ecology and embryological induction[J]. Science 151:1234-1237
    52. Gilbert JJ (1967) Control of sexuality in the rotifer Asplanchna brightwelli by dietary lipids of plant origin[J]. Phil Nat Acad Sci.57:1218 1225
    53. Gilbert, J.J.,1988a. Suppression of rotifer populations by Daphnia:a review of the evidence, the mechanisms, and the effects on zooplankton community structure[J]. Limnology and Oceanography 33:1286-1303.
    54. Gilbert, J.J.,1988b. Susceptibilities of ten rotifer species to interference from Daphnia pulex[J].Ecology 69:1826-1838.
    55. Gophen, M.,1977. Food and feeding habits of Mesocyclops leuckarti (Claus) in Lake Kinneret (Israel) [J]. Freshwater Biolgoy 7:513-518.
    56. Guo, X.,2000. Two new species of Mesocyclops from southern China and notes on the genus Mesocyclops in China[J]. Hydrobiology 429:115-131.
    57. Hall, D.J., Threlkeld, S.T., Burns, C.W.& Crowley, P.H.,1976. The size-efficiency
    hypothesis and the size structure of zooplankton communities[J]. Annu.Rev.Ecol.Syst.7: 177-208.
    58. Hammer, U.T.& Sawchyn, W.W.,1968. Seasonal succession and congeneric associations of Diatomus sp. (Copepoda) in some Saskatchewan ponds[J]. Limnology and Oceanography 13: 476-484.
    59. Hart, R.C.& Allanson, B.R.,1975. Prelimniary estimates of production by a calanoid copepod in subtropical Lake Sibaya[J]. Verh.int.Ver.Limnol.19:1434-1441.
    60. Herzig, A.& Auer, B.,1990. The feeding behavior of Leptodora kindtii and its impact on the zooplankton community of Neusiedler See (Austria) [J]. Hydrobiologia 198:107-117.
    61. Hutchinson, G. E.,1967. A treatise on limnology (Volume 2:Introduction to Lake Biology and the Limnoplankton) [M]. John Wiley & Sons,1115pp.
    62. Hutchinson, G.E.,1951. Copepodology for the ornithologist[J]. Ecology 32:571-577.
    63. Hrbacek J, Dvorakova M, Korinek, M.& Prochazkova, L.,1961. Demonstration of the effect of the fish stock on the species composition of zooplankton and the intensity of metabolism of the whole plankton association[J]. Verh Int Verein Limnol 14:192-195.
    64. Infante, A., Infante, O., Marquez, M.& Lewis, W.M.,1979. Conditions leading to mass mortality of fish and zooplankton in Lake Valencia, Venezuela[J]. Acta Cien. Venez.30: 67-73.
    65. Jamieson, C.D.,1980. The predatory feeding of copepodid stages III to adult Mesocylops leuckarti (Claus), p.518-533. In W.C.Kerfoot (ed.), Evolution and ecology of zooplankton communities[M]. Univ.Press of New England.
    66. Karabin, A.,1974. Studies on the predatory role of the cladoceran Leptodora kindtii (Focke) in secondary production of two lakes with different trophy [J]. Ekol. Pol.22:295-310.
    67. Kerfoot, W. C.1987. Translocation experiments:copepod predation on Bosmina[J]. Ecology 68:596-610.
    68. Kerfoot, W.C.& Sih, A. (eds.),1989. Predation:Direct and indirect impacts on aquatic communities[M]. University Press of New England, Hanover, NH,394pp.
    69. Kreuger DA, Dodson SI (1981) Embryological induction and predation ecology in Daphnia pulex[J]. Limnology and Oceanography 26:219-223
    70. Labarbera, M. C.& Kiliiam, P.,1974. The chemical ecology of copepod distribution in the lakes of East Central Africa[J]. Limnology and Oceanagraphy.19:459-465.
    71. Lacroix, G.& Lescher-Moutoue, F.,1995. Spatial patterns of planktonic microcrustaceans in a small shallow lake[J]. Hydrobiologia 300/301:205-217.
    72. Landry, M.R.,1983. The development of marine calanoid copepods with comment on the isochronal rule[J]. Limnology and Oceanography 28:614-624.
    73. Lowndes, A.G.1935. The swimming and feeding of certain Calanoids[J]. Zool.Soc.Lond. 687-715.
    74. Lei Xu, Bo-Ping Han, Kay Van Damme, Andy Vierstraete, Jacques R. Vanfleteren and Henri J. Dumont.2010. Biogeography and evolution of the temperate Holartic zooplankton genus Leptodora (Crustacea:Branchiopoda:Haplopoda) [J]. Journal of Biogeography, in press.
    75. Lewis, M.W.Jr.,1987. Tropical limnology[J]. An.Res.Ecol.Syst.18:159-184.
    76. Lewis, W.M,1996. Tropical lakes:how latitude makes a difference[J]. Perspectives in Tropical Limnology,43-64.
    77. Lewis, W.M.Jr.,1979. Zooplankton Community Analysis:Studies on a Tropical System[M]. Springer-Verlag, New York, Heidelberg, Berlin,163pp.
    78. Leveque, C.& L.Saint-Jean,1983. Secondary production (zooplankton and benthos). In Carmouze, J. P., J. R. Durand & C. Leveque (eds), Lake Chad-Ecology and Prouctivity of a shallow Tropical Ecosystem, Dr W.Junk Publishers, The Hague:385-424.
    79. Lin, Q.Q., Duan, S.S., Hu, R.& Han, B.P.,2003. Zooplankton Distribution in Tropical Reservoirs, South China[J]. International Review of Hydrobiology 88(6):602-613.
    80. Lowndes, A.G.,1935. The swimming and feeding of certain Calanoid copepods[J]. Proc. Zool. Soc. Lond.2:687-715.
    81. MacArthur, R.H.,1972. Geographical ecology[M]. Harper & Row, New York.
    82. Makino, W.& Ban, S.,2000. Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment[J]. Limnology and Oceanography 45:396-407.
    83. Maly, E.J.& Maly, M.P.,1974. Dietary differences between two co-occurring calanoid copepod species[J]. Oecologia 17:325-333.
    84. Markino, W.& Ban, S.,2000. Response of life history traits to food concentrations in a
    cyclopoid copepod from an oligotrophic environment[J]. Limnology and Oceanography. 45(2):396-407.
    85. McNaugt, D.C.,1975. A hypothesis to explain the succession from calanoids to cladocerans during eutrophication[J]. Verh.int.Ver.Limnol.19:724-731.
    86. McQueen, D.J.,1969. Reduction of zooplankton standing stocks by predaceous Cyclops bicuspidatus thomasi in Marion Lake, British Columbia[J]. J. Fish Res. Board Can.26: 1605-1618.
    87. Michaloudi, E.,1997. Composition, abundance and biomass of the zooplanktonic organisms in Lake Mikri Prespa (Macedonia, Greece). Doctoral dissertation.
    88. Miracle, M. R.,1978. Historical and ecological factors concurring in the distribution, biometry and fertility of planktonic crustaceans in Pyrenean lakes[J]. Int.Ver.Theor.Angew.Limnol.Verh.20:1657-1663.
    89. Moore, J. E.,1952. The Entomostraca of southern Saskatchewan. Can. J. Zool. 30:410-450.
    90. Morgan, N.C., Backiel, T., et al.,1980. Secondary production. In LeCren, E.D.& Lowe-McConnell, R.H. (eds.), The Functioning of Freshwater Ecosystems[M]. Cambridge University Press, Cambridge.
    91. Muck, P.& Lampert, W.,1984. An experimental study on the importance of food conditions for the relative abundance of calanoid copepods and cladocerans[J]. Archiv fur Hydrobiologie, Suppl.66:157-179.
    92. Nauwerck, A.,1980. Die Verbreitung der Familie Diaptomidae Sars in Nordschweden[J].. Arch.Hydrobiol.89(1/2):247-264.
    93. Newhouse, S.A.& Stahl, J.R.,2000. A comparison of the Mid-Water Planktonic Invertebrate Commuities of Eagle Creek, Geist,& Morse Reservoirs in central Indiana using underwater light Trapping. IDEM.32/03/005.
    94. Nilseen, J.P.,1984. Tropical lakes-functional ecology and future development:the need for a process-orientated approach [J]. Hydrobiologia,113:231-242.
    95. Nogueira, M.G.,2001. Zooplankton composition, dominance and abundance as indicators of environmental compartmentalization in Jurumirim Reservoir (Paranapanema River), Sao Paulo, Brazil[J]. Hydrobiologia 458:1-18.
    96. Nogueira, M.G., Henry, R.& Maricatto, F.E.,1999. Spatial and temporal heterogeneity in the Jurnmirim Reservoir. Sao Paulo, Brazil[J]. Lakes and Reservoirs:Reservoir Management. 458:1-18
    97. Ooms-Wilms, A.L.,1997. Are bacteria an important food source for rotifers in eutrophic lakes? [J]Journal of Plankton Research 19:1125-1141.
    98. Paggi, J.C.& Paggi, S.J.,1990. Zooplankton de ambientes loticose lenticos do Rio Parana Medio[J].Acta. Limnol.Brasil.3:685-719.
    99. Paggi, J.C.& S. Jose de Paggi,1990. Zooplankton de ambientes loticose lenticos do Rio Parana Medio[J]. Acta. Limnol.Brasil.3:685-719.
    100. Paine RT.1966. Food web complexity and species diversity[J]. Am Nat 100:65-75
    101.Pinto-Coelho, R., Pinel-Alloul, B., Methot, G.& Havens, K.E.,2005. Crustacean zooplankton in lakes and reservoirs of temperate and tropical regions:variation with trophic status[J]. Can. J. Fish. Aquat. Sci.62:348-361.
    102. Pourriot, R.,1977. Food and feeding habits of Rotifera[J]. Archiv fur Hydrobiologie Beihefte 8:243-260.
    103. Pourriot, R., Capblancq, J., Champ, P.& Meyer, J.A.,1982. Ecologie du plankton des eaus continentals. Masson, Paris.
    104. Reid, J.W.& Pinto-Coelho, R.M.,1994. Planktonic Copepoda of Furnas reservoir:Initial survey of species (1993) and review of literature. In Pinto-Coelho, R. M., A.
    105. Richman, S.& Dodson, S.I.,1983. The effect of food quality on feeding and respiration by Daphnia and Diaptomus[J]. Limnology and Oceanography 28:948-956.
    106. Sandercock, G.A.,1967. A study of selected mechanisms for the coexistence of Diaptomus sp. in Clark Lake, Ontario[J]. Limnology and Oceanography.12:97-112.
    107. Sarma, S.S.S., Nandini S.& Gulati, R.D.,2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa[J].Hydrobiologia 542:315-333.
    108. Sommer, U., Gliwicz, Z.M., Lampert, W.,& Duncan, A.,1986. The PEG-model of seasonal succession of planktontonic events in freshwaters[J]. Archiv fur Hydrobiologie 106:433-471.
    109. Soto, D.,1985. Experimental evaluation of copepod interactions[J]. Verh. int. Ver. Limnol.22: 3199-3204.
    110. Sprules, W.G.,1972. Effects of size-selective predation and food competition on high altitude zooplankton communities[J]. Ecolgoy 53:357-386.
    111.Stemberger, R.S.& Gilbert, J.J.,1984. Spine development in the rotifer Keratella cochlearis:induction by cyclopoid copepods and Asplanchna[J]. Freshwater Biology 14: 639-647.
    112. Stemberger, R.S.& Gilbert, J.J.,1985. Body size, food concentration, and population growth in planktonic rotifers[J]. Ecology 66:1151-1159.
    113. Saunders, J.F. Ⅲ and W.M. Lewis, Jr.1988. Dynamics and control mechanisms in a tropical zooplankton community (Lake Valencia, Venezuela) [J]. Ecological Monographs 48: 337-353.
    114. Wataru Makino & Syuhei Ban.2000. Response of life history traits to food conditions in a cyclopoid copepod from an oligotrophic environment[J]. Limnology and Oceanography,45(2):396-407.
    115. Wetzel, R.G.,1983. Limnology.2nd edition. Saunders College Publishing, Philadelphia, 860pp.
    116. Whittaker, R.H.& Fairbanks, C.W..1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington[J]. Ecology 39:46-65.
    117. WIillmson, C.E.,1987. Predator-prey interactions between omnivorous diaptomid copepods and rotifers:The role of prey morphology and behavior[J]. Limnology and Oceanography 32:167-177.
    118. Williamson C. E.,1983. Invertebrate predation on planktonic rotifers[J]. Hydrobiologia 104:385-396.
    119. Williamson, C.E.& Butler, N.M.,1986. Predation on rotifers by the suspension-feeding calanoid copepod Diaptomus pallidus[J].Limnology and Oceanography 31:393-402.
    120. Williamson C. E., Stoecker M.E.& Schoeneck L.J.1989. Predation risk and the structure of freshwater zooplankton communities[J]. Oecologia,79:76-82.
    121. Wright, D.I.& O'Brien, W.J.,1984. Model analysis of the feeding ecology for a freshwater planktivorous fish. In Meyers, D.G.& Strickler, J.R.(eds), Trophic Interactions within Aquatic Ecosystems. Westview Press, Boulder, CO, AAAS Selected Symposium 85.
    122. Wright, D.I.& O'Brien, W.J.,1984. The development and field test of a tactical model of the planktivorous feeding of white crappie (Pomoxis annularis) [J]. Ecological Monographs. 54:65-98.
    123. Xiao, Li-juan, Wang, Tian & Han, Boping,2008. Grazing of Daphnia galeata and Phyllodiaptomus tunguidus on phytoplankton in Liuxihe Reservoir,South China:in situ bottle experiments[J]. Ecolog. Sci.27(5):362-367
    124. Xu ZL, Wang YL, Chen YQ, et al. An ecological study on zooplankton in Maximum turbid zone of estuarine area of Changjiang (Yangtze) River[J]. Journal of Fishery Sciences of China,1995,2(1):39~48.
    125. Yoshida, T., Urabe, J.& Elser, J.J.,2003. Assessment of'top-down' and 'bottom-up' forces as determinants of rotifer distribution among lakes in Ontario, Canada[J]. Ecological Research 18:639-650.
    1. 林国恩,望甜,林秋奇,韩博平.2009.广东流溪河水库湖沼学变量的时刻动态特征[J].湖泊科学,21(3):397-404.
    2. Bayly I. A. (1986) Diel vertical migration in zooplankton, and its enigma variations. In DeDeckker P. and Williams W. D. (Eds.). Boston, USA Limnology in Australia[M]. Dr. W. Junk Publishers 349-368. M
    3. Bohrer, R.,1980. Experimental studies on diel vertical migration. In:Ecology and Evolution of zooplankton communities (Edited by W.C.Kerfoot) [M], University Press of New England, Hanover, New Hampshire.
    4. Dodson, S.I.,2003. Introduction to Limnolgoy[M]. McGraw-Hill Higer Education, New York.
    5. Dodson, S.I., Tollrian R.& Lampert W.1997. Daphnia swimming behavior during vertical migration[J]. J.Plankton Research.19(8):969-978.
    6. Gabriel, W.& Thomas, B.,1988. Vertical migration of zooplankton as an evolutionarily stable strategy[J]. American Naturalist 32:199-216.
    7. George, D.G.,1983. Interrelations between the vertical migration of Daphnia and Chlorophyll a in two large limnetic enclosures[J]. Journal of Plankton Research 5:457-475.
    8. Gliwicz, Z.M.& Pijanowska, J.,1988. Predation and resource depth distribution in shaping behaviour of vertical of vertical migration in zooplankton[J]. Bulletin of Marine Science 43: 695-709..
    9. Gliwicz, Z.M.,1986. Predation and the evolution of vertical migration behavior in zooplankton[J]. Nature 320:746-748.
    10. Guisande, C. Duncan, A.& Lampert, W.1991. Trade-offs in Daphnia vertical migration strategies[J]. Oecologia.,87(3):357-359.
    11. Hays, G.C.,2003. A review of the adaptive signigficance and ecosystem consequences of zooplankton diel vertical migration[J]. Hydrobiologia 503:163-170.
    12. Huntley, M.& Brooks, E.R.,1982. Effects of age and food availability on diel vertical migration of Calanus pacificus[J]. Marine Biolgoy 71:23-31.
    13. Hutchinson, G.E.,1957. A treatise on limnology, Vol.1:Geography & Physics of Lakes[M],
    John Wiley & Sons Inc,672pp.
    14. Hutchinson, G.E.,1967. A treatise on limnology, Vol.2:Introduction to Lake Biology and the Limnoplankton[M]. John Wiley & Sons,1115pp.
    15. Kremmer, P.& Kremer, J.N.,1988. Energetic and behavioral implications of pulsed food availability for zooplankton [J]. Bulletin of Marine Science 43:
    16. Lampert, W.,1989. The adaptive significance of diel vertical migration of zooplankton[J]. Functional Ecology 3:21-27.
    17. Lampert, W.,2005. Vertical distribution of zooplankton:density dependence and evidence for an ideal free distribution with costs[J]. BMC Biology.10doi:10.1186/1741-7007-3-10
    18. Lane, P. A.,1975. The dynamics of aquatic systems:a comparative study of the structure of four zooplankton communities[J]. Ecological Monographs.45:307-336.
    19. Leech, D.M. and C.E. Williamson.2001. In situ exposure to UV radiation alters the depth distribution of Daphnia[J]. Limnology and Oceanography 46:416-420.
    20. Leibold, M.A.,1990. Resources and predators can affect the vertical distributions of zooplankton[J]. Limnology and Oceanography 35(4):938-944.
    21. McGowan, J.A.& Walker, P.W.,1979. Structure in the copepod community of the North Pacific central gyre[J]. Ecological Monographs..49:195-226.
    22. McLaren, I.A.,1963. Effect of temperature on growth of zooplankton and the adaptive value of vertical migration[J]. Journal of the Fisheries Research Board of Canada 20:685-727.
    23. Ohman, M.D., Frost, B.W.& Cohen, E.H.,1983. Reverse diel vertical migration-an escape from invertebrate predators[J]. Science 220:1404-1407.
    24. Orcutt, J.D.& Porter, K.G.,1983. Diel vertical migration by zooplankton:Constant and fluctuating temperature effects on life history parameters of Daphnia[J]. Limnology and Oceanography 28(4):720-730.
    25. Siebeck, O.,1978. UV-Toleranz und Photoreaktivierungbei Daphnien aus Biotopen verschiedener Hohenregionen[J]. Naturwissenschaften 65:390.
    26. Stich, H.B.,& Lampert, W.,1984. Growth and reproduction of migrating and non-migrating Daphnia species under simulated food and temperature conditions of diurnal vertical migration[J]. Oecologia 61:192-196.
    27. Threlkeld, S.,1980. Habitat selection and population growth of two cladocerans in seasonal environments[J]. Am. Soc. Limnol. Oceanogr. Spec. Symp.3:346-357.
    28. Vuorinen, I.,1987. Vertical migration of Eurytemora (Crustacea, Copepoda):a compromise between risk of predation and decreased fecundity[J]. Journal of Plankton Research 9: 1037-1046.
    29. Wrigth, D., O'Brien, W.J.& Vinyard, G.L.,1980. Adaptive value of vertical migration:a simulation model argument for the predation hypothesis. In:Ecology and Evolution of zooplankton communities (Edited by W.C.Kerfoot) [M], University Press of New England, Hanover, New Hampshire.
    30. Zaret, T.M.& Suffen, J.S.,1976. Vertical migration in zooplankton as a predator avoidance mechanism[J]. Limnology and Oceanography 21:804-813.
    31. Zaret, T.,1980. Predation and freshwater communities[M]. Yale University Press,208pp.
    1. Anderson, O.R.& Rogerson, A.1995. Annual abundances and growth potential of gymnamoebae in the Hudson estuary with comparative data from the Firth of Clyde[J]. Eur.J.Protistol.31:223-233.
    2. Arndt, H.,1993. A critical review of the importance of rhizopods (naked and testate amoebae) and actinopods (heliozoa) in lake plankton[J]. Marine Microbial Food Webs 7:3-29.
    3. Arndt, H.,1993. A critical review of the importance of Rhizopods (naked and testate amoebae) and actinopods (Heliozoa) in lake plankton[J]. Mar.Microb.Food Webs 7:3-29.
    4. Barbieri, S.M.& Godinho-Orlandi, M.J.L.,1989. Ecological studies on the planktonic protozoa of a eutrophic reservoir (Rio Graande Reservoir-Brazil) [J]. Hydrobiologia 183: 1-10.
    5. Becares, E.& Romo, S.1994. Selective predation of Thecamoeba sphaeronucleolus (Greeff 1891) on filamentous algae in natural conditions[J]. J.Gen.Appl.Microbiol.40:15-21.
    6. Beyens, L, Chardez D.,1987. Evidence from testate amoebae for changes in some local hydrological conditions between c.5000 BP and c.3800 BP on Edgeoya (Svalbard) [J]. Polar.Res.5:165-169.
    7. Bobrov, A.& Mazei, Y.,2004. Morphological variability of testate amoebae (Rhizopoda: Testacealobosea:Testaceafilosea) in Natural Populations[J]. Acta Protozool.43:133-146.
    8. Burbidge, S.M.& Schroder-Adames, C.J.1998. Thecamoebians in Lake Winnipeg:a tool for Holocene paleolimnology[J]. J.Paleolimnol.19:309-328.
    9. Buttler A., Warner, B.G., Grosvernier, P.& Matthey, Y.,1996. Vertical patterns of testate amoebae (Protozoa:Phizopoda) and peat forming vegetation on cutover bogs in the Jura, Switzerland[J]. New Phytologist 134:371-382.
    10. Cardoso, L.D.S.& Maarques, D.D.M.,2004. Structure of the zooplankton community in a subtropical shallow lake (Itapeva Lake-South of Brazil) and its relationship to hydrodynamic aspects[J]. Hydrobiologia 518:123-134.
    11. Darling, K.F., Wade, C.M., Stewart, I.A., Kroon, D., Dingle, R.& Brown, A.J.I.2000. Molecular Evidence for Genetic Mixing of Arctic and Antarctic Subpolar Populations of Planktonic Foraminifers[J]. Nature 405:43-47.
    12. Darling, R.F., Kucera, M., Pudsey, C.J.& Wade, C.M.2004. Molecular evidence links cryptic diversification in polar Planktonic Protists to Quaternary Climate dynamics[J]. PNAS. 101:7657-7662.
    13. Dryden, R.C.& Wright, S.J.L.,1987. Predation of cyanobacteria by protozoa[J]. Can.J.Microbiol.33:471-482.
    14. Escobar, J., Brenner, M., Whitmore, T.J., Kenney, W.F.& Curtis J.H.,2008. Ecology of testate amoebae (thecamoebians) in subtropical Florida lakes[J]. J.Paleolimnol.40:715-731.
    15. Foissner, W.& Korganova, G.A.,1995. Redescription of the three testate amoebae (Protozoa: Rhizopoda) from a Caucasian soil:Centropyxis plagiostoma Bonnet & Thomas, Cyclopyxis kahli (Deflandre) and C.intermedia Kufferath[J]. Arch.Protistenk.146:13-28.
    16. Gilbert, D., Amblard, C., Bourdier, G.& Francez, A.J.,1998. The microbial loop at the surface of a peatland:structure, function, and impact of nutrient input[J]. Microb.Ecol.35: 83-93.
    17. Green, J.1994. The temperate tropical gradient of planktonic Protozoa and Rotifera[J]. Hydrobiologia 272:13-26.
    18. Han, B.-P., Wang, T., Lin, Q.-Q.,& Dumount, H.J.,2008. Carnivory and active hunting by the planktonic testate amoeba Difflugia tuberspinifera[J]. Hydrobiologia 596:197-201.
    19. Hausmann, K., Hulsmann, N, Grenfell, H.R. Pawlowski, J.& Triggs, C.M.,2004. Morphological distinction of molecular types in Ammonia-towards a taxonomic revision of the world's most commonly misidentified foraminifera[J]. Mar Micropaleontol.50:237-271.
    20. Hu, D.L., Shen, Y.F., Gu, M.R.& Gong, X.J.1997. New species and new records of protozoa from Wuling Mountains Area. In:Invertebrate of Wuling Moutains Area, Southwestern China[M] (Ed.D-X Song). Science Press, Beijing, China,40-72 (in Chinese).
    21. Jennings, H.S.,1916. Heredity, variation and the results of selection in the uniparental reproduction of Difflguia corona. Master dissertation,411-413,
    22. Kumar, A.& Patterson, R.T.,2000. Arcellaceans (thecamoebians):new tools for monitoring long-and short-term changes in lake bottom acidity[J]. Environ.Geol.39:689-697.
    23. Mathes, J.& Arndt, H.,1994. Biomass and composition of protozooplankton in relation to lake trophy in north German lakes[J]. Mar.Microb.Food. Webs 8:357-375.
    24. Meisterfeld, R.,1991. Vertical distribution of Difflguia bydrostatica (Protozoa, Rhizopoda)
    [J], Verh.Internat. Verein.Limnol.24:2726-2728.
    25. Mitchell, E.A.D., Charman, D.J.& Warner, B.G.,2008. Testate amoebae analysis in ecological and paleoecological studies of wetlands:past, present and future[J]. Biodiservs. Conserv.17:2115-2137.
    26. Murzov, S.A.& Caron, D.A.1996. Sporadic high abundances of naked amoebae in Black Sea Plankton[J].Aquat.Microb.Ecol.11:161-169.
    27. Nishibe, Y., Manage, P.M., Kawabata, Z.& Nakano, S.,2004. Trophic coupling of a testate amoeba and Microcystis species in a hypertrophic pond[J]. Limnology 5:71-76.
    28. Pace, M.L.,1982. Planktonic ciliates:their distribution, abundance, and relationship to microbial resources in a monomictic lake[J]. Can.J.Fish.aquat. Sci.39:1106-1116.
    29. Patterson, R.T.& Kumar, A.,2002. A review of current testate rhizopod (thecamoebian) research in Canada[J]. Palaeogeograp Palaeoclimatol Palaeoecol.180:225-251.
    30. Psenner, R.& Schlott-Idt, K.,1985. Trophic relationships between bacteria and protozoa in the hypolimnion of a meromictic lake[J]. Hydrobiologia 121:111-120.
    31. Rogerson, A.& Laybourn-Parry, J.1992. The abundance of marine naked amoebae in the water column of the Cycle estuary. Estuar.Coast.Shelf.Sci.34:187-196.
    32. Schonborn, W.,1963. Die Stratigraphie lebender Testaceen im Sphagnetum der Hochmoore[J]. Limnologica 1:315-321.
    33. Song, B.Y.,2000. Planktonic protozooplankton (ciliates, heliozoans and testaceans) in two shallow mesotrophic lakes in China-a comparative study between a macrophyte-dominant lake (Biandantang) and an algal lake (Houhu) [J]. Hydrobiologia 434:151-163.
    34. Velho, L.F.M., Lansac-Toha, F.A.& Bini, L.M.,1999. Spatial and temporal variation in the plankton of the Upper Parana River floodplain, Brazil[J]. Hydrobiologia 411:103-113.
    35. Wang, Tian and Han, Boping,2008. Food selectity of Difflugia tuberspinifera in Liuxihe Reservoir, South China[J]. Ecolog. Sci.27(5):398-401.
    36. Yang, J., Beyens, L, Shen, Y.F.& Feng, W.,2004. Redescription of Difflugia tuberspinifera Hu, Shen, Gu et Gong,1997 (Protozoa:Rhizopoda:Arcellinida:Difflugiidae) from China[J]. Acta Protozool.43:281-289.
    37. Yang, J., Beyens, L., Shen, Y.F.& Feng, W.,2004. Elemental composition of the shell of the testate amoebae Difflugia tuberspinifera (Sarcodina:Rhizopoda) [J]. Zoological Research.
    25(5):452-455.
    38. Yang, J., Meisterfeld, R., Zhang, W., Shen, Y.F.,2005. Difflugia mulanensis nov.spec., a freshwater testate amoeba from Lake Mulan, China[J]. European Journal of Protistology, doi:10.1016/j.ejop.2005.05.006.
    1 Beisner, B. E., E. Mccauley & F. J. Wrona,1996. Temperature-mediated dynamics of planktonic food chains:the effect of an invertebrate carnivore[J]. Freshwater Biology 35: 219-232
    2 Beisner, B. E., E. Mccauley & F. J. Wrona,1997. The influence of temperature and food chain length on plankton predator.prey dynamics[J]. Canadian Journal of fisheries and Aquatic Science 54:586-595
    3 Blaustein, L.,1990. Evidence for predatory flatworms as organizers of zooplankton and mosquito community structure in rice fields[J]. Hydrobiologia 199:179-191.
    4 Blaustein, L.& H.J. Dumont,1990. Typhloplanid flatworms (Mesostoma and related genera): mechanisms of predation and evidence that they structure aquatic invertebrate communities[J]. Hydrobiologia 198:6&-77.
    5 Caramujo, M.J.& M.J. Boavida,2000. Dynamics of Daphnia hyalina x galeata in Castelo-do-Bode reservoir:the effect of food availability and flatworm predation[J]. Aquatic Ecology 34:155-163.
    6 Danie W.S.& D. C. Scott,1982. Competition among cladocerans[J]. Ecology 63:1004-1015.
    7 Delp, A. M.,2002. Flatworm predation on juvenile freshwater mussels. Ms Sci Thesis, Southwest Missouri State University, USA,31 pp.
    8 De Roeck, E. R. M., T. Artois & L. Brendonck,2005. Consumptive and non-consumptive effects of turbellarians (Mesostoma sp.) predation on anostracans[J]. Hydrobiologia 542: 103-111.
    9 Dumont, H.J.& I. Carels,1987. Flatworm predators (Mesostoma of lingua) release a toxin to catch planktonic prey[J]. Limnology and Oceanography 32:699-702.
    10 Dumont H.J.& S. Schorreels,1990. A laboratory study of the feeding of Mesostoma lingua (Schmidt) (Turbellaria:Neorhabdocoela) on Daphnia magna Straus at four different temperatures[J]. Hydrobiologia 198:79-89.
    11 Dumont H.J., I. Miron, U. Dall'Asta, W. Decraemer, C. Claus & D. Somers,1973. Limnological aspects of some Moroccon Atlas Lakes, with reference to some physical and chemical variables, the nature and distribution of the phyto-and zooplankton, including a note on the possibilities for the development of an inland fishery[J]. Internationale Revue der gesamten Hydrobiologie 58:33-60.
    12 Dumont, H.J.& S. V. Negrea,2002. Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World[M],19:398 pp. Backhuys, Leiden.
    13 Hutchinson, G. E.,1967. A treatise on limnology[M], Volume 2. Wiley, New York,1115 pp.
    14 Kolasa, J.,2001. Flatworms:Turbellaria and Nemertea. In J. H. Thorp & A. P. Covich (eds), Ecology and classification of North American freshwater invertebrates[M]. Academic press, New York:155-180.
    15 Lin, Q. Q., S. S. Duan, R. Hu & B.P. Han,2003. Zooplankton distribution in tropical reservoirs, South China[J]. International Review of Hydrobiology 88:602-613.
    16 Maly, E. J., S. Schoenholtz & M. T. Arts,1980. The influence of flatworm predation on zooplankton inhabiting small ponds[J]. Hydrobiologia 76:233-240.
    17 Nandini, S., S.S.S. Sarma & H.J. Dumont,2010. Effects of the predatory turbellarian Stenostomum sp. on the population dynamics of Euchlanis dilatata, Plationus patulus (Rotifera) and Moina macrocopa (Cladocera) [J]. Hydrobiologia submitted.
    18 Pourriot, R.,1965. Recherches sur l'Ecologie des Rotiferes[J]. Vie Milieu Supplement 21:224 pp.
    19 Rocha, O., T. Matsumura-Tundisi, J. G. Tundisi & C. F. Fonseca,1990. Predation on and by pelagic Turbellaria in some lakes in Brasil[J]. Hydrobiologia 198:91-101.
    20 Schwartz, S. S.& P. D. N. Hebert,1986. Prey preference and utilization by Mesostoma lingua (Turbellaria, Rhabdocoela) at a low arctic site[J]. Hydrobiologia 135:251-257.
    21 Shiganova, T. A., H. J. Dumont, D. Mikaelyan, A. Glazov, V. Bulgakova, E. I. Musaeva, P. Y. Sorokin, L. A. Pautova, Z. A. Mirzoyan & E. I. Studenikova,2004. Interaction between the invading ctenophores Mnemiopsis leidyi (A. Agassiz) and Beroe ovata Mayer,1912 and their influence on the pelagic ecosystem of the Northeastern Black Sea. In H.J. Dumont, T. Shiganova and U. Niermann (eds), The ctenophore Mnemiopsis leidyi in the Black, Caspian and Mediterranean Seas and other aquatic invasions. NATO ASI Series 2. Environment:33-70. Kluwer, Dordrecht.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700