用户名: 密码: 验证码:
中华齿刺甲的生物学特性及其抗冻蛋白的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中华齿刺甲(Oodescelis chinensis Kaszab)隶属于鞘翅目,拟步甲科,刺甲族,为中国特有种昆虫,仅分布于我国新疆的荒漠和半荒漠地区。中华齿刺甲没有荒漠拟步甲普遍具有的自相残杀习性,具有明显的雌雄二型性特征,更适合作模式生物。中华齿刺甲的越冬地在土壤表面,虫体在低于过冷却点的温度下仍能存活,为耐冻昆虫,是研究耐冻昆虫抗冻蛋白的良好材料。在此之前,该昆虫还没有在室内饲养成功,尚不清楚该昆虫的生物学特性,对于其雌雄二型性特征也缺乏了解,更不知晓耐冻昆虫中抗冻蛋白的功能。本研究建立了有效饲养中国特有种拟步甲科昆虫中华齿刺甲的方法,对其生物学特性、雌雄二型性和雌雄鉴别进行了研究,同时克隆得到了11个抗冻蛋白基因,并对其中的3种抗冻蛋白进行了结构和功能测试,为该荒漠昆虫的后续深入研究奠定了基础。
     采用加有湿润棉花的玻璃培养皿孵育卵、预蛹、蛹和初孵成虫。用含有湿润沙土的昆虫饲养管饲养幼虫,由于毛细作用,饲养管中沙子的含水量由下向上逐渐降低,表面为干沙层,在其上面加麦麸饲养幼虫。结果表明,此方法能使昆虫完成其正常的生长发育和繁殖过程,其卵、1龄幼虫、2龄以后幼虫、预蛹、蛹和幼嫩成虫的存活率分别为86.39±4.43%、92.85±1.22、55.22±5.65%、82.35±4.37、85.13±3.41%和86.00±7.37%。此方法能使昆虫在室内顺利完成其生活史,并能正常交配,繁殖后代。
     中华齿刺甲为夜行性昆虫,在乌鲁木齐1年可以完成1代,有世代重叠现象,成虫性比约为1:1。雌性成虫的体重和鞘翅宽显著大于雄虫。幼虫共15龄,无自相残杀的习性。在昆虫的每个虫态,都有昆虫某些部位体色加深的变化,一般从乳白到黄色,再到红褐或者黑色。成虫产卵期约为4个月,平均单雌产卵量为1032枚。雌雄性成虫和蛹有明显的性别二型性特征。
     中华齿刺甲成虫有明显的3个外部可见的雌雄二型性特征和1个第8腹板上的性别鉴别特征。列举如下。第一,雄性成虫的前足和中足跗节有宽的爪垫,利用扫描电镜对爪垫进行观察的结果显示,爪垫是由一个个纤细的扁平条状结构组成,前段稍尖并向背面弯曲,背面有竹节內隔状螺纹。第二,雄性成虫的后足腹面覆盖有一层刚毛刷。第三,雄虫腹面的第1、2、5腹节各有1个由刚毛组成的圆形刚毛垫。第四,雄性的第8腹板尖端有1个三角形的缺刻。以上特征在雌性成虫中缺无。第4个特征在小胸鳖甲(Microderapunctipennis)、细胸鳖甲(Colposcelis microderoides microderoides)、光滑鳖甲(Anatolicapolita borealis)、异长足漠甲(Adesmia anomala dejeani)、苏氏漠甲(Sternoplax souvorowiana)和伪东鳖甲(Anatolica pseudiduma)等拟步甲昆虫中普遍存在,只存在颜色上的细微差别。基于该特征开发出了一种性别鉴别方法——―第8腹板探测法‖,来鉴别荒漠拟步甲成虫的雌雄,该方法可以被广泛用于拟步甲成虫的雌雄快速无损鉴别。中华齿刺甲蛹也有3个明显的雌雄二型性特征。第一,类似于雄虫,雄蛹的前足和中足跗节也明显宽于雌性,将来发育成爪垫。第二,雄蛹的第8腹节上没有明显的生殖孔。第三,雄蛹第8腹节窄小,末端上有2个紧邻的突起;雌蛹第8腹节宽大,末端两侧有2个分离的乳头状突起。其中,第2和第3个特征在拟步甲科昆虫的蛹中具有普遍性,可以用于其他拟步甲昆虫蛹的无损雌雄鉴别。中华齿刺甲成虫跗爪上的爪垫和第8腹板上的缺刻等特征,在雌雄性成虫抱对时,可能有利于雄虫牢固抓住雌虫,有利于交配的顺利进行。
     从耐冻昆虫中华齿刺甲的越冬成虫中克隆得到了11个抗冻蛋白基因,在成熟的蛋白质序列中,一级结构由l2个氨基酸TCT(I)xSxxCxxAx (X表示其它的任意氨基酸残基)的TCT(I)重复序列组成,每隔6个氨基酸残基,就有一个半胱氨酸残基重复。这些蛋白前端均含有信号肽,信号肽长23个氨基酸。这11种抗冻蛋白基因主要分为两大类型,第一类,编码一级结构由TCTxSxxCxxAx (TCT重复序列)组成的抗冻蛋白基因,再根据其氨基酸个数继续分为编码122个氨基酸、95(94)个氨基酸和83个氨基酸的3种抗冻蛋白基因。第二类,编码一级结构由TCIxSxxCxxAx (TCI重复序列)组成的抗冻蛋白基因,该类只有1种基因,为编码97个氨基酸的抗冻蛋白基因Ocafp2。本研究从中选择了3种抗冻蛋白基因Ocafp1-3(编码122个氨基酸)、Ocafp2(编码97个氨基酸)和Ocafp4(编码95个氨基酸),构建到不同的原核表达质粒(pET28a-egfp和pET32a)上,通过大肠杆菌(Escherichia coli BL21)(DE3)实现了可溶性表达,经过镍柱纯化获得了带有有不同标签蛋白的重组抗冻蛋白EGFP-OcAFPs和TrxA-OcAFPs。并对其进行了结构和功能的测试,主要研究结果如下:用圆二色谱仪测定其二级结构的结果表明,3种中华齿刺甲的抗冻蛋白都以β-sheet为主;差示扫描量热仪的测定结果显示,OcAFP1-3和OcAFP4具有中度的热滞活性(THA)和酸碱稳定性,但是不耐受60℃以上的高温,OcAFP2的热滞活性低至几乎测不出来;热重分析结果显示OcAFP4的亲水性强于OcAFP1-3,OcAFP2亲水性最弱;纳升渗透压仪观测结果显示,OcAFP1-3和OcAFP4修饰冰晶分别呈六边形和四边形,OcAFP2则呈现骨针形;OcAFP1-3和OcAFP4使冰晶沿着a轴生长,OcAFP2则使冰晶沿着c轴生长。这预示着OcAFP1-3和OcAFP4主要结合到了冰晶的基面,显示其还具有高活性抗冻蛋白的特性;而OcAFP2主要结合到了冰晶的棱面,显示其还具有中度活性抗冻蛋白的特性。以上热滞值和冰晶形态结果,说明耐冻昆虫中华齿刺甲的抗冻蛋白(OcAFP1-3和OcAFP4)兼有避冻昆虫和鱼类抗冻蛋白的双重活性,OcAFP2兼有耐冻植物抗冻蛋白和鱼类抗冻蛋白的双重活性。这些新发现,弥补了对于耐冻昆虫体内抗冻蛋白研究方面的空缺,增进了我们对抗冻蛋白的认知。
Oodescelis chinensis Kaszab (Coleoptera: Tenebrionidae) is a Chinese endemic species,which is only distributed in desert and semidesert regions of Xinjiang, China. Oodescelischinensis possesses significant ecological and economic values, and is suitable to be used as amodel creature because of its obviously sexual dimorphism and the habit of not killing eachother. O. chinensis lives through winter on the surface of soil, and the insect can surviveafter supercooling point test experiment. It is a suitable creature for studying antifreezeproteins. But its biology and antifreeze proteins remain largely unknown. Also, its laboratoryrearing and its sexual dimorphism are yet to be determined. In this study, the laboratoryrearing methods, the biological characteristics and the sexing methods of O. chinensis wereexamined. Furthermore, eleven antifreeze protein genes were isolated from overwinter adults,and the structures and functions of three antifreeze proteins were studied. This study laidfoundation for further research of the desert insect.
     The Glass Petri dishes added with humid cotton were used to cultivate the insect eggs,prepupae, pupae and teneral adults. The larvae were reared in insect rearing tubes with moistdesert sand. The water content of desert sand decreased from bottom to upper part because ofcapillarity, and the surface of the desert soil was dry. The wheat bran was added to raise larvaeof O. chinensis. It can finish its life cycle under the rearing condition. The survival rates ofeggs, first instar larvae, larvae after second instar, prepupae, pupae, and teneral adults were86.39±4.43%,92.85±1.22,55.22±5.65%,82.35±4.37,85.13±3.41%and86.00±7.37%,respectively. Oodescelis chinensis can successfully finish its life cycle, and the insect can passto the next generation normally in laboratory.
     O. chinensis adopts nocturnality to survive desert environment. It had one-year life cycleand overlapping generation, in Urumqi. The female/male ratio of adult insect was1:1. Theweight and elytrum length of female was obviously greater than that of male in adult. Therewere15instars during larvae stage. The coloration of each developmental stage gradually changed from creamy white to light brownish, brunneus or black. The egg laying period offemale adult lasts4months. On average, each female produced1032eggs. The adults andpupae have abviously sexual dimorphism apparences.
     The adult of Oodescelis chinensis has three externally visible gender-specificcharacteristics, and an inner characteristic on the8thsternite for sex determination. First, thereare broad claw pads in tarsus of the male adult fore legs and middle legs. These claw padswere consisted of slim flat bands which can be seen with scanning electron microscope. Theforeparts of the slim flat bands are slightly sharp and the tips are bent back. The back of thestructure has bamboo-shaped screw threads. Second, the hind legs of male adult are coveredwith bristle layers. Third, the first, second and fifth abdominal segments of male adult eachhas one bristle pad. The fourth, there is a trilateral indentation on the8thabdominal sternite inmale. However, these characteristics in male are absent in female adult. The fouthcharacteristic is very common in tenebrionidae beetles, such as Microdera punctipennis,Colposcelis microderoides microderoides, Anatolica polita borealis, Adesmia anomaladejeani, Sternoplax souvorowiana and Anatolica pseudiduma. A new method based on thedifference of the8thsternite was developed to determinate the sexes of desert beelte adults.This method could be widely used in sexing desert beeltes with100%accuracy and withoutdemage. The pupaes of O. chinensis also has three sexual characteristics. First, similar to maleadults, the tarsus of the male pupal fore legs and middle legs are obviously wider than that offemale, which will be developed to claw pads. Second, there are no obviously genitalopenings on the8thabdominal sternite in male pupae. Third, the8thabdominal sternite of malepupae is narrower than that of female. There are two closed prominencies at the end of the8thabdominal sternite in male pupae, but the two prominencies of female pupae are separated andlooked like nipples. The second and the third characteristic of pupae are universal inTenebrionidae beetle pupae, so it can be used in pupal sex determination of tenebrionidi beetlewithout damage. The claw pads in tarsus and indentation on the8thabdominal sternite of Oodescelis chinensis male adults are helpful during coupling and mating.
     Eleven antifreeze genes were isolated from antifreeze tolerant desert beetle O. chinensisin this research. The primary structure of these protein comprised of tandem repeats of12-aasequence [TCT(I)xSxxCxxAx] with regularly spaced Cys at intervals of6-aa residues, andthere are23-aa signal peptides in the N-terminal part of these antifreeze proteins. The genesof these antifreeze proteins can be divided into two types. One is the antifreeze genes thatcode primary structure of TCT(I)xSxxCxxAx repeated sequence. These type genes includecoding122-aa,94(95)-aa and83-aa antifreeze protein genes. The other is the gene that codeprimary structure of TCIxSxxCxxAx repeated sequence, which only codes97-aa. Theantifreeze genes Ocafp1-3(122-aa), Ocafp2(97-aa) and Ocafp4(95-aa) were selected toconstructe with different expressive plasmids (pET28a-egfp and pET32a), and thecorresponding mature peptide has been expressed in E. coli, respectively. The recombinantantifreeze proteins EGFP-OcAFPs and TrxA-OcAFPs were obtained after purification byNi-IDA. The structions and functions of these recombination antifreeze proteins are asfollows. The secondary structures of these antifreeze proteins are mainly β-sheet which isconfirmed by circular dichroism spectrometer. The results of differential scanning calorimetryshowed that OcAFP1-3and OcAFP4has moderate thermal hysteresis activity (THA) and pHand heat stability, but they can‘t endure tempersture higher than60℃. The THAof OcAFP2istoo low to be measured. TGA themogravimetric analysis suggests that the hydrophilicity ofOcAFP4is stronger than that of OcAFP1-3, and the hydrophilicity of OcAFP2is the weakestamong these antifreeze proteins. The results observed with nanolitre osmometer showed thatthe modification ice crystal of OcAFP1-3, OcAFP4and OcAFP2are hexagon, quadrilateraland bone nails shape. OcAFP1-3and OcAFP4made ice crystal growing along a-axis, andOcAFP2made ice crystal growing along c-axis. These phenomena indicate that OcAFP1-3and OcAFP4are mainly combined to the basal plate of the ice crystal, and OcAFP2is mainlycombinated to the prism faces of the ice crystal. Our results indicate that OcAFP1-3and OcAFP4have both characteristics of antifreeze protein with high and moderate activities;while OcAFP2has characteristics of antifreeze protein with moderate and low activities.These new discoveries shed light on our understanding of the antifreeze proteins obtainedfrom freeze tolerant insect.
引文
[1] Cloudsley-Thompson J L. Thermal and water relations of desert beetles[J]. Naturwissenschaften,2010,88:447-460.
    [2]张承礼.中国荒漠半荒漠拟步甲的区系起源与平行进化[D].保定:河北大学,2010.
    [3]黄人鑫,吴卫,毛新芳,胡红英,范兆田,侯彦君,李新平,杜春华,邵红光,黄祥,欧阳彤.新疆荒漠昆虫区系及其行程与演变[M].新疆乌鲁木齐:新疆科学技术出版社,2005:36-46.
    [4]张建英,于有志,张峰举.多毛宽漠甲(鞘翅目:拟步甲科)生物学特性的研究[J].农业科学研究,2005,26:18-21.
    [5]王岩.准噶尔小胸鳖甲和光滑鳖甲的生物学特性及其人工饲养体系的研究[D].乌鲁木齐:新疆大学,2010.
    [6] Graham LA, Tang W, Baust JG, Liou YC, Reid TS. Characterization and cloning of a Tenebriomolitor hemolymph protein with sequence similarity to insect odorant-binding proteins[J].Insect Biochemistry and Molecular Biology,2001,31:691-762.
    [7]陈根富,刘团举.黄粉虫的生物学特性及养殖技术的研究[J].福建师范大学学报自然科学版1992,8:66-74
    [8]王桂军.怎样养好黑粉虫[J].致富之友,2000,11:18.
    [9]施忠辉.提高黑粉虫产卵量的技术措施[J].特种经济动植物,2002,6:10.
    [10]任国栋,于有志.中国荒漠半荒漠的拟步甲科昆虫[M].保定:河北大学出版社(第一版),1999:1-395.
    [11]王应昌,陈云堂,李兴瑞,李兴瑞,夏俊明,杜勤生,支长安.黄粉虫幼虫饲养及其加工利用效果研究[J].河南农业大学学报,1996,30:288-292.
    [12]冀焕红,冯颖,赵敏,陈智勇陈晓鸣叶寿德.环境因子对喙尾琵甲卵孵化的影响[J].林业科学研究,2010,23:38-43.
    [13]杨贵军,王新谱,于有志,阴环.温度和土壤湿度对弯齿琵甲卵发育影响的初步研究[J].宁夏大学学报:自然科学版,2002,23:184-187.
    [14]张建英,于有志,贾龙,杨贵军.二种脊漠甲的室内生物学特性观察[J].应用昆虫学报,2011,48:639-645.
    [15]彭中健,黄秉资.黄粉虫的研究[J].昆虫知识,1993,30:111-113,l15.
    [16]张伟,史树森.黄粉虫规模饲养技术指标研究[J].林业科学,2000,27:8-l0.
    [17]杨贵军,于有志,杨彩霞.淡红毛隐甲的生物学特性[J].宁夏农学院学报,2002,23:10-12.
    [18]姜婷.新疆拟步甲科昆虫区系及地理分布的初步研究[D].乌鲁木齐:新疆大学,2004.
    [19]管致和主编.昆虫学通论(上册)[M].北京:农业出版社(第二版),1997,78-127.
    [20]赵养昌.中国经济昆虫志第四册(鞘翅目:拟步甲科)[M].北京:科学出版社,1963.
    [21]Draney M L. The subelytral cavity of desert tenebrionids[J]. Florida Entomologist,1993,76:539-549.
    [22]Gorb, SN. Frictional surfaces of the elytra-to-body arresting mechanism in tenebrionid beetles(Coleoptera: Tenebrionidae): design of co-opted fields of microtrichia and cuticleultrastructure[J].International Journal of Insect Morphology and Embryology,1998,27:205-225.
    [23]Zachariassen KE. Routes of transpiratory water loss in a dryhabitat tenebrionid beetle[J]. Journal ofExperimental Biology,1991,157:425-437.
    [24]Zachariassen KE. The water conserving physiological compromise of desert insects[J]. EuropeanJournal of Entomology,1996,93:359-367.
    [25]于有志,张峰举.磨光琵甲(鞘翅目·:拟步甲科)生物学特性的研究[J].宁夏农学院学报,2004,25:5-7.
    [26]张建英,于有志.中华砚甲(鞘翅目:拟步甲科)生物学特性研究[J].宁夏农学院学报.2004,25:1-3,9.
    [27]张大治,于有志,任建治.谢氏宽漠王的生物学特性及行为[J].昆虫知识,2003,40:334-339.
    [28] Wharton RA. Dispersal, diel periodicity, and longevity of Stips stali (Haag)(Coleoptera:Tenebrionidae)[J]. Coleopterists Bulletin,1983,37:27-33.
    [29]Cloudsley-Thompson J L. Thermal ecology and behaviour of Physadesmia globosa (Coleoptera:Tenebrionidae) in the Namib Desert[J]. Journal of Arid Environments,1990,19:317-324.
    [30] Hadley NF. Wax secretion and color phases of the desert tenebrionid beetle Cryptoglossa verrucosa(LeConte)[J]. Science,1979,293:367-369.
    [31]McClain E, Seely M K, Hadley N F, Gray V. Wax blooms in tenebrionid beetles of the Namib Desert:correlations with environment. Ecology,1985,66:112-118.
    [32]McClain E, Kok C J, Monard A G. Reflective wax bloomson black namib beetles enhance dayactivity[J]. Naturwissenschaften,1991,78:40-42.
    [33] Seely M K. Irregular fog as a water source for desert dune beetles[J]. Oecologia,1979,42:213-227.
    [34] Parker AR, Lawrence CR. Water capture by a desert beetle[J]. Nature,2001,414:33-34.
    [35] Hamilton WJ III, Henschel JR, Seely MK. Fog collection by Namib Desert beetles[J]. South AfricanJournal of Science,2003,4:181-182
    [36]Adam S. Like water off a beetle‘s back[J]. Natural History,2004,2:26-27.
    [37] Krasnov B, Ayal Y. Seasonal changes in darkling beetle communities (Coleoptera: Tenbrionidae) in theRamon Erosion Cirque Negev Highlands, Israel[J]. Journal of Arid Environments,1995,31:335-347.
    [38]赵干,马纪,杨长庚,薛娜,张富春.新疆准噶尔小胸鳖甲抗冻蛋白在毕赤酵母中的分泌表达[J].生物技术,2005,15:25-27.
    [39]赵干,马纪,薛娜,杨长庚,专芳芳,张富春.新疆准噶尔小胸鳖甲抗冻蛋白基因的克隆和抗冻活性分析[J].昆虫学报,2005,48:667-673.
    [40]薛娜,赵干,张富春,马纪.准噶尔小胸鳖甲融合抗冻蛋白的免疫检测和抗冻活性分析[J].农业生物技术学报,2006,14:865-869.
    [41]杨长庚,张富春,马纪.新疆荒漠昆虫光滑鳖甲cDNA文库的构建及功能基因筛选[J].生物技术通报,2006,4:109-114.
    [42]吕国栋,孙洁,马纪,张富春.准噶尔小胸鳖甲抗冻蛋白MPAFP5毕赤酵母表达产物的理化性质[J].昆虫知识,2006,43:821-826.
    [43]陈亮,张富春,黄萍,马纪.光滑鳖甲热休克蛋白70基因的克隆及表达[J].昆虫学报,2007,50:883-888.
    [44]陈亮,张富春,马纪.光滑鳖甲抗冻蛋白基因(AP-AFP060116)表达规律的研究[J].新疆农业科学,2007,44:372-376.
    [45]马纪,李春平,邱立明,徐建辉,赵干,李素丽.花粉管介导的准噶尔小胸鳖甲抗冻蛋白转基因棉花的筛选[J].新疆农业科学,2008,45:381-385.
    [46]李素丽,张富春,孙琳杰,刘璇,马纪.准噶尔小胸鳖甲融合抗冻蛋白活性的比较研究[J].昆虫学报,2008,51:694-699
    [47] Wang Y, Qiu LM, Dai CY, Wang J, Luo JM, Zhang FC, Ma J. Expression of insect (Microderapuntipennis dzungarica) antifreeze protein MpAFP149confers the cold tolerance to transgenictobacco[J]. Plant Cell Report,2008,27:1349-1358
    [48]Qiu LM, Ma J, Wang J, Zhang FC, Wang Y. Thermal stability properties of an antifreeze protein fromthe desert beetle Microdera punctipennis[J]. Cryobiology,2009, doi:10.1016/j.cryobiol.2009.10.014.
    [49] Salina C, Renaulta D, Vannierb G, Vernon P. A sexually dimorphic response in supercoolingtemperature, enhanced by starvation, in the lesser mealworm Alphitobius diaperinus (Coleoptera:Tenebrionidae)[J]. Journal of Thermal Biology,2000,25:411-418.
    [50]任国栋,叶建华.姬兜胸鳖甲生物学记述[J].植物保护,1990,16:15-160.
    [51]张大治,于有志,任国栋.心形刺甲的生物学特性[J].宁夏农学院学报,2000,21:36-39.
    [52]刘兆第,邱芳,郭宇远,高博.跗凹拟步甲生物学特性的研究[J].昆虫知识,1990,27:290-291.
    [53]张静.黑粉虫生物生态学特性及饲养技术的研究[D].泰安:山东农业大学,2003.
    [54]周蕊.洋虫生物生态学特性及营养价值的研究[D].重庆,西南大学,2006.
    [55]张大治,于有志,杨贵军.瘦直扁足甲记述.宁夏大学学报(自然科学板)[J].2002,23:361-362.
    [56]贾佩华,董惠芳,孟文.纲目拟地甲及蒙古拟地甲的生活习性及其防治的初步效果[J].昆虫知识,1956,2:74-75.
    [57]任国栋,叶建华.姬兜胸鳖甲生物学记述[J].植物保护,1990,16:15-160.
    [1] Salin C, Renault D, Vannier G, Vernon P. A sexually dimorphic response in supercooling temperature,enhanced by starvation, in the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae).Journal of Thermal Biology,2000,25:411-418.
    [2] Shea J F. Sex differences in frass production and weight change in Tenebrio molitor (Coleoptera)infected with cysticercoids of the tapeworm Hymenolepis diminuta (Cestoda). Journal of InsectScience,2005,5:1-31.
    [3] Pszczolkowski M A, Hampton K, Johnson D. Sexual characteristics in a midwestern USA population ofCotinis nitida Linnaeus (Coleoptera: Scarabaeidae) and consequence for determining gender. TheColeopterists Bulletin,2008,62:527-534.
    [4]王孟卿,杨定.昆虫的雌雄二型现象.昆虫知识,2005,42:721-725.
    [5]张宏世.浅谈光肩星天牛成虫雌雄性别的快速鉴别.内蒙古林业科技,2002,增刊:97-98.
    [6]王涛,温俊宝,许志春.鉴别光肩星天牛雌雄成虫的一种简便方法.中国森林病虫,2004,23:42-44.
    [7] Ascher K R S, Eliyahu M, Gol'Berg A. A method for sexing live adult Maladera matrida beetles.Phytoparasitica,1990,18:233.
    [8] Colgoni A, Vamosi S M. Sexual dimorphism and allometry in two seed beetles (Coleoptera: Bruchidae).Entomological Science,2006,9:171-179.
    [9] Halstead D G H. External sex differences in stored-products Coleoptera. Bulletin of EntomologicalResearch,1963,54:119-134.
    [10] Schat M, Sing S E, Peterson R K D. External rostal characters for differentiation of sexes in biologicalcontrol agent Mecinus janthinus (Coleoptera:Curculionidae). Canadian Entomologist,2007,139:354-357
    [11] McCornack B P, Koch R L, Ragsdale D W. A simple method for in-field sex determination of themulticolored Asian lady beetle Harmonia axyridis. Journal of Insect Science,2007,7:1-10
    [12] Smetana A. A new species of the genus Coprophilus Latreille,1829from the high mountain elevationsin Taiwan, with comments on Zonyptilus Motschulsky,1845(Coleoptera: Staphylinidae: Oxytelinae).Zoo1ogical Studies,1998,37:154-158.
    [13] Silva-Filho G, Bailez O E, Viana-Bailez A M. Dimorfismo sexual do Gorgulho-da-GoiabaConotrachelus psidii Marshall (Coleoptera: Curculionidae). Neotropical Entomology,2007,36:520-524.
    [14] Innocenzi P J, Hall D R, Cross J V, Green S V. Sexing adults of the strawberry blossom weevil,Anthonomus rubi (Col., Curculionidae). Journal of Applied Entomology,2002,126:159-160.
    [15] Hinton H E. Secondary sexual characters of Tribolium. Nature,1942,149:500-501.
    [16] Faustini D L, Burkholder W E, Laub R J. Sexually dimorphic setiferous sex patch in the male red flourbeetles Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae): site of aggregation pheromoneproduction. Journal of Chemical Ecology,1981,7:465-480.
    [17] Zeh D W, Zeh J A. Sexual selection and sexual dimorphism in the harlequin beetle Acrocinuslongimanus. Biotropica,1992,24:86–96.
    [18] Wallin H. Determination of sex in living adults of small carabid species. Entomologia experimentaliset applicata,1987,45:102-104.
    [19]张大治,于有志,任国栋.心形刺甲的生物学特性.宁夏农学院学报,2000,2l:36-39.
    [20]于有志,任国栋,张大治.郝氏刺甲的生物学特性初报.河北大学学报(自然科学版),2000,20:110-114.
    [21] Meng L, Ren G D. A systematic study of the genus Myatis Bates from China and adjacent areas(Coleoptera, Tenebrionidae). Acta Zootaxonomica Sinica,2005,30:104-110.
    [22] Hammack L, French B W. Sexual dimorphism of basitarsi in pest species of Diabrotica and Cerotoma(Coleoptera: Chrysomelidae). Annals of the Entomological Society of America,2007,100:59-63.
    [23] Hope J A. A simple method for sexing the confused flour beetle. Nature,1953,171:265-266.
    [24] Kuhar T P, Youngman R R. Sex ratio and sexual dimorphism in western corn rootworm (Coleoptera:Chrysomelidae) adults on yellow sticky traps in corn. Environmental Entomology,1995,24:1408-1413.
    [25] DeJesus L R A, Nojima S, Medina JR, Ohsawa K. Method in sex determination in the mango pulpweevil Sternochetus frigidus (Fabr.)(Coleoptera: Curculionidae). Applied Entomology and Zoolog,2002,37:251-255.
    [26] Goodman C L, Phipps S J, Wagner R M, Peters P, Wright MK, Nabli H, Saathoff S, Vickers B, GraselaJ J, McIntosh A H. Growth and development of the knapweed root weevil, Cyphocleonus achetes, on ameridic larval diet. Biological Control,2006,36:238-246.
    [27] Bhattacharya A K, Ameel J J, Waldbauer GP. A method for sexing living pupal and adult yellowmealworms. Annals of the Entomological Society of America,1970,63:783.
    [28] Coleman T W, Seybold S J. Verification of a useful character for separating the sexes of thegoldspotted oak borer, Agrilus coxalis auroguttatus (Coleoptera: Buprestidae). The Pan-PacificEntomologist,2010,86:57-61.
    [29] hrn P, Klingenberg M, Hopkins G, Bj rklund N. Two non-destructive techniques for determining thesex of live adult Hylobius warreni. The Canadian Entomologist,2008,140:617-620.
    [30] Ghorpade K D, Thyagarajan K S. A reliable character for sexing live or dead Rhyzopertha dominica (F.)(Coleoptera: Bostrichidae). Journal of Stored Products Research,1980,16:151-153.
    [31] Vinod KV, Sabu T K, Benny T M. Sex determination of the live rubber plantation litter beetle, Lupropstristis: a novel method. Journal of Insect Science,2008,8:1-6.
    [32] Bandara K A N P, Saxena R C. A technique for handling and sexing Callosobruchus maculatus (F.)adults (Coleoptera: Bruchidae). Journal of Stored Products Research,1995,31:97-100.
    [33] Duan J J, Weber D C, Hirs B A, Dorn S. A new character for sex differentiation of adults ofAnthonomus pomorum L.(Col., Curculionidae). Journal of Applied Entomology,1999,123:319-320.
    [34] Sappington T W, Spurgeon D W. Preferred Technique for adult sex determination of the Boll Weevil(Coleoptera: Curculionidae). Annals of the Entomological Society of America,2000,93:3610-615.
    [35]Fairn E, Alarie Y, Schulte-Hostedde A. Sexual size dimorphism in the diving beetle Laccophilusmaculosus Say (Coleoptera: Dytiscidae). The Coleopterists Bulletin,2007,61:409-418.
    [36] Fairn E, Alarie Y, Schulte-Hostedde A. Sexual size and shape dimorphism in Dineutus nigrior Roberts(Coleoptera: Gyrinidae). The Coleopterists Bulletin,2007,61:113-120.
    [1] Raymond J A, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium[J]. FEMSMicrobiology Ecology,2007,61:214-221.
    [2] Clarke C J, Buckley S L, Lindner N. Ice structuring proteins-a new name for antifreeze proteins[J].Cryo Letters.2002,23:89-92.
    [3] Bar-Dolev M, Celik Y, Wettlaufer J S, Davies P L, Braslavsky I. New insights into ice growth andmelting modifications by antifreeze proteins[J]. Journal of The Royal Society Interface,2012,9:3249-3259
    [4] Knight C A, Devries A L. Effects of a polymeric, nonequilibrium antifreeze upon ice growth fromwater[J]. Journal of Crystal Growth,1994,143:301-310.
    [5] Devries A L. Glycoproteins as biological antifreeze agents in Antarctic fshes[J]. Science,1971,172:1152-1155.
    [6] Scotter A J, Marshall C B, Graham L A, Gilbert J A, Garnham C P, Davies P L. The basis forhyperactivity of antifreeze proteins[J]. Cryobiology,2006,53:229-239.
    [7] Chao H, Deluca C I, Davies P L. Mixing antifreeze protein types changes ice crystal morphologywithout affecting antifreeze activity[J]. FEBS Letters,1995,357:183-186.
    [8]Graham L A, Liou Y C, Walker V K, Davies P L. Hyperactive antifreeze protein from beetles[J]. Nature,1997,388:727-728.
    [9] Deluca C I, Chao H, Sonnichsen F D, Sykes B D, Davies P L. Effect of type III antifreeze proteindilution and mutation on the growth inhibition of ice[J]. Biophysical Journal,1996,71:2346-2355.
    [10] Peltier R, Evans C W, Devries A L, Brimble M A, Dingley A J, Williams D E. Growth habitmodifcation of ice crystals using antifreeze glycoprotein (AFGP) analogues[J]. Crystal Growth andDesign,2010,10:5066-5077.
    [11] Bar M, Celik Y, Fass D, Braslavsky I. Interactions of b-helical antifreeze protein mutants with ice[J].Crystal Growth and Design,2008,8:2954-2963.
    [12]Chao H, Sonnichsen F D, Deluca C I, Sykes B D, Davies P L. Structure–function relationship in theglobular type III antifreeze protein: identifcation of a cluster of surface residues required for bindingto ice[J]. Protein Science,1994,3:1760-1769.
    [13] Chakrabartty A, Yang D S, Hew C L. Structure–function relationship in a winter founder antifreezepolypeptide. II. Alteration of the component growth rates of ice by synthetic antifreeze polypeptides[J].Journal of Biological Chemistry,1989,264:11313-11316.
    [14] Houston M E, Chao H, Hodges R S, Sykes B D, Kay C M, Sonnichsen F D, Loewen M C, Davies P L.Binding of an oligopeptide to a specifc plane of ice[J]. Journal of Biological Chemistry,1998,273:11714-11718.
    [15] Duman J G. Antifreeze and ice nucleator proteins in terrestrial arthropods[J]. Annual Review ofPhysiology,2001,63:327-357.
    [16] Zachariassen K E, Kristiansen E. Ice nucleation and antinucleation in nature. Cryobiology,2000,41:257-279.
    [17] Capicciotti C J, Doshi M, and Ben R N. Ice Recrystallization Inhibitors: From Biological Antifreezesto Small Molecules, Recent Developments in the Study of Recrystallization [M](In Prof. Peter Wilson(Ed.) Recent Developments in the Study of Recrystallization)2013, DOI:10.5772/54992.
    [18] Sidebottom C, Buckley S, Pudney P, Twigg S, Jarman C, Holt C, Telford J, McArthur A, Worrall D,Hubbard R, Lillford P. Heat-stable antifreeze protein from grass[J]. Nature,2000,406:256.
    [19] Middleton A J, Marshall C B, Faucher F, Bar-Dolev M, Braslavsky I, Campbell R L, Walker V K,Davies P L. Antifreeze protein from freeze-tolerant grass has a beta-roll fold with an irregularlystructured ice-binding site[J]. Journal of Molecular Biology,2012,416:713-724.
    [20] Fletcher G L, Hew C L, Davies P L. Antifreeze proteins of teleost fshes[J]. Annual Review ofPhysiology,2001,63:359-390.
    [21] Yeh Y, Feeney R E. Antifreeze proteins: structures and mechanisms of function [J]. Chemical Reviews,1996,96:601-618.
    [22] Griffth M, Yaish M W. Antifreeze proteins in overwintering plants: a tale of two activities[J]. Trendsin Plant Science,2004,9:399-405.
    [23] Graham L A, Marshall C B, Lin F H, Campbell R L, Davies P L. Hyperactive antifreeze protein fromfsh contains multiple ice-binding sites[J].Biochemistry,2008,47:2051-2063.
    [24] Jia Z, Davies P L. Antifreeze proteins: an unusual receptor–ligand interaction[J]. Trends inBiochemical Sciences,2002,27:101-106.
    [25] Graether S P, Kuiper M J, Gagne S M, Walker V K, Jia Z, Sykes B D, Davies P L. Beta-helix structureand ice-binding properties of a hyperactive antifreeze protein from an insect[J]. Nature,2000,406:325-328.
    [26] Lin F H, Davies P L, Graham L A. The Thr-and Ala-rich hyperactive antifreeze protein frominchworm folds as a fat silk-like β-helix[J]. Biochemistry,2011,50:4467-4478.
    [27] Liou Y C, Daley M E, Graham L A, Kay C M, Walker V K, Sykes B D, Davies P L. Folding andstructural characterization of highly disulfide-bonded beetle antifreeze protein produced in bacteria[J].Protein Expression and Purification,2000,19:148-157.
    [28]Garnham C P, Campbell R L, Davies P L. Anchored clathrate waters bind antifreeze proteins to ice[J].Proceedings of the National Academy of Sciences of the United States of America,2011,108:7363-7367.
    [29] Koike M, Okamoto T, Tsuda S, Tsuda S, Imai R. A novel plant defensin-like gene of winter wheat isspecifically induced during cold acclimation[J]. Biochemical and biophysical researchcommunications,2002,298:46-53.
    [30] Pentelute B L, Gates Z P, Tereshko V, Dashnau J L, Vanderkooi J M, Kossiakoff A A, Kent S B H.X-ray structure of snow fea antifreeze protein determined by racemic crystallization of syntheticprotein enantiomers[J]. Journal of the American Chemical Society,2008,130:9695-9701.
    [31] Celik Y, Drori R, Pertaya-Braun N, Altan A, Barton T, Bar-Dolev M, Groisman A, Davies P L,Braslavsky I. Microfluidic experiments reveal that antifreeze proteins bound to ice crystals suffice toprevent their growth[J]. Proceedings of the National Academy of Sciences,2013,110:1309-1314.
    [32] Pertaya N, Marshall C B, Celik Y, Davies P L, Braslavsky I. Direct visualization of spruce budwormantifreeze protein interacting with ice crystals: basal plane affnity confers hyperactivity. BiophysicalJournal,2008,95:333-341.
    [33] Mok Y F, Lin F H, Graham L A, Celik Y, Braslavsky I, Davies P L. Structural basis for the superioractivity of the large isoform of snow fea antifreeze protein. Biochemistry,2010,49:2593-2603.
    [34] Lu M, Wang B, Li Z, Fei Y, Wei L, Gao S H. Differential scanning calorimetric and circular dichroisticstudies on plant antifreeze proteins[J]. Journal of thermal analysis and calorimetry,2002,67:689-698.
    [35]张超,赵晓燕,马越,张晖,姚惠源.使用差示扫描量热仪测定抗冻蛋白热滞活性方法的研究[J].生物物理学报,2008,24(6):465-473.
    [36]Zhang C, Zhang H, Wang L, Yao H Y. Validation of antifreeze properties of glutathione based on itsthermodynamic characteristics and protection of Baker‘s Yeast during cryopreservation[J]. Journal ofAgricultural and Food Chemistry,2007,55:4698-703.
    [37] Verdu J R, Casas J L, Lobo J M, Numa C. Dung beetles eat acorns to increase their ovariandevelopment and thermal tolerance[J]. PLoS ONE,2010,5:1-8.
    [38] Knight C A, Hallett J, DeVries A L. Solute effects on ice recrystallization: an assessment technique[J].Cryobiology,1988,25:55-60.
    [39]金海翔,商慧深,张庆琪,许政皑.美洲拟鲽抗冻肽基因在E. coli中的表达[J].实验生物学报,1995,28:77-83.
    [40] Graham L A, Davies P L. Glycine-rich antifreeze proteins from snow fleas[J]. Science,2005,310:461.
    [41] Liou Y C, Tocilj A, Davies P L, Jia Z.2000Mimicry of ice structure by surface hydroxyls and waterof a beta-helix antifreeze protein[J]. Nature,2000,406:322-324.
    [42]赵干,马纪,杨长庚,薛娜,张富春.新疆准噶尔小胸鳖甲抗冻蛋白在毕赤酵母中的分泌表达[J].生物技术,2005,15:25-27.
    [43]吕国栋,孙洁,马纪,张富春.准噶尔小胸鳖甲抗冻蛋白MPAFP5毕赤酵母表达产物的理化性质[J].昆虫知识,2006,43:821-826.
    [44]姜敏,于继云,李晨晨,马纪.准噶尔小胸鳖甲抗冻蛋白MpAFP698在真核细胞中的表达与鉴定[J].昆虫知识,2012,22:154-157.
    [45] Graham L A, Liou Y C, Walker V K, Davies P L. Hyperactive antifreeze protein from beetles[J].Nature,1997,388,727-728.
    [46] Li Y P, He G. Purification and partial characterization of thermal hysteresis proteins fromoverwintering larvae of pine needle gall midge, Thecodiplosis japonensis (Diptera: Cecidomiidae)[J].Cryoletters,2000,21:117-124.
    [47] Wu D W, Duman J G, Cheng C H C, Castellino F G. Purification and characterization of antifreezeproteins from larvae of the beetle Dendroides canadensis[J]. Journal of Comparative Physiology B:Biochemical, Systemic, and Environmental Physiology,1991,161:271-278.
    [48] Tyshenko M G, Doucet D, Davies P L, Walker V K. The antifreeze potential of the spruce budwormthermal hysteresis protein [J]. Nature biotechnology,1997,15:887-890.
    [49] Kuiper M J, Lankin C, Gauthier S Y, Walker V K, Davies P L. Purification of antifreeze proteins byadsorption to ice[J]. Biochemical and biophysical research communications,2003,300:645-648.
    [50] Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham C P, Davies P L, Tsuda S. Ice-binding site ofsnow mold fungus antifreeze protein deviates from structural regularity and high conservation[J].Proceedings of the National Academy of Sciences,2012,109:9360-9365.
    [51] Clark M S, Worland M R. How insects survive the cold: molecular mechanisms—a review[J]. Journalof Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology,2008,178:917-933.
    [1]张承礼.中国荒漠半荒漠拟步甲的区系起源与平行进化[D].保定:河北大学,2010.
    [2]黄人鑫,吴卫,毛新芳,胡红英,范兆田,侯彦君,李新平,杜春华,邵红光,黄祥,欧阳彤.新疆荒漠昆虫区系及其行程与演变[M].新疆乌鲁木齐:新疆科学技术出版社,2005:36-46.
    [3]任国栋,叶建华.姬兜胸鳖甲生物学记述.植物保护,1993,16:15-16.
    [4]于有志,任国栋,张大治.郝氏刺甲的生物学特性初报.河北大学学报(自然科学版)[J].2000,20:110-114.
    [5]赵干,马纪,薛娜,杨长庚,专芳芳,张富春.新疆准噶尔小胸鳖甲抗冻蛋白基因的克隆和抗冻活性分析.昆虫学报,2005,48:667-673.
    [6]吕国栋,孙洁,马纪,张富春.准噶尔小胸鳖甲抗冻蛋白MPAFP5毕赤酵母表达产物的理化性质[J].昆虫知识,2006,43:821-826.
    [7]陈亮,张富春,黄萍,马纪.光滑鳖甲热休克蛋白70基因的克隆及表达.昆虫学报,2007,50:883-888.
    [8] Qiu L M, Ma J, Wang J, Zhang F C, Wang Y. Thermal stability properties of an antifreeze protein fromthe desert beetle Microdera punctipennis. Cryobiology,2010,60:192-197.
    [9]王岩.准噶尔小胸鳖甲和光滑鳖甲的生物学特性及其人工饲养体系的研究[D].乌鲁木齐:新疆大学,2010.
    [10]赵莉,刘芳政.亮柔伪步甲室内饲养方法[J].八一农学院学报,1989,12:76-78.
    [11] Bailez OE, Viana-Bailez AM, Lima JOG, Moreira DDO. Life-history of the guava weevil,Conotrachelus psidii Marshall (Coleoptera: Curculionidae), under laboratory conditions. neotropicalentomology,2003,32:203-207.
    [12]张大治,张峰举,于有志.六种拟步甲行为初探.宁夏大学学报(自然科学版),2003,24:94-96.
    [13]任国栋,于有志.中国荒漠半荒漠的拟步甲科昆虫[M].保定:河北大学出版社,1999,6-13.
    [14]王岩,热西力克来木,马纪.荒漠昆虫光滑鳖甲(鞘翅目:鳖甲族)的人工饲养方法[J].应用昆虫学报,2012,49:802-807.
    [1]王岩,准噶尔小胸鳖甲和光滑鳖甲的生物学特性及其人工饲养体系的研究.新疆拟步甲科昆虫区系及地理分布的初步研究[D].乌鲁木齐:新疆大学,2010.
    [2] Wharton R A. Dispersal, diel periodicity, and longevity of Stips stali (Haag)(Coleoptera: Tenebrionidae)[J]. Coleopterists Bulletin,1983,37:27-33.
    [3] Draney M L. The subelytral cavity of desert tenebrionids[J]. Florida Entomologist,1993,76:539-549.
    [4] CoutchiéPA, Machin J. Allometry of water vapor absorption in two species of tenebrionid beetlelarvae[J]. American Journal of Physiology A,1984,42:521-531.
    [5] Zhang J Y, Yu Y Z, Zhang F J. The biological characters of Sternoplax setosa setosa[J]. Journal ofAgricultural Sciences,2005,26:10-13.(in Chinese with English abstract)
    [6] Yu YZ, Ren GD, Zhang DZ. First record of biological characters of Platyscelis hauseri Reitter1889(Coleoptera: Tenebrionidae)[J]. Journal of Hebei University,2000,20:110-114.(in Chinese withEnglish abstract)
    [7] Yu YZ, Zhang JY. The biological characteristics of Blaps femoralis[J]. Chinese Bullentin of Entomology,2005,42:290-294.(in Chinese with English abstract)
    [8] Zhang JY, Yu YZ, Jia L. Biological characteristic of Blaps kiritshenkoi (Coleoptera: Tenebrionidae)[J].Plant Protection,2005,31:44-47.(in Chinese with English abstract)
    [9] Doyen J T, Slobodchikoff CH. Evolution of microgeographic races without isolation in a coastal dunebeetle[J]. Journal of Biogeography,1984,11:13-25.
    [10] Cloudsley-Thompson JL. Thermal and water relations of desert beetles[J]. Naturwissenschaften,2001,88:447-460.
    [11]王岩,张富春,马纪.新疆荒漠再次发现畸形拟步甲二例[J].环境昆虫学报,2012,34(2):243-248.
    [12] Oyafuso A, Arakaki N, Sadoyama Y, Kishita M, Kawamura F, Ishimine M, Kinjo M, Hirai Y. Lifehistory of the white grub Dasylepida sp.(Coleoptera: Scarabaeidae), a new and severe pest onsugarcane on the Miyako Islands, Okinawa[J]. Applied Entomology Zoology,2002,37:595-601.
    [13] Okada K and Miyatske T. Librodor japonicus (Coleoptera: Nitidulidae): life history, effect oftemperature on development, and seasonal abundance[J]. Applied Entomology Zoology,2007,42:411-417.
    [14] Sabu TK, Vinod KV, Jobi MC. Life history, aggregation and dormancy of the rubber plantation litterbeetle, Luprops tristis, from the rubber plantations of moist south Western Ghats[J]. Journal of InsectScience,2008,8:01.
    [15] Zhang J Y, Jia L,Yu YZ. The Biological Characteristics of Blaps gobiensis (Coleoptera: Tenebrionidae)[J]. Journal of Ningxia University(Natural Science Edition),2004,25:264-267.(in Chinese withEnglish abstract)
    [16] Yu YZ, Zhang FJ. The biological characters of Blaps opacareitter (Coleoptera: tenebrionidae)[J].Journal of Ningxia University (Natural Science Edition),2004,25:5-7.(in Chinese with Englishabstract)
    [1] Hadley N F.1979. Wax secretion and color phases of the desert tenebrionid beetle Cryptoglossaverrucosa (LeConte)[J]. Science,1979,293:367-369.
    [2] McClain E, Seely M K, Hadley N F, Gray V. Wax blooms in tenebrionid beetles of the Namib Desert:correlations with environment[J]. Ecology,1985,66:112-118.
    [3] McClain E, Kok C J, Monard L A G. Reflective wax blooms on black Namib desert beetles enhanceday activity[J]. Naturwissenschaften,1991,78:40-42.
    [4] Chen L, Zhang FC, Huang P, Ma J. Cloning and expression analysis of heat shock protein70gene fromAnatolica polita borealis (Coleoptera: Tenebrionidae)[J]. Acta Entomologica Sinica,2007,50:883-888.
    [5] Qiu L M, Ma J, Wang J, Zhang FC, Wang Y. Thermal stability properties of an antifreeze protein fromthe desert beetle Microdera punctipennis[J]. Cryobiology,2010,60:192-197.
    [6] Cloudsley-Thompson J L. Thermal and water relations of desert beetles[J]. Naturwissenschaften,2001,88:447-460.
    [7] Riddle W A, Crawford C S, Zeitone A M.1976. Patterns of hemolymph osmoregulation in three desertarthropods[J]. Journal of Comparative Physiology B,1976,112:295-305.
    [8] Renault D, Coray Y. Water loss of male and female Alphitobius diaperinus (Coleoptera: Tenebrionidae)maintained under dry conditions[J]. European Journal of Entomology,2004,101:491-494.
    [9] Salin C, Renault D, Vannier G, Vernon P. A sexually dimorphic response in supercooling temperature,enhanced by starvation, in the lesser mealworm Alphitobius diaperinus (Coleoptera: Tenebrionidae)[J].Journal of Thermal Biology,2000,25:411-418.
    [10] Posada FJ, Virdiana I, Navies M, Pava-Ripoll M, Hebbar P. Sexual dimorphism of pupae and adults ofthe cocoa pod borer, Conopomorpha cramerella[J]. Journal of Insect Science,2011,11:52.
    [11]Pszczolkowski M A, Hampton K, Johnson D. Sexual characteristics in a midwestern USA populationof Cotinis nitida Linnaeus (Coleoptera: Scarabaeidae) and consequences for determining gender[J].The Coleopterists Bulletin,2008,62:527-534.
    [12] Vinod K V, Sabu T K, Benny T M. Sex determination of the live rubber plantation litter beetle,Luprops tristis: a novel method[J]. Journal of Insect Science,2008,8:1-12.
    [13] Bhattacharya A K, Ameel J J, Waldbauer G P. A method for sexing living pupal and adult yellowmealworms[J]. Annals of the Entomological Society of America,1970,63:1783.
    [14] Innocenzi P J, Hall D R, Cross J V, Green S V. Sexing adults of the strawberry blossom weevil,Anthonomus rubi (Col., Curculionidae)[J]. Journal of Applied Entomology,2002,126:159-160.
    [15] Hinton H E. Secondary sexual characters of Tribolium[J]. Nature,1942,149:500-501.
    [16] Faustini D L, Burkholder W E, Laub R J. Sexually dimorphic setiferous sex patch in the male red flourbeetles Tribolium castaneum (Herbst)(Coleoptera: Tenebrionidae): site of aggregation pheromoneproduction[J]. Journal of Chemical Ecology,1981,7:465-480.
    [17] Halstead D G H. External sex differences in stored-products Coleoptera[J]. Bulletin of EntomologicalResearch,1963,54:119-134.
    [18] Sugiyama M, Kohama T, Shimoji Y. A method for sex discrimination in the west Indian sweet potatoweevil, Euscepes postfasciatus (Fairmaire)(Coleoptera: Curculionidae) at the pupal stage[J]. AppliedEntomology and Zoology,1996,31:166-67.
    [19] Wang X P, Zhou X M, Lei C L. Identification of sex of pupae in the cabbage beetle, Colaphellusbowringi Baly (Coleoptera: Chrysomelidae: Chrysomelinae)[J]. The Coleopterists Bulletin,2006,60:341-342.
    [20] Sappington T W, Spurgeon D W. Preferred technique for adult sex determination of the boll weevil(Coleoptera: Curculionidae)[J]. Annals of the Entomological Society of America,2000,93:10-615.
    [21] Duan J J, Weber D C, Hirs B A, Dorn S. A new character for sex differentiation of adults ofAnthonomus pomorum L.(Col., Curculionidae)[J]. Journal of Applied Entomology,1999,123:319-320.
    [22] Voigt D, Schuppert J M, Dattinger S, Gorb SN. Sexual dimorphism in the attachment ability of theColorado potato beetle Leptinotarsa decemlineata (Coleoptera: Chrysomelidae) to rough substrates[J].Journal of insect physiology,2008,54(5):765-776.
    [23] Eisner T, Aneshansley D J. Defense by foot adhesion in a beetle (Hemisphaerota cyanea)[J].Proceedings of the National Academy of Sciences,2000,97:6568-6573.
    [1] Fletcher G L, Hew C L, Davies P L. Antifreeze proteins of teleost fishes[J]. Annual Review ofPhysiology,2001,63(1):359-390.
    [2] Hossain M M. Fish antifreeze proteins: Computational analysis and physicochemical characterization[J].International Current Pharmaceutical Journal,2012,1(2):18-26.
    [3] Duman J G, Bennett V, Sformo T, Hochstrasser R, Barnes B M. Antifreeze proteins in Alaskan insectsand spiders[J]. Journal of Insect Physiology,2004,50(4):259-266.
    [4] Griffith M, Lumb C, Steven B, Man W, Wisniewski M, Johnson RW, Marangoni AG. AntifreezeProteins Modify the Freezing Process In Planta [J]. Plant Physiology,2005,138(1):330-340.
    [5] Lee J H, Park A K, Do H, Park K S, Moh S H, ChI Y M, Kim H J. Structural Basis for AntifreezeActivity of Ice-binding Protein from Arctic Yeast[J]. Journal of Biological Chemistry,2012,287(14):11460-11468.
    [6] Raymond J A, Fritsen C, Shen K. An ice-binding protein from an Antarctic sea ice bacterium[J]. FEMSmicrobiology ecology,2007,61:214-221
    [7] Desjardins M, Graham LA, Davies PL, Fletcher GL. Antifreeze protein gene amplification facilitatedniche exploitation and speciation in wolffish[J]. FEBS Journal,2012,279(12):2215-2230.
    [8] Lee J K, Kim Y J, Park K S, Shin S C, Kim H J, Song Y H, Park H. Molecular and comparativeanalyses of type IV antifreeze proteins (AFPIVs) from two Antarctic fishes, Pleuragrammaantarcticum and Notothenia coriiceps[J]. Comparative Biochemistry and Physiology Part B:Biochemistry and Molecular Biology,2011,159(4):197-205
    [9]周世豪,袁哲明.冰核蛋白和昆虫抗冻蛋白在虫体抗寒中的作用[J].中国农学通报,2012,28(9):229-234.
    [10] Wang S, Amornwittawat N, Juwita V, Kao Y, Duman J G, Pascal T A, Goddard W A, Wen X.Arginine, a key residue for the enhancing ability of an antifreeze protein of the beetle DendroidesCanadensis[J]. Biochemistry,2009,48(40):9696-9703.
    [11] Yue C W, Zhang Y Z. Cloning and expression of Tenebrio molitor antifreeze protein in Escherichiacoli[J], Molecular Biology Reports,2009,36(3):529-536.
    [12] Jiang M, Ma J, Qiu LM. Cryoprotective effect of an insect antifreeze protein MpAFP698and itsmutants from the desert beetle Microdera punctipennis[J]. Cryo Letters,2011,32(5):436-346.
    [13] Ma J, Wang J, Mao XF, Wang Y. Differential expression of two antifreeze proteins in the desert beetleAnatolica polita (Coleoptera: Tenebriondae): seasonal variation and environmental effects[J]. CryoLetters,2012,33(5):337-348.
    [14] Qiu L, Mao X, Hou F, Ma J. A novel function-thermal protective properties of an antifreeze proteinfrom the summer desert beetle Microdera punctipennis[J]. Cryobiology,2013,66(1):60-68.
    [15] Bar-Dolev M, Celik Y, Wettlaufer J S, Davies P L, Braslavsky I. New insights into ice growth andmelting modifications by antifreeze proteins[J]. Journal of The Royal Society Interface,2012,9(77):3249-3259.
    [16] Garnham C P, Campbell R L, Davies P L. Anchored clathrate waters bind antifreeze proteins to ice[J].Proceedings of the National Academy of Sciences,2011,108(18):7363-7367.
    [17] Qiu L M, Ma J, Wang J, Zhang F C, Wang Y. Thermal stability properties of an antifreeze proteinfrom the desert beetle Microdera punctipennis[J]. Cryobiology,2010,60(2):192-197.
    [18] Kondo H, Hanada Y, Sugimoto H, Hoshino T, Garnham CP, Davies PL, Tsuda S. Ice-binding site ofsnow mold fungus antifreeze protein deviates from structural regularity and high conservation[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(24):9360-9365.
    [19]毛新芳.新疆荒漠昆虫光滑鳖甲抗冻蛋白的性质及功能研究[D]新疆乌鲁木齐:新疆大学,2011.
    [20]赵干,马纪,杨长庚,薛娜,张富春.新疆准噶尔小胸鳖甲抗冻蛋白在毕赤酵母中的分泌表达[J].生物技术,2005,15:25-27.
    [21]吕国栋,孙洁,马纪,张富春.准噶尔小胸鳖甲抗冻蛋白MPAFP5毕赤酵母表达产物的理化性质[J].昆虫知识,2006,43:821-826.
    [22]姜敏,于继云,李晨晨,马纪.准噶尔小胸鳖甲抗冻蛋白MpAFP698在真核细胞中的表达与鉴定[J].昆虫知识,2012,22:154-157.
    [1]张超,赵晓燕,马越,张晖,姚惠源.使用差示扫描量热仪测定抗冻蛋白热滞活性方法的研究[J].生物物理学报,2008,24(6):465-473.
    [2] Lu M, Wang B, Li Z, Fei Y, Wei L, Gao S. Differential scanning calorimetric and circular dichroisticstudies on plant antifreeze proteins[J]. Journal of thermal analysis and calorimetry,2002,67:689-98.
    [3]Zhang C, Zhang H, Wang L, Zhang J H, Yao H Y. Purification of antifreeze protein from wheat bran(Triticum aestivun L.) based on its hydrophilicity and ice-binding capacity[J]. Journal of agriculturaland food chemistry,2007,55(19):765458.
    [4]Verdu JR, Casas JL, Lobo JM., Numa C. Dung beetles eat acorns to increase their ovarian developmentand thermal tolerance[J]. PLoS ONE.2010,5:1-8.
    [5]Storey J M, Storey K B. Cold hardiness and freeze tolerance[M]. In: Storey KB, editor. Functionalmetabolism: regulation and adaptation. Hoboken (New Jersey): John Wiley&Sons, Inc.,2005:473-503.
    [6]Bar M, Celik Y, Fass D, Braslavsky I. Interactions of β-helical antifreeze protein mutants with ice[J].Crystal Growth and Design,2008,8(8):2954-2963.
    [7] Bar-Dolev M, Celik Y, Wettlaufer J S, Davies P L, Braslavsky I. New insights into ice growth andmelting modifications by antifreeze proteins[J]. Journal of The Royal Society Interface.2012,9(77):3249-3259.
    [8]沈星灿,梁宏,何锡文,王新省.圆二色光谱分析蛋白质构象的方法及研究进展[J].分析化学,2004,32(3):388-394.
    [9]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报,2007,7:501-506.
    [10]吴明和.圆二色光谱在蛋白质结构研究中的应用[J].氨基酸和生物资源,2010,32(4):77-80.
    [11]Xu D, Zhang Y. Ab initio protein structure assembly using continuous structure fragments andoptimized knowledge-based force field[J]. Proteins,2012,80:1715-1735.
    [12]Duman J G. Antifreeze and ice nucleator proteins in terrestrial arthropods[J]. Annual Review ofPhysiology,2001,63:327–357.(doi:10.1146/annurev.physiol.63.1.327)
    [13]Jia Z, Davies P L. Antifreeze proteins: an unusual receptor–ligand interaction[J]. Trends in BiochemicalSciences,2002,27:101-106.
    [14]Scotter A J, Marshall C B, Graham L A, Gilbert J A, Garnham C P, Davies P L. The basis forhyperactivity of antifreeze proteins[J]. Cryobiology,2006,53:229-239.
    [15]Holmberga N, Farres J, Bailey J E, Kallio PT. Targeted expression of a synthetic codon optimized gene,encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in theapoplasts of transgenic tobacco[J]. Gene.2001,275:115-124.
    [16]Vernon P, Vannier G. Evolution of freezing susceptibility and freezing tolerance in terrestrialarthropods[J]. Comptes rendus biologies,2002,325(12):1185-1190.
    [17]Qiu L, Mao X, Hou F, Ma J. A novel function-thermal protective properties of an antifreeze proteinfrom the summer desert beetle Microdera punctipennis [J]. Cryobiology,2013,66(1):60-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700