用户名: 密码: 验证码:
3GPa熔融盐固体介质高温高压实验容器的压力标定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地震动力学国家重点实验室建设期间,经过构造物理实验室高温高压岩石力学组全体成员的努力,本实验室研制了一台新的熔融盐固体介质高温高压岩石力学实验装置,其设定实验最高温度为1200℃、最高围压为3GPa。我回所后有幸参与了压机的组装、完成了系统软件开发、系统测试、压力标定预研究等工作。本论文介绍了新实验系统的构成,控制和数据采集等系统软件的开发,压力标定方法和初步实验,最后讨论了利用该系统可以开展的实验研究方向,根据经验方法计算了辉长岩的流变参数,并与实验结果进行了比较。
     新的岩石力学实验装置主要有高实验围压、高实验温度、熔融盐类传压介质、差应力加载、高精度的位移和应力传感器、高性能控制和实验数据采集软件等特点。与国内其它类似的实验设备比较,本实验系统在硬件方面进行了大量改进,其中最主要改进有:高性能的上置式轴压和围压油缸,全部采用伺服控制;采用多个高精度的位移传感器、压力传感器和数字板卡;采用了熔融的氯化盐类的混合物作为传压介质;高强度压力容器和新的装样方式;采用气垫作为压力容器进出动力装置,取代轨道和手工搬运方式。
     计算机软件犹如压机的大脑,控制着压机的正常运行和负责采集高质量的实验数据。该设备的软件在多方面进行了突破,实现了对压机全方位的控制,让软件更加稳定可靠。软件由何昌荣研究员确定核心思路,由本人进行实际编写和测试,最终完成该软件,软件主要功能和创新点如下:
     (1)主要功能:进行实验数据的实时采集:实时读取温度值;对压机进行实时控制;对实验数据和温度进行实时显示(绘图)和保存;控制泵站电源开关;进行实验基本参数以及控制参数的设定。
     (2)创新点:通过串口通讯实现了计算机和控温表之间的数据传输;利用软件控制泵站电源;分离控制状态切换的外部切换和内部切换;使用双线程操作,一条线程进行压机控制,一条进行实时间显示和温度读取。
     固体介质高温高压实验容器的压力标定是高温高压设备投入使用之前必须进行的环节,压力标定的准确与否直接影响实验压力测量精度。采用合理而有效的标定方法是压力标定成功的基础。本论文查阅了大量文献,系统总结了压力标定方法。压力标定一般分为轴压标定和围压标定两方面来完成。
     围压标定分为:常温下的压力标定和高温下的压力标定两部分。主要标定方法如下:(1)常温下一般使用一些盐类以及金属相变标定;(2)高温下的压力标定主要方法为氯化盐类的部分熔融法和矿物相变法,常用矿物相变有:石英(?)柯石英、钠长石(?)硬玉+石英、铁橄榄石+石英(?)铁辉石、磷镁石(?)Mg_3(PO_4)_2-Ⅱ、方解石(?)文石。初步确定围压力标定方法为氯化盐类熔融曲线法、方解石-文石相变、石英—柯石英相变相结合的方法来完成详细标定。
     轴压标定最有效的方法是轴压活塞反复前进和后退,根据活塞循环来获得摩擦力的大小。其中有两个关键环节:(1)、活塞和样品接触点的确定:得出活塞与软金属等接触时加载-位移曲线的线性部分的拟合直线,以及活塞和样品接触后发生弹性变形时加载-位移曲线线性部分的拟合直线,其交点即为活塞和样品的接触点;(2)、动摩擦力的确定:通过加载-位移曲线中活塞与软金属等接触时的线性部分的拟合直线来确定。然后剔除接触点前的实验曲线,对剩余部分利用动摩擦力进行校正。
     我们对2GPa固体介质高温高压实验设备进行了轴压标定实验。本次实验使用样品为辉长岩,在分离两活塞的情况下进行了两次实验:(1)、在500MPa、820℃,1000MPa、900℃和1000MPa、25℃不同的温压条件下,进行了不同活塞运动速率的活塞推进和退出循环实验;(2)、在500MPa、1000℃温压条件下,先进行了活塞循环实验,接着在岩石发生流变之后将活塞速率从2×10~(-4)mm/s减小到5×10~(-5)mm/s,观察了流变对速率的依赖性。
     上述实验结果表明:围压、温度、活塞运动速率等因素都对动摩擦力有不同程度的影响。围压是摩擦力的主要影响因素,围压升高摩擦力有明显增加。温度和活塞运动速率变化只影响动摩擦力在载荷轴上的截距。因此对轴压标定应该在不同的实验条件下分别标定。
     根据新的实验系统的上述特点,该实验装置适用于开展以下实验研究工作:更接近下地壳条件下的流变力学性质与微观结构;高温高压条件下,动态和静态状态下岩石和盐类部分熔融动力学特征;矿物相变压力动力学特征。其中,下地壳流变是今后几年的主要研究方向。因此,本论文利用TULLIS等人(1991)提出的双相矿物流变参数的计算方法对攀枝花辉长岩的流变参数进行了理论计算,并与实验结果进行了对比,结果表明:干样品实验结果和理论计算结果基本统一,而含水样品的计算结果与实验结果差距比较大,因此有必要进行水对岩石流变影响的详细研究。
The rock mechanics group of the Tectonophysics Laboratory has designed and constructed a new high-temperature (max temperature of 1200℃) and high-pressure(max confining pressure of 3Gpa) experimental apparatus with triaxial pressure vessel using molten salt as confining pressure medium at the State Key Laboratory of Earthquake Dynamics. I participated in apparatus assembling fortunately when I returned to the Institute. I wrote the system software, joined system testing, as well as pr-researching in confining pressure calibration during the period of my master degree studies. The thesis introduces the new experimental system, software of controlling and data acquisition, as well as the pressure calibration method and preliminary experiments. In addation, I discussed what kinds of the experiments we could do using the new system in the future, and calculated rheology parameter of gabbro using flow lows of anorthite and diposide (or clinopyroxene) obtained from experiential tests according to the method given by Tullis et al (1991), and compared the results with new experimental data given by Zhou et al (2006).
     The new experimental system has the following main features: high confining pressure, high temperature, molten salt medium, differential stress load, high precision displacement and stress sensors, high-performance controlling and data acquisition software. Compared with other experimental equipments in China , this experimental equipment has a great deal of improvement both in hardware and software: servo-controlled up-lay axial pressure and confining pressure oil jams; high-precision displacement and pressure sensors, as well as digital data collection cards; using molten chloride salts or mixtures with pressure medium; high-intensity pressure vessels and new sample assembly method; using a gassy cushion as the move power of pressure vessel, to replace the track and manual handling methods.
     Computer software is most important in the high-pressure apparatus, which controls the apparatus's normal operation and gets high-quality experimental data. Because of a number of breakthroughs in program designing, this software could control all-round of the apparatus, and makes sure that the system is more stable and reliable. The core idea of software is determined by professor HE Changrong, and I wrote and tested the program. The major functions and innovation points of the software are:
     (1) Major functions are: real-time acquisition of experimental data; real-time acquisition of temperature; real-time control to device; real-time show(and plot) and saving experimental data and temperature; controling switch of pump-power; setting basic experimental parameters and the control parameters;
     (2) Innovation points are: Data transmission between computer and temperature table by serial communication; Controlling pump-power by software; Separation of control-state switch external and internal run; Using double-threaded operation: a thread for control, the other for real-time display and temperature reading.
     It is very important for solid medium pressure vessel to perform pressure calibration under high pressure and high temperature before apparatus is used, because precise pressure calibration directly determines the preciseness of measurement of experimental pressure. I referred to a lot of literatures, and summarized the methods of pressure calibrations used in previous studies. Pressure calibration includes confining pressure calibration and axial load calibration.
     Confining pressure calibration consists of two parts: the pressure calibration at room-temperature and at high-temperature. The main pressure calibration methods are as follows : (1) under room-temperature using some salts and metal phase calibration transition; (2) under high-temperature, the best method for calibrating confining pressure is mineral phase transition and Chloride salts partial melting, commonly used mineral phase transitions are: quartz-coesite, albite-jadeite + quartz, fayalite + quartz-ferrosilite, calcite-aragonite and farringtonite - Mg_3 (PO_4)_2-Ⅱ. The preliminarily decided confining pressure calibration method is: chloride salts melting curve, calcite - aragonite transformation and quartz-coesite.
     The best way of axial load calibration is to estimate axial friction by multi-cycle of piston-in and piston-out. There are two key points during the test: (1) Ensuring the hit-point of piston and sample: The hit-point is determined by an intersection of two beelines, one is the linear fit to the part of load-displacement curve of piston contacting with soft metal, the other is the linear fit to the part of load-displacement curve of sample's elastic deformation; (2) Determing dynamic friction: The dynamic friction which dependents on displacement is established by the linear fit to the part of load-displacement curve of piston contacting with soft metal. Then, the final axial calibration includes cutting the load-displacement curve before hit-point, and correcting the load-displacement with dynamic friction.
     Tests were performed for calibrating the axial friction using 2GPa confining pressure vessel. The sample is gabbro. Two experiments have been performed: (1) A number of cycle-experiments with different piston-rates under 500MPa and 820℃, 1 000MPa and 900℃, 1 000MPa and 25℃; (2)Under 500MPa and 1 000℃, firstly cycle-experiments were conducted, and then piston rate is reduced from 2×10~(-4)mm / s to 5×10~(-5)mm / s after rock sample's plastic deformation, and the rate dependence of creep is observed.
     The result of the experiment shows that the factors which affect the dynamic friction are confining pressure, temperature and piston rate. Confining pressure is the main factor, dynamic friction increases with the increase of confining pressure. Temperature and piston rate only influence intercept. Hence, axial calibration should be conducted under specific experimental conditions.
     Based on the above features, I think the new experimental system is suited to perform following studies: rheological behavior and deformation mechanism of lower crustal rocks under real lower crust conditions; partial melt under dynamic and static state of lower crust and upper mantle; and mineral phase transition. The lower crust rheology is an interesting topic, and should be the major research field in the future. So, I calculated rheology parameter of gabbro using flow lows of anorthite and diposide (or clinopyroxene) obtained from experiential tests according to the method given by Tullis et al (1991), and compared the results with new experimental data given by Zhou et al (2006). The results show that experimental data of dry samples is in agreement with results of calculation, however, the calculated lower crustal strength in wet condition is more stronger than the results based on experimental data of wet samples.
引文
1.何昌荣,周永胜,桑祖南.2002.攀枝花辉长岩半脆性-塑性流变的实验研究.中国科学 (D辑),32(9):717-726
    2.侯渭、谢鸿森.1993.应用于地球深部物质科学研究的静态超高压实验技术,地球科学进展,8(3):7~13
    3.王威,催效锋,王绳祖.1988.固体围压介质岩石三轴实验装置的压力标定:一种自检标定方法.第一界高温高压岩石力学学术讨论会论文集:179-185
    4.谢鸿森等.1997.地球深部物质导论,北京:科学出版社
    5.张流,王绳祖.1982.固体围压介质下岩石三轴实验装置的压力标定.地震地质,4(4):69-79
    6.周永胜,何昌荣,宋娟,马胜利,马瑾.2005.在差应力条件下石英—柯石英转化的实验研究.科学通报,50(6):565-570
    7.周永胜,何昌荣,马胜利等.2004.差应力对石英—柯石英转化压力的影响,高校地质学报,10(4),523-527
    8.周平.2006.石英α-β相变在高温高压实验系统压力标定中的应用.中国优秀硕士学位论文
    9.周永胜,何昌荣,马胜利,马瑾.2003.差应力在超高压变质岩形成过程中的作用.地震地质,25(4):566-573
    10.周永胜,何昌荣,马胜利等.2004.差应力对石英—柯石英转化压力的影响,高校地质学报,10(4),523-527
    11.周永胜,何昌荣,宋娟,马胜利,马瑾.2005.在差应力条件下石英—柯石英转化的实验研究,科学通报,50(6):565-570
    12. Akella J. 1979. Quartz-coesite transition and the comparative friction measurements in piston-cylinder apparatus using taic-alsimagglass (TAG) and NaCl high-pressure cells. Neues Jahrb. Mineral. Monatsh., 5: 217-224
    13. Bagdassarov N. S., Slutskii A. B.. 2003. Phase transformation in calcite from electrical impedance measurements. Phase transitions, 76(12): 1015-1028
    14. Bohlen S. R., Boettcher A. L.. 1982. The Quartz-Coesite Transformation: A Precise Determination and the Effects of Other Components. Journal of Geophysical Research, 87(B8): 7073-7078
    15. Boyd F. R., England J. L.. 1960. The quartz-coesite transition. Journal Geophysics Research, 65: 749-756
    16. Bystricky, M., Mackwell, S.. 2001. Creep of clinopyroxene aggregates. J. Geophys. Res. 106, 13443-13454. Bose K., Ganguly J.. 1995. Quartz-coesite transition revisited: Reversed experimental determination at 500-1200℃ and retrieved thermochemicai properties. American Mineralogist, 80: 231-238
    17. Bohlen. S. R., Brook S.. 1984. Equilibria for precise calibration and frictionless furnace assembly for the piston-cylinder apparatus. N. Jb. Miner. Mh., Jg. H. 9: 404-412
    18. Boyd F. R.. 1964. Geological aspects of high-pressure research. Science, 145: 13-20
    19. Bradley C. C.. 1969. High Pressure Methods in Solid State Research. Butterworths, London, pp:1~14
    20. Brunet F., Vielzeuf D.. 1996. The farringtonite/Mg3(PO4)2-Ⅱ transformation: A new curve for pressure calibration In piston-cylinder apparatus. Eur. J. Mineral, 8:349-354
    21. Chen S., Hiraga T., Kohlstedt D. L.. 2006. Water weakening of clinopyroxene in the dislocation creep regime..J. Geophys. Res., 111(B8), B08203.
    22. Dimanov, A.,Dresen, G. 2005 Rheology of synthetic anorthite-diopside aggregates, Implications for ductile shear zones. Journal of Geophysical Research, 110(B7), B07203.
    23. Gleason G. C., Tullis J. 1995. A flow laws for dislocation creep of quartz aggregates determined with the molten salt cell. Tectonophysics, 247(1): 1~23.
    24. Green H. W., Borch R. S.. 1990. High Pressure and Temperature Deformation Experiments in a Liquid Confining Medium. Am. Geophys. Union. Geophys. Monogr, 56:195-200
    25. He Changrong, Yao Wenming, Wang Zeli and Zhou Yongsheng. 2006. Strength and stability of frictional sliding of gabbro gouge at elevated temperatures, Tectonophysics, 427(1-4): 217-229.
    26. Holland T. J. B. 1980. The reaction albite=jadeite+quartz determined experimentally in the range 600-1200℃. American Mineralogist, 65: 129-134
    27. Jin Z.-M., Zhang Green J.H.W., jin S.. 2001. Eclogite rheology: Implications for subducted lithosphere, 29(8):667-670
    28. Johannes w., and Puhan D. 1971. The Calcite-Aragonite Transition, Reinvestigated. Contributions to Mineralogy and Petrology, 31:28-38
    29. Kitahara S, Kennedy G. C. 1964.The quartz-coesite transition. Journal Geophysics Research, 69: 5395-5400
    30. Mackwell, S. J., Zimmerman, M. E., Kohlstedt, D. L.. 1998. High-temperature deformation of dry diabase with application to tectonics on Venus.J. Geophys. Res., 103: 975—984.
    31. Mirwaid P.. 1976. A differential thermal analysis study of the high-temperature polymorphism of Calcite at high pressure. Contributions to Mineralogy and Petrology, 59: 33-40
    32. Mirwald P W, Massonne H J. 1980. The low-high quartz and quartz-coesite transition to 40kbar between 600℃ and 1600℃ and some reconnaissance data on the effect of NaAIO2 component on the low quartz-coesite transition. Journal Geophysics Research, 85: 6983-6990
    33. Renner J., stockhert B., Zerbian A., Roller K., and Rummel F.. 2001. An experimental study into the rheology of synthetic polycrystalline coesite aggregates, 106(B9): 19411-19429
    34. Rybacki E., Rennet J., Konrad K., et al. 1998. A Servohydraulically-controiled Deformation Apparatus for Rock Deformation under Conditions of Ultra-high Pressure Metamorphism. Pure and Applied Geophysics, 152: 579-606
    35. Rybacki E., Dresen G.. 2000. Dislocation and diffusion creep of synthetic anorthite aggregates. JGR, 105(B11): 26017-26036
    36. Rybacki E., Gottschalk M., WirthR., Dresen G.. 2006. Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research, 111, B03203.
    37. Rybacki, E. Dresen, G. 2004. Deormation mechanism maps for feldspar rocks. Tectonophysics, 382: 173-187.
    38. Rybacki E., Konrad K., Renner J., Wachmann M., Stockhert, B., Rummel F.. 2003. Experimental deformation of synthetic aragonite marble. Journal of Geophysical Research, 108(B3): 2174
    39. Tingle, T. N., Green, H. W., Young, Th. E., and Kogzynski, T. A. 1993. Improvements to Griggs-type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure and Applied Geophysics, 141: 523-543
    40. Tullis T. E., Franklin G. Horowrrz, and Tullis J.. 1991. Flow laws of ployphase aggregates from end-member flow laws. Journal of geophysic research, 96(B5): 808-8096
    41. Tullis T. E., Tullis J.. 1986. Experimental Rock Deformation Technique. Am. Geophys. Union, Geogphys. Monogr, 36: 297-0324
    42. Yagi T. and Akimoto S. I.. 1977. Pressure calibration above 100kbar based on the NaCI internal standard, In: Manghnani M.H. and Akimoto S.I., eds., High-Pressure Research: Applications in Geophysics. A Subsidiary of Marcourt Brace Jovanovich Publishers, New York, San Francisco, London, pp: 573~583
    43. Zhou Yongsheng, He Changrong. 2004. Temporal evolution of focal depths of aftershock sequence following lijiang ms7.1 earthquake and the implication for rheological property of the middle crust. The 3st International Conference on Continental Earthquakes. Beijing, p128.
    44. Zhou Yongsheng, Rybacki Erik, Dresen Georg, He Changrong. 2006. Creep of wet and dry gabbro. EG U abstract.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700