用户名: 密码: 验证码:
猪肺免疫防御相关基因—肺表面活性蛋白A的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
猪呼吸系统疾病(PRD)已成为影响全球养猪业的头号疾病,肺免疫防御相关基因的研究和挖掘对于从遗传本质上提高猪对呼吸系统疾病的抗性具有重要意义。本文利用比较基因组学方法,以肺免疫防御相关基因-猪肺表面活性蛋白A(SP-A)作为猪呼吸系统免疫防御功能的候选基因,开展了猪肺表面活性蛋白A序列及其多态性、mRNA表达和蛋白质含量变化的系列研究,取得了以下结果:
     ①采用RT-PCR和RACE技术获得了长度为1 910 bp的猪SP-A完整cDNA序列,此序列包含了编码248个氨基酸的长为747 bp的完整开放阅读框。生物信息学分析发现,猪SP-A的N端有20个残基的信号肽,从N端到C端依次为4个结构域:短的N-端区、胶原样区域、茎区和碳水化合物识别区域。然后又用比较基因组学方法和引物步移法获得了长度为4 229 bp的猪SP-A DNA全序列,它由4个外显子和3个内含子组成。
     ②以同一时期饲养在相同条件下的引进品种大白猪361头、培育品种松辽黑猪132头为试验群1,采用PCR-SSCP技术检测到33个单核苷酸多态性(SNPs)位点,其中有5个SNPs位于外显子上,3个为同义突变,2个为错义突变;这2个错义突变位于猪SP-A的碳水化合物识别区域,分别造成了丙氨酸变异为苏氨酸、苯丙氨酸变异为酪氨酸。这些SNPs位点呈完全连锁不平衡状态,组成了Ⅰ、Ⅱ和Ⅲ三种单体型。经χ2检验表明,在大白猪试验群中,SP-A的基因频率和基因型频率都达到了Hardy-Weinberg平衡状态(P>0.05);但是在松辽黑猪试验群中,SP-A的基因频率和基因型频率都未达到Hardy-Weinberg平衡状态(P<0.01)。目前,两个品种猪的SP-A基因都处于中度多态。
     在品种内,不同性别SP-A单体型频率分布差异不显著(P>0.05)。在大白猪中,SP-AⅡ单体型猪的PRD发病率最高,达33.67%,并且不同SP-A基因单体型大白猪PRD发病率差异极显著(P<0.01);在松辽黑猪中,也是SP-AⅡ单体型猪的PRD发病率最高,为10.53%,不同SP-A基因单体型松辽黑猪的PRD发病率差异显著(P<0.05);表明在大白猪和松辽黑猪中,单体型与PRD发病率之间存在一定的关联度。其中SP-A基因Ⅰ单体型为抗PRD单体型,推测以SP-AⅠ单体型猪具有较强的肺免疫防御功能。
     ③通过以0.05 ml/kg体重,少量分次,耳静脉注射油酸成功建立了猪油酸-急性肺损伤模型,为进一步开展有关猪肺损伤以及肺免疫防御相关研究奠定了基础。
     ④以包含SP-A基因Ⅰ、Ⅱ和Ⅲ单体型共54头仔猪建立试验群2,在仔猪断奶稳定后50±1日龄建立油酸-急性肺损伤模型。以肺含水量的变化作为反映肺损伤程度的指标,分别采用荧光定量PCR和western blot技术对肺组织中SP-A mRNA表达量和支气管-肺泡灌洗液(BALF)中SP-A蛋白含量进行检测与分析,发现:在1 h时相点伴随肺含水量的增加,SP-A mRNA表达量和SP-A蛋白含量均下降;在3 h时相点伴随肺含水量增加至最高(3个时相点中相比较),SP-A mRNA表达量和SP-A蛋白含量也降至三个时相点的最低水平;与1 h时相点相比较,在6 h时相点伴随肺含水量的下降,SP-A mRNA表达量和SP-A蛋白含量分别极显著上升(P<0.01)和显著上升(P<0.05)。另外,与Ⅱ和Ⅲ单体型相比较,各时相点SP-AⅠ单体型猪的肺含水量较对照组的升高幅度要小;BALF中SP-A蛋白含量较高,更接近于对照组水平;1 h和3 h时相点SP-AⅠ单体型猪肺组织中的SP-A mRNA表达量也较高,也更接近于对照组水平,并且在6 h时相点SP-AⅠ单体型猪的SP-A mRNA表达量显著高于Ⅱ和Ⅲ单体型。上述结果表明,肺组织中SP-A mRNA表达量、BALF中SP-A蛋白含量与肺含水量即肺损伤程度的变化趋势恰好相反;在同时受到病原致损伤的情况下,SP-AⅠ单体型猪的SP-A水平会在较短时间内恢复而有利于尽快缓解病原对肺的损伤,因此,推测SP-AⅠ单体型猪具有较高的应对病原损伤肺的能力。
     以上结果表明,猪SP-A同人、小鼠等的SP-A一样,也具有肺免疫防御功能;不同SP-A单体型与PRD发病率之间存在一定关联性,其中又以SP-AⅠ单体型的猪具有较强的肺免疫防御能力,能够使外来因素对肺脏的损伤程度降至最低,损伤时间降至最短,因而也降低了猪只由于长时间处于致病原损伤状态下而引起继发感染的可能,具有较低的PRD发病率。
     本研究结果首次较全面地揭示了猪SP-A的肺免疫防御功能,同时也为判断发生PRD时猪只肺损伤的程度,为PRD的临床诊断以及防治PRD新型药物的研发和选择肺免疫防御功能强的种猪个体奠定了一定的理论依据。
Porcine Respiratory Disease (PRD) is regarded as the first disease which affects the global porcine production. It’s important to study and excavate on pulmonary immune defence related genes, which will improve the porcine ability of anti-PRD in heredity. Pulmonary immune defence related gene- porcine Surfactant Protein A (SP-A) was taken as the candidate gene which had immune defence function in porcine respiratory system in this research. These main results were as follows:
     ①Full length cDNA of porcine SP-A was isolated by combination with RT-PCR and RACE, and the complete cDNA sequence was 1 910 bp including a 747 bp open reading frame (ORF) encoding a 248-amino-acid protein. It was found the porcine SP-A had a signal peptide in the N-terminal segment which was composition of 20 amino acids residues, and had four structural domains: a short N-terminal segment, a collagen-like region (CLR), a neck region, and a C-terminal carbohydrate recognition domain (CRD) by bioinformatics. Then the full-length DNA sequences of porcine SP-A was obtained by comparative genomics and primer walking. The results showed SP-A gene spanned about 4 229 bp which composed of 4 exons and 3 introns.
     ②The experiment group 1 was composition of 361 Large White pigs (LW) and 132 Songliao Black pigs (SB) which were reared in the same conditions and period. Thirty-three single nucleotide polymorphisms (SNPs) were found by PCR-SSCP. There were five SNPs in exon, three of them were same-sense mutation, and two of them were missense mutation resulted in alanine changed to threonine, and phenylalanine changed to tyrosine. The results showed that the SNPs which we found in LW and SB were whole linkage disequilibrium, and there wasⅠhaplotype,Ⅱhaplotype andⅢhaplotype. A chi-square analysis suggested that the allele frequencies and genotype frequencies of SP-A were in Hardy-Weinberg equilibrium (P>0.05) in LW, but were in disequilibrium (P<0.01) in SB. And the SP-A gene had intermediate polymorphism in LW and SB.
     The frequencies of the SP-A haplotypes in different sex were not statistiatics difference (P>0.05) in LW and SB. The pigs of SP-AⅡhaplotype had the highest incidence of PRD which was 33.67%, and there was exceeding significant difference between incidence of PRD and different haplotypes (P<0.01) in LW. The pigs of SP-AⅡhaplotype had the highest incidence of PRD which was 10.53%, and there was significant difference between the incidence of PRD and different haplotypes (P<0.05) in SB. It indicated there was a certain association extent between haplotype and the incidence of PRD. And the SP-AⅠhaplotype was anti-PRD haplotype. It’s predicted the pigs of SP-AⅠhaplotype had higher pulmonary immune defence function.
     ③It was successful to establish the model of acute lung injure (ALI) in pigs via intravenous injection of 0.05 ml/kg avoirdupois oleic acid (OA) by a few each time and more times. It contributes to the further study on ALI and innate immune of the lung.
     ④The experiment group 2 was composition of 54 pigs which containedⅠ,ⅡandⅢhaplotypes. They were established the model of OA-ALI in 50±1 day-old, and the level of lung water content was taken as marker of the degree of lung injury. The SP-A mRNA expression quantity in lung tissue and the SP-A content in BALF were determined with FQ-PCR and western blot method, respectively. The results showed: with the lung water content increasing, the SP-A mRNA expression quantity and the SP-A content decreased at 1h time point. Comparing to the 1h, 3h and 6h, the lung water content increased to the highest, and the SP-A mRNA expression quantity and the SP-A content decreased to the lowest at 3h time point. Comparing to the 1h time point, the lung water content decreased, the SP-A mRNA expression quantity exceeding significant increased (P<0.01), and the SP-A content significant increased (P<0.05) at 6h time point. Moreover, comparing to theⅡandⅢhaplotype, the lung water content of SP-AⅠhaplotype heightened smallest, the SP-A content of SP-AⅠhaplotype was higher, and was closed to the control group; at 1h and 3h time point, SP-A mRNA expression quantity of SP-AⅠhaplotype was also higher, and was also closed to the control group, and at 6h time point, mRNA expression quantity of SP-AⅠhaplotype was higher thanⅡandⅢhaplotype significantly. These results indicated: the SP-A mRNA expression quantity in lung tissue and the SP-A content in BALF had the reverse trend with the level of lung water content, and the same with the degree of lung injury. In the condition of the same etiological agent damage, pigs of SP-AⅠhaplotype could recover SP-A of pigs with SP-AⅠhaplotype in shorter time, which was profit to relieving etiological agent damage to the lung as soon as possible。So, it’s predicted pigs with SP-AⅠhaplotype had higher ability to coping etiological agent damage.
     The above findings indicated, the same to human and mouse, porcine SP-A also had function of pulmonary immune defence. There were association between haplotypes and the incidence of PRD. The pigs of SP-AⅠhaplotype had higer ability of pulmonary immune defence, which could make the degree and time of injury by etiological agent the lowest, and made the possibility of secondary infection decrease, so the incidence of PRD was lower in pigs of SP-AⅠhaplotype.
     Results of this study revealed the function of pulmonary immune defence of porcine SP-A in all-around for first time. Furthermore, this work contributes to judgement the degree of lung injury during the PRD, and clinical diagnosis of PRD and exploitation of newtype medicine of prevention and cure PRD, and selection the pigs which had higher pulmonary immune defence.
引文
1. 安立龙, 效梅. 畜禽抗性分子育种研究进展. 黄牛杂志, 1996, 22: 15~18.
    2. 卜友泉. 鸡含锰超氧化物歧化酶cDNA克隆与全序列分析[硕士学位论文]. 重庆: 西南农业大学, 2001.
    3. 蔡栩栩, 单莹, 韩晓华, 等. 肺表面活性蛋白 A、B 在内毒素性急性肺损伤时变化的研究. 中国医科大学学报, 2003, 32: 110~114.
    4. 操继跃. 猪呼吸系统感染性疾病药物治疗. 养殖与饲料, 2005, 4: 39~43.
    5. 常立文, 容志惠, 张晓惠, 等. 肺灌洗液中细胞因子水平动态变化在诊断早产儿慢性肺部疾病中的意义. 中华围产医学杂志, 2004, 7(5): 286~289.
    6. 陈超. 肺表面活性物质的开发及临床应用. 世界临床医药, 2003, 24(7): 407~412.
    7. 陈健雄. 工厂化猪场控制呼吸道病的技术措施. 养猪, 2003, 2: 39~41.
    8. 陈瑶生. 瘦肉型猪育种新技术策略. 广东畜牧兽医科技, 2002, 4: 3~7.
    9. 陈玥, 封志纯. 肺表面活性蛋白的合成表达与新生儿肺疾病. 新医学, 2005, 36(5): 300~303.
    10. 陈政良. C 型凝集素的免疫功能. 细胞与分子免疫学杂志, 1997, 13(增刊 2): 34~37.
    11. 成建忠, 孙泉云, 汤赛冬, 顾永远, 鞠龚讷, 李凯航. 上海市规模化猪场猪呼吸道疾病综合征的血清学监测. 畜禽业, 2005, 5: 11~12.
    12. 崔尚金, 戚亭, 岳峰雄, 周盛华. PCV2 相关性肺炎与猪圆环病毒Ⅱ型感染相关的猪呼吸道疾病综合征(PRDC). 畜禽业, 2007, 5: 6~8.
    13. 崔社怀, 郭先健, 钱桂生. 低氧急性肺损伤时肺表面活性蛋白的免疫组化研究. 第三军医大学学报. 1999c, 11: 828~830.
    14. 崔社怀, 郭先健, 钱桂生. 高原 RDS 表面活性物质相关蛋白 A、B、C mRNA 表达的变化. 第
    三军医大学学报, 1999a, 21 (3): 181~182.
    15. 崔社怀, 郭先健. 急性低氧合油酸性大鼠肺损伤模型的复制及已酮可可碱的治疗作用. 中国病理生理杂志, 1999b, 15(2): 150, 163.
    16. 崔社怀, 郭先健. 急性低氧油酸肺损伤表面活性物质相关蛋白表达的变化. 1998, 21: 124.
    17. 邓博文, 黎江. PRRS 引起猪免疫抑制的作用机理及其防制. 畜禽业, 2007b, 1: 18~19.
    18. 邓博文, 梁伟, 黄志善, 吴宏新. PCV-2 感染引起猪免疫抑制的作用机理及其防制. 畜牧兽医科技信息, 2007a, 1: 12~13.
    19. 迪芬巴赫 CW, 德维克斯勒 GS 著, PCR 技术实验指南(第一版)[M], 黄培堂, 俞炜源, 陈添弥等译. 北京: 科学出版社, 1998.
    20. 董文, 陈美云. 肺表面活性蛋白 A 与急性肺损伤. 中国急救医学, 2004, 24: 824~826.
    21. 杜永洪, 王导新, 陈文直, 黎克全, 魏安宁, 胡凯, 白晋, 王智彪. Beagle 犬急性呼吸窘迫综合征模型的建立. 重庆医科大学学报, 2006, 31: 649~651.
    22. 杜卓民. 实用组织学技术(第二版)[M]. 北京: 人民卫生出版社, 1998, 48.
    23. 段蕴铀, 聂舟山, 张新红. 2006. http://www.54doctor.net/user1/185/archives/2006/1832.html.
    24. 范建芳. 猪高热综合征及其应急性预防和控制. 上海畜牧兽医通讯, 2006, 1: 60~61.
    25. 付春华, 陈孝平, 余龙江. 实时荧光定量 PCR 的应用和进展. 激光生物学报, 2005, 14: 466~471.
    26. 付利芝, 曹国文, 白磊. 猪传染性呼吸道疾病的流行现状与防控对策. 畜禽业, 2006, 5: 8~10.
    27. 高斌, 刘敬忠. 实时荧光 PCR 技术的研究及其应用进展. 诊断学理论与实践, 2005, 4 : 507~509.
    28. 高志国, 曹书颖. 急性呼吸窘迫综合症早期早期血清学诊断. 国外医学呼吸系统分册, 2005, 25: 870~872.
    29. 龚熙, 陈壁, 钟德才. 家兔电击伤后呼吸系统病理变化的实验观察. 第四军医大学学报, 1994, 15(1): 62~64.
    30. 国产 PS 制剂市场浅析. 2006. http://www.chinamsr.net/ec/zhongduan/plfx/200606/20060629161746.html.
    31. 郝嘉, 肖颖彬, 郭红, 钟前进, 王学峰, 陈林. 体外循环血清对肺表面活性物质相关蛋白 A 的影响及己酮可可碱的作用. 第三军医大学学报, 2001, 23: 340~342.
    32. 郝嘉, 肖颖彬. 肺表面活性物质相关蛋白 A 研究现状. 中国危重病急救医学, 2000, 12(1): 60~61.
    33. 何富强. 猪呼吸道疾病综合症的综合防制.四川畜牧兽医, 2004, 5: 51~52.
    34. 洪登峰, 万丽丽, 杨光圣. 侧翼序列克隆方法评价. 分子植物育种, 2006 , 2 : 280~288.
    35. 洪楠, 候军. SAS for Windows(v8) 统计分析系统教程新编[M]. 北京: 清华大学出版社, 北京交通大学出版社, 2004.
    36. 黄建安, 马家用, 王光杰, 朱晔涵, 蒋文平. 猪油酸急性肺损伤模型. 苏州医学院学报. 1999, 19: 252~253.
    37. 江玉梅, 杨桂玲. 连锁不平衡的研究与应用. 江西植保, 2004, 27: 61~63.
    38. 瞿介明, 容朝晖. 卡氏肺孢子虫肺炎表面活性蛋白A和D的变化. 中国传染病杂志, 2000, 18(2): 91~94.
    39. 孔祥永, 杜江, 封志纯. 肺表面活性物质相关蛋白 A 在人胎肺发育中的表达及意义. 中国儿童保健杂志, 2005, 13(6): 472~474.
    40. 兰和魁, 封志纯. 肺表面活性物质相关蛋白 A 是肺疾病的标志物. 国外医学儿科学分册, 2001, 28: 147~149.
    41. 兰晓葳, 张海燕, 马海利. 猪圆环病毒病. 畜牧兽医科技信息, 2005, 11: 39~40.
    42. 李红日, 宋国维. 肺与肺外原因导致的急性呼吸窘迫综合征研究进展. 国外儿科学杂志, 2007, 1: 50~52.
    43. 李龙, 尹靖东, 李凤娜, 尼健君, 刘福柱. 利用荧光实时定量 PCR 法测定猪肌肉中解偶联蛋白 3 mRNA 丰度. 中国畜牧杂志, 2007, 43: 49~51.
    44. 李清艳, 翟向和, 吕建存, 杨润德, 马清河. 附红细胞体感染对猪红细胞免疫功能的影响. 中国兽医科技, 2004, 4: 46~48.
    45. 李庆怀. 猪呼吸道疾病的综合征(PRDC)的防制.2004. www.zhue.com.cn/show/article/Article_show.asp?ArticleID=7117.
    46. 李盛龙. 猪链球菌病的诊断与防治. 广西畜牧兽医, 2007, 1: 23~25.
    47. 李涛平, 申海燕, 刘琳. 油酸肺损伤时肺泡 II 型上皮细胞钠水通道的研究. 南方医科大学学报, 2006, 26: 918~922.
    48. 李文春. 秋冬季养猪户应关注猪呼吸系统疾病. 河北畜牧兽医, 2005, 21: 15.
    49. 李勇, 熊忠良, 宋忠旭等. 规模化猪场猪呼吸道病综合症的发生和控制策. 养殖与饲料, 2003, 10: 43~44.
    50. 李倬哲, 翟介明, 何礼贤. 肺表面活性物质与肺部的免疫调节. 国外医学呼吸系统分册, 2002, 22(2): 98~101.
    51. 刘咏梅, 封志纯, 杜江. 肺表面活性蛋白 A 的检测及其应用. 医学综述, 2001, 7: 521~522.
    52. 龙进学, 韦天超. 猪呼吸道疾病综合征(PRDC)免疫学研究. 当代畜禽养殖业, 2002, 10: 48~50.
    53. 马晓薇, 曹相原. 肺表面活性物质蛋白A 与急性肺损伤. 宁夏医学院学报, 2004, 3: 210~214.
    54. 毛保龄, 钱桂生. 急性呼吸窘迫综合征[M]. 北京: 人民卫生出版社, 2002: 3~4.
    55. 欧伟业. 环境和管理因素对猪场呼吸道疾病的影响及应对措施.养猪, 2007, 2: 29~30.
    56. 欧阳松应, 杨冬, 欧阳红生, 马鹤雯. 实时荧光定量 PCR 技术及其应用. 生命的化学, 2004, 24: 74~76.
    57. 戚彩云, 陈超. 肺表面活性物质药物及使用方法. 中华围产医学杂志, 2000, 4: 253~254.
    58. 钱桂生. 急性肺损伤和急性呼吸窘迫综合征研究现状与展望. 解放军医学杂志, 2003, 2: 97~101.
    59. 强慧勤, 赵洪明, 焦兰芬, 李钊, 庞晓宇, 杨维维. 猪呼吸系统主要疾病的调查和防治. 今日畜牧兽医. 2006, 11: 17~18.
    60. 萨姆布鲁克 J, 佛里奇EF, 等著. 分子克隆实验指南(第二版)[M]. 金冬燕, 黎孟枫等译. 北京: 科学出版社, 1999.
    61. 桑杰, 刘兆波, 周继红, 杨军民. 肺表面活性蛋白 A--一种肺疾病的血清学标志物. 海军医学杂志, 2005, 26: 275~277.
    62. 上官王宁, 刘进. 2006 年中华医学会全国麻醉学术年会知识更新讲座. 2006, 29~31.
    63. 沈颜红, 张建新, 徐宁. 异丙酚对油酸性急性肺损伤大鼠肺表面活性蛋白 A 及粘附因子-1 的影响. 中国药房, 2006, 17: 1698~1701.
    64. 沈颜红. 异丙酚对急性肺损伤的作用及其机制研究[博士学位论文]. 石家庄: 河北医科大学, 2006.
    65. 施启顺, 柳小春, 马海明. 猪的疾病抗性与抗病育种研究进展.国外畜牧学: 猪与禽, 2002(3): 35~38.
    66. 司兴奎. 猪呼吸道疾病的发生原因及防制对策. 广东畜牧兽医科技, 2006, 2: 32~34.
    67. 苏光华, 张元跃. SNP 分子标记及其应用. 畜牧兽医科技信息, 2005, 12: 11~13.
    68. 苏振环, 王立贤, 赵克斌等. 现代养猪实用百科全书, 354~398. 北京: 中国农业出版社, 2004.
    69. 孙瑛, 杭燕南, 安小虎, 陈锡明, 孙波. 幼猪机械通气中异氟醚或七氟醚混合一氧化氮吸入的安全性. 中华麻醉学杂志, 2005, 25(3): 197~200.
    70. 孙雨. 肺表面活性物质相关蛋白 A 的免疫调节功能. 国外医学免疫学分册, 2001, 24 (3): 126~128.
    71. 谭伟军. 浅谈猪呼吸道疾病综合症的特点及防治对策. 养殖与饲料, 2007, 4: 32~33.
    72. 谭宇蓉. BRS-3 肺内生物学效应、基因表达调控研究及天然配体分离[博士学位论文], 2007, 中南大学.
    73. 唐德宏, 郝兰萍.细胞因子在猪呼吸道疾病中的作用.畜牧与兽医, 2004, 7: 37~38.
    74. 唐镶, 曹明, 黄英. 急性肺损伤发生机制的研究进展. 检验医学与临床, 2007, 5: 398~400.
    75. 陶少华, 罗国刚, 封志纯. 人肺表面活性物质结合蛋白 A 的研究现状. 国外医学妇幼保健分册, 1997, 8: 117~120.
    76. 田英麟, 高德伟, 杨建君, 冯长顺. 油酸致大鼠急性肺损伤时 受体与病理形态学的研究. 中华结核和呼吸杂志, 1991, 14: 202~204.
    77. 汪隽瑛, 方凤, 刘枫, 蒋瑾瑾. 哮喘大鼠肺表面活性物质结合蛋白 A 的变化及其意义. 第二军医大学学报, 2004, 25 (11): 1255~1257.
    78. 汪渊, 朱华庆, 张素梅, 王雪, 伍权, 储兵, 陈厚早, 卜丽佳, 周青, 桂淑玉. 蛋白质印迹技术. 安徽医科大学学报, 2004, 39: 245~247.
    79. 王爱国. 养猪业的回顾与展望. 中国牧业通讯, 2004, 4: 60~62.
    80. 王方勇, 陈政良. SP-A、SP-D 与肺部天然免疫防御. 免疫学杂志, 2002, 6: S75~77.
    81. 王凤英. 肺表面活性物质蛋白的功能及表达调节. 中国临床康复. 2004, 8: 2354~2355.
    82. 王和枚, 丁日高, 阮金秀. 急性肺损伤的中性粒细胞作用机制研究进展. 中国工业医学杂志, 2002, 12: 348~352.
    83. 王曾礼. 重视呼吸道感染时的免疫防御. 中国呼吸与危重监护杂志, 2002, 1(2): 65~67.
    84. 席修明. 急性肺损伤和急性呼吸窘迫综合征--定义与诊断标准. 中华医学杂志, 2001, 2: 121~122.
    85. 肖燕, 崔怀社. 急性肺损伤肺表面活性蛋白 A、B 含量变化. 第三军医大学学报, 2001, 23 (2): 154~156.
    86. 肖燕. 急性肺损伤早期肺表面活性物质相关蛋白 A、B 含量的变化及其机制的初步研究[硕士学位论文]. 重庆: 第三军医大学, 2000.
    87. 谢尔凡, 杨宗城. 肺表面活性物质相关蛋白表达的调控研究进展. 中国药理学通报, 1997, 13(1): 18~21.
    88. 谢贺, 刘美容, 张晶. 猪呼吸道疾病的控制.福建畜牧兽医, 2002, 5: 44.
    89. 谢俊刚, 徐永健, 张珍祥, 倪望, 陈仕新. 肺泡表面活性物质相关蛋白 A 基因多态性与慢性阻塞性肺疾病易感性的关系. 中华医学遗传学杂志, 2005, 22(1): 91~93.
    90. 邢泉生, 张善通, 陈张根. 体外循环影响内源性表面活性物质的机制. 上海医科大学学报. 1999, 26(1): 1~3.
    91. 徐建洪. 肺泡表面活性物质与大鼠冲击伤-缺氧复合伤早期肺损伤[硕士学位论文]. 重庆: 第三军医大学, 2004.
    92. 徐金富, 瞿介明, 何礼贤. 肺部感染相关急性肺损伤发病机制研究进展. 国外医学呼吸系统分册, 2004, 4: 72~75.
    93. 徐瑞芬, 徐礼鲜, 徐世荣, 卢玲玲, 张国良, 张惠, 张晓峰. 高氧液对家兔油酸型急性肺损伤的治疗作用. 第四军医大学学报, 2003, 24: 1451~1453.
    94. 杨汉春. 目前我国规模化猪场疫病流行特点与控制对策. 动物科学与动物医学, 2004, 21: 1~3.
    95. 杨汉春. 猪“高热病”的流行发生状况与防控对策. 农村养殖技术, 2007, 2: 24~25.
    96. 杨小燕. 现代猪病诊断与防治. 北京: 中国农业出版社, 2002.
    97. 叶振海, 曹相原. 肺表面活性物质在急性肺损伤/ 急性呼吸窘迫综合征中的研究进展. 国际呼吸杂志, 2007, 27: 922~926.
    98. 尤颢, 陈广明. 肺泡表面活性物质与肺移植. 国外医学呼吸系统分册, 1999, 19(4): 213~214.
    99. 袁森泉, Eileen Thacker. 猪呼吸道疾病复合症的免疫学.国外畜牧学.猪与禽, 2002, 5: 40~42.
    100. 张桂香. 猪 H-FABP 基因分子遗传多态性及其序列分析[硕士学位论文]. 北京: 中国农业科学院, 2001.
    101. 张立藩, 关兴裕, 韩厉萍, 孙喜庆, 黎向宇. 犬油酸呼吸窘迫综合征模型的肺力学改变. 第四军医大学学报, 1990, 11: 278~284.
    102. 张伟, 毛秋云, 刘焕星, 林树青, 安继红. 刺五加对大鼠油酸型肺损伤的防治作用及机理研究. 长春中医学院学报, 2000(04): 50~51.
    103. 张晓霞, 王欣志, 尹怀磊. 猪呼吸道疾病的临诊要点与防治.吉林畜牧兽医, 2006, 7: 22~24.
    104. 张雪梅, 陈海龙, 王朝晖. 清胰汤对大鼠急性胰腺炎肺损伤时 SP-A 表达的影响. 世界华人消化杂志, 2007, 15: 3738~3743.
    105. 章红志, 杨毅, 曹凌峰. 呼吸衰竭新生儿肺表面活性蛋白质 A 的观察. 上海医学, 1998, 21 (6): 367~368.
    106. 赵丹虹, 吴肇汉, 孙波. 外源性肺表面活性物质治疗脓毒性急性肺损伤的机制研究. 中国危重病急救医学, 1999, 11: 92~95.
    107. 赵坤, 张宏, 李敬玺, 王三虎, 李军民, 赵恒章. PRRSV 和 PCV-2 感染引发猪免疫抑制的机理及对策. 河南科技学院学报: 自然科学版, 2006, 4: 25~26.
    108. 赵子文, 刘凤, 王宝娃, 崔秀玲. 家兔油酸型呼吸窘迫综合征的血液流变学参数变化. 滨州医学院学报, 1991, 14: 13~15.
    109. 朱光发, 钮善福, 蔡映云, 章红志. 肺表面活性物质在急性油酸性肺损伤时的变化. 中国危重病急救医学. 2000b, 12: 525~528.
    110. 朱光发, 钮善福, 章红志, 等. 急性肺损伤患者血清肺表面活性物质蛋白 A 的变化及其意义. 中国危重病急救医学, 2000a, 12: 15~17.
    111. Arnold K, Bordoli L, Kopp J, and Schwede T. The SWISS-MODEL Workspace: A web-based environment for protein structure homology modelling. Bioinformatics, 2006, 22: 195~201.
    112. Bates SR, Dodia C, Fisher AB. Surfactant protein A regulates up take of pulmonary surfactant by lung type Ⅱ cells on microporous membranes. Am J Physiol, 1994, 267: L753~760.
    113. Bates SR, Fisher AB. Surfactant protein A is degraded by alveolar macrophages. Am J Physiol, 1996, 271 ( 2 pt 1): L2582~L266.
    114. Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP3. 0. J. Mol. Biol, 2004, 340: 783~795.
    115. Benson BJ. Genetically engineered human pulmonary surfactant. Clin Perinatol, 1993, 20(4): 791~811.
    116. Brugmann SA, Tapadia MD, Helms JA. . The molecular origins of species-specific facial pattern. CurrToP Dev Biol, 2006, 73: l~42.
    117. Caruso. JP, Jeska EL. Phagocytic functions of pulmonary alveolar macrophages in genetically selected lean and obese swine and the effects of exogenous linolenic acid upon cell function. Vet immunol immunopathol. 1990, 24: 27~36.
    118. Creuwels LA, van Golde LM, Haagsman HP. The pulmonary surfactant system: biochemical and clinical aspects. Lung, 1997, 175: 1~39.
    119. Daly MJ, Rioux JD, Schafner SF, et al. High-resolutien haplotype structure in the human genmne. Nat Genet, 2001, 29: 229~232.
    120. D'Angio CT, Finkelstein JN, Lomonaco MB, Paxhia A, Wright SA, Baggs RB, Notter RH, Ryan RM. Changes in surfactant protein gene expression in a neonatal rabbit model of hyperoxia-induced fibrosis. Am J Physiol, 1997, 272(4 Pt 1): L720~730.
    121. Davidson S. Research suggests importance of hapIotypes over SNPs. Nat Biotechnol, 2000, 18: 1134~1135.
    122. Diangelo S, Lin Z, Wang G, Phillips S, Ramet M, Luo J, Floros J. . Novel, non-radioactive, simple and multiplex PCR-cRFLP methods for genotyping human SP-A and SP-D marker alleles. Dis Markers. 1999, 15(4): 269~281.
    123. Dobbie JW. Surfactant protein A and lamellar bodies: a homologous secretory function of peritoneum, synovium, and lung. Perit Dial Int, 1996, 16(6): 574~581.
    124. Doersehuk CM, Mizgerd JP, Kubo H, Kubo H, Qin L, Kumasaka T. . Adhension molecules and cellular biomechanical chages in acute lung injury: Giles F. Filley Lecture. Chest, 1999, 166 (1 SUPPl): 37s~43s.
    125. Doyle IR, Bersten AD, Nicholas TE. . Surfactant protein-A and-B are elevated in plasma of patients with acute respiratory failure. Am J Respir Crit Care Med, 1997, 156: 1217~1229.
    126. Doyle IR, Nicholas TE, Bersten AD. . Serum surfactant protein A levels in patients with acute cardiogenic pulmonary edema and adult resiratory distress syndrome. Am J Respir Crit Care Med, 1995, 152(1): 307~317.
    127. Erpenbeck VJ, Malherbe DC, Sommer S, Schmiedl A, Steinhilber W, Ghio AJ, Krug N, Wright JR, Hohlfeld JM. . Surfactant protein D increases phagocytosis and aggregation of pollen -allergen starch granules. Am J Physiol Lung Cell Mol Physiol. 2005, 288: L692~698.
    128. Floras J., Kannch AM. Human SP-A: en and now. Am J Physio1, 1995, 268 (12): 162~165.
    129. Floros J, Diangelo S, Koptides M, Karinch AM, Rogan PK, Nielsen H, Spragg RG, Watterberg K, Deiter G. . Human SP-A locus: allele frequencies and linkage disequilibrium between the two surfactant protein A genes. Am J Respir Cell Mol Biol, 1996, 15: 489~498.
    130. Fujishima S, Aikawa N. Neutrophil mediated tissue injury and imodulation. Intensive Care Med,1995, 21(3): 277~285.
    131. Greene KE, Wright JR, Steinberg KP, Ruzinski JT, Caldwell E, Wong WB, Hull W, Whitsett JA, Akino T, Kuroki Y, Nagae H, Hudson LD, Martin TR. Serial changes in surfactant associated proteins in lung and serum before and after onset of ARDS. Am J Respir Care Med, 1999, 160(6): 1843~1850.
    132. Guillot L, Balloy V, McCormack FX, Golenbock DT, Chignard M, Si-Tahar M. Cutting edge: the immunostimulatory activity of the lung surfactant protein-A involves Toll-like receptor 4. J Immunol, 2002, 168(12): 5989~5992.
    133. Haitsma JJ, Lachmann U, Lachmann B. Exogenous surfactant as a drug delivery agent. Adv Drug Deliv Rev. 2001, 47(2-3): 197~207.
    134. Harrod KS, Trapnell BC, Otake K, Korfhagen TR, Whitsett JA. . SP-A enhances viral clearance and inhibits inflammation after pulmonary adenoviral infection. Am J Physiol, 1999, 277(3): L580~588.
    135. Hastings RH. . Monitoring alveolar epithelial function in acute lung injury. J Clin Monit Comput, 2000, 16 (5-6): 385~392 .
    136. Hastings RH. Monitoring alveolar epithelial function in acute pulmonary injury. J Clin Monit Comput. 2000, 16(5-6): 385~392.
    137. Headley AS, Trolley E, Meduri GU. . Infections and the inflammatory response in acute respiratory distress syndrome. Chest, 1997, 111(5): 1306~1321.
    138. Heinemeyer T, Wingender E, Reuter I, Hermjakob H, Kel AE, Kel OV, Ignatieva EV, Ananko EA, Podkolodnaya OA, Kolpakov FA, Podkolodny NL, Kolchanov NA. . Databases on transcriptional regulation: TRANSFAC, TRRD and COMPEL. Nucleic Acids Res. 1998, 26: 362~367.
    139. Herel JM, White KA, Marletta MA. Purification of the inducible murine macrophage nitric oxide synthase. Identification as a flavoprotein. J Biol Chem, 1991, 266: 22789~22791.
    140. Hickman-Davis JM, Fang FC, Nathan C, Shepherd VL, Voelker DR, Wright JR. Lung surfactant and reactive oxygen-nitrogen species: antimicrobial activity and host-pathogen interactions. Am J Physiol Lung Cell Mol Physiol, 2001, 281(3): L517~523.
    141. Hoover RR, Floros J. Organization of the human SP-A and SP-D loci at 10q22-q23. Physical and radiation hybrid mapping reveal gene order and orientation. Am J Respir Cell Mol Biol, 1998, 18: 353~362.
    142. Hoppe HJ, Reid KB. Collectins-soluble proteins containing collagenous regions and lectin domains and their roles in innate immunity. Protein Sci, 1994, 3: 1143~1158.
    143. Jack DL, Klein NJ, Turner MW. Mannose-binding lectin: targeting the microbial world for complement attack and opsonophagocytosis. Immunol, 2001, 180: 86~99.
    144. Jeong JW, Bae MK, Ahn MY, et al. Regulation and Destabilization of HIF-1 alpha by ARD1- Mediated Acetylation. Cell, 2002, 111: 709~720.
    145. Johnson GC, Esposito L, Barratt BJ, et a1. Haplotype tagging for the identification of ctanmon dilate genes. Nat Genet, 2001, 29: 233~237.
    146. Kalina M , Mason RJ, Shannon JM. . Surfactant protein C is expressed in alveolar type II cells but not in Clara cells of rat lung. Am J Respir Cell Mol Biol, 1992, 6(6): 594~600.
    147. Kaneko K, Shimizu H, Arakawa H, Ogawa Y. Pulmonary surfactant protein A in sera for assessing neonatal pulmonary maturation. Early Hum Dev. 2001, 62: 11~21.
    148. Kankavi O, Roberts MS. Detection of surfactant protein A (SP-A) and surfactant protein D (SP-D) in equine synovial fluid with immunoblotting. Can J Vet Res, 2004, 68: 146~149.
    149. Kankavi O. Immunodetection of surfactant proteins in human organ of Corti, Eustachian tube and kidney. Acta Biochim Pol, 2003, 50: 1057~1064.
    150. Katyal SL, Singh G, Locker J. Characterization of a second human pulmonary surfactant associated protein SP-A gene. Am J Respir Cell Mol Biol , 1992, 6: 446~452.
    151. Kenneth JL, Thomas DS. . Analysis of relative gene expression data using real-time quantitative PCR and the 2?ΔΔCT. Methods, 2001, 25: 402~440.
    152. Kobayashi K, Yamanaka N, Kataurn A, Ohtani S, Saito T, Akino T. . Presence of an 80 kilodalton protein, cross-reacted with monoclonal antibodies to pulmonary surfactant protein A, in the human middle ear. Ann Ontol Rhinol Laryngol, 1992, 101(6): 491~495.
    153. Kopp J, Schwede T. The SWISS-MODEL Repository of annotated three-dimensional protein structure homology models. Nucleic Acids Research, 2004, 32: D230~234.
    154. Kozak M. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell, 1986, 44: 283~292.
    155. Kremlev SG, Phelps DS. . Surfactant protein A stimulation of inflammatory cytokine and immunoglobulin production. Am J Physiol. 1994 b, 267(6 Pt 1): L712~719.
    156. Kremlev SG, Umstead TM, Phelps DS. . Effects of surfactant protein A and surfactant lipids on lymphocyte proliferation in vitro. Am J Physiol, 1994a, 267(4 Pt 1): L357~364.
    157. LeVine AM, Gwozdz J, Stark J, Bruno M, Whitsett J, Korfhagen T. Surfactant protein-A enhances respiratory syncytial virus clearance in vivo. J Clin Invest, 1999, 103: 1015~1021.
    158. Ludwigs U, Klingstedt C, Baehrendtz S, Wegenius G, Hedenstierna G. A functional and morphologic analysis of pressure controlled inverse ratio ventilation in oleic acid induced lung injury. Chest, 1994, 106: 925~931.
    159. Ludwigs U, Klingstedt C, Baehrendtz S, Wegenius G, Hedenstierna G. .Volume- controlled inverse ratio ventilation in oleic acid induced lung injury. Effects on gas exchange, hemodynamics, and computed tomographic lung density. Chest, 1995, 108: 804~809.
    160. Madan T, Kishore U, Shah A, Madan T, Kishore U, Shah A, Eggleton P, Strong P, Wang JY, Aggrawal SS, Sarma PU, Reid KB. . Lung surfactant proteins A and D can inhibit specific IgE binding to the allergens of Aspergillus fumigatus and block allergen-induced histamine release from human basophils. Clin Exp Immunol, 1997, 110(2): 241~249.
    161. Malik S, Greenwood CM, Eguale T, Kifle A, Beyene J, Habte A, Tadesse A, Gebrexabher H, Britton S, Schurr E. Variants of the SFTPA1 and SFTPA2 genes and susceptibility to tuberculosis in Ethiopia. Hum Genet. 2006, 118(6): 752~759.
    162. Maniscalco WM, Sinkin RA, Watkins RH et al. Transforming growth factor-? modulated typeⅡcell fibronectin and surfactant protein C expression. Am J Physiol, 1994, 267: L 569~77.
    163. McCormack FX. . Structure, processing and properties of surfactant protein A. Biochim Biophys Acta, 1998, 1408: 109~131.
    164. McCormick SM, Boggaram V, Mendelson CR. Characterization of mRNA transcripts and organization of human SP-A1 and SP-A2 genes. Am J Physiol, 1994, 266: L354~366.
    165. Mendelson CR. Role of transcription factors in fetal lung development and surfactant protein gene expression. Annu Rev Physiol, 2000, 62: 875~915.
    166. Mo YK, Kankavi O, Masci PP, Mellick GD, Whitehouse MW, Boyle GM, Parsons PG, Roberts MS, Cross SE. Surfactant protein expression in human skin: evidence and implications. J Invest Dermatol, 2007, 127: 381~386.
    167. Morgan BP. Physiology and pathophysiology of complement: Pogress and trends. Crit Rev Clin Lab Sci. 1995, 32(3): 265~298.
    168. Nepomuceno RR, Henschen-Edman AH, Burgess WH, Tenner AJ. cDNA cloning and primary structure analysis of C1qRp, the human C1q/MBL/SPA receptor that mediates enhanced phagocytosis in vitro. Immunity, 1997, 6: 119~129.
    169. Pison U, Obertacke U, Seeger W, Hawgood S. Surfactant protein A (SP-A) is decreased in acute parenchymal lung injury associated with polytrauma. Eur J Clin Invest, 1992, 22: 712~718.
    170. R?met M, Haataja R, Marttila R, Floros J, Hallman M. Association between the surfactant protein A (SP-A) gene locus and respiratory-distress syndrome in the Finnish population. Am J Hum Genet. 2000, 66: 1569~1579.
    171. Ritva H. The role of surfactant protein A and B genes in heritable susceptibility to neonatal respiratory distress syndrome [M]. Olulu: Oulu University Press, 2001.
    172. Robertson B, Curstedt T, Herting E, Sun B, Akino T, Sch?fer KP. Alveolar-to-vascular leakage of surfactant protein A in ventilated immature new born rabbits. Biol Neonate, 1995, 68: 185~190.
    173. Rooney SA, Gobran LI, Umstead TM, Phelps DS. . Secretion of surfactant protein A from rat type II pneumocytes. Am J Physiol, 1993, 265: L586~L590.
    174. Rooney SA, Young SL, Mendelson CR. Molecular and cellular processing of lung surfactant. FASEB J, 1994, 8: 957~967.
    175. Rubio S, Lacase ML, Chailley HB, et al.Pulmonary sufactant protein A (SP-A) is expressed by epithelial cells of small and large intestine. J Biol Chem, 1995, 270 (20): 12162~12169.
    176. Schafer AJ, Hawkins JR. DNA variation and the future of human genetics. Nat Biotechnol, 1998, 16: 33~39.
    177. Schagat TL, Tino MJ, Wright JR. Regulation of protein phosphorylation and pathogen phagocytosis by surfactant protein A. Infect Immun, 1999, 67(9): 4693~4699.
    178. Sohma H, Matsushima N, Watanabe T, Hattori A, Kuroki Y, Akino T. Ca2+- dependent binding of annexin IV to surfactant protein A and lamellar bodies in alveolar type II cells. Biochem J, 1995, 312: 175~181.
    179. Solovyev V, Kosarev P, Seledsov I, Vorobyev D. Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol. 2006, 7 Suppl 1: S10. 1~12.
    180. Strayer DS, Herting E, Sun B, Robertson B. Antibody to surfactant protein A increases sensitivity of pulmonary surfactant to inactivation by fibrinogen in vivo. Am J Respir Crit Care Med, 1996, 153: 1116~1122.
    181. Sugahara K, Rubin JS, Mason RJ, Mason RJ, Aronsen EL, Shannon JM. . Keratinocyte growth factor increases mRNAs for SP-A and SP-B in adult rat alveolar type Ⅱcells in culture. Am J Physiol, 1995, 269: L344~350.
    182. Van Eijk M, de Haan NA, Rogel-Gaillard C, Zijlstra C, Lawson PR, Bosma AA. Assignment of surfactant protein A (SFTPA) and surfactant proteinD (SFTPD) to pig chromosome band 14q25-->q26 by in situ hybridization. Cytogenet Cell Genet, 2001, 95: 114~115.
    183. Van Eijk M, Haagsman HP, Skinner T, Archibald A, Reid KB, Lawson PR. Porcine lung surfactant protein D: complementary DNA cloning, chromosomal localization, and tissue distribution. J Immunol. 2000, 164: 1442~1450.
    184. Voss T, Melchers K, Scheirle G, Schafer KP. Structural comparison of recombinant pulmonary surfactant protein SP-A derived from two human coding sequences: implications for the chain composition of natural human SP-A. Am J Respir Cell Mol Biol, 1991, 4: 88~94.
    185. Wan H, Xu Y, Ikegami M, Stahlman MT, Kaestner KH, Ang SL, Whitsett JA. Foxa2 is required for transition to air breathing at birth. PNAS, 2004, 101: 14449~14454.
    186. Wang JY, Shieh CC, You PF, Lei HY, Reid KB. . Inhibitory effect of pulmonary surfactant proteins A and D on allergen-induced lymphocyte proliferation and histamine release in children with asthma. Am J Respir Crit Care Med, 1998a, 158(2): 510~518.
    187. Weaver TE, Whitsett JA. . Function and regulation of expression of pulmonary surfactant -associated proteins. Bio chem J, 1991, 273: 249~64.
    188. Weber B, Borkhardt A, Stoll-Becker S, Reiss I, Gortner L. . Polymorphisms of surfactant protein A genes and the risk of bronchopulmonary dysplasia in preterm infants. Turk J Pediatr, 2000, 42(3): 181~185.
    189. Weikert LF, Edwards K, Chroneos ZC, Hager C, Hoffman L and Shepherd VL. SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol, 1997, 272(5 Pt 1): L989~995.
    190. Weiss KM, TerwiIIiger JD. . How many diseases does it take to map a gene with SNPs?Nat Genet, 2000, 26: 151~157.
    191. Welhc WJ. . How cells respond to srtess. Sci Am, 1993, 268(5): 56~64.
    192. Williams MC. Conversion of lamellar body membranes into tubular myelin in alveoli of fetal rat lungs. J Cell Biol, 1977, 72: 260~277.
    193. Wright J R, Youmans DC. . Degradation of surfactant lipids and surfactant protein A by alveolar macrophages in vitro. Am J Physiol, 1995, 268 (5 pt 1): L772~L780.
    194. Wright JR, Dobbs LG. Regulation of pulmonary surfactant secretion and clearance. Annu RevPhysiol. 1991, 53: 395~414.
    195. Wu Y, Singer M, Thouron F, Alaoui-El-Azher M, Touqui L. Effect of surfactant on pulmonary expression of type IIA PLA (2) in an animal model of acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2002, 282: L743~750.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700