用户名: 密码: 验证码:
HVDC地电流对变压器的影响及其抑制措施
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着高压直流输电(HVDC)技术在国内电网愈来愈多地应用,由于其输送容量大、输送距离远、调节迅速、运行灵活,HVDC在远距离大容量输电、区域电力系统互联中起到了十分积极的作用,但同时也带来了一些新问题。实际运行发现,当直流输电系统采用大地回路运行方式时,从大地中流过的巨大直流电流会对附近的交流系统产生影响,特别是会对接地极附近中性点直接接地变压器产生比较严重的直流偏磁,这不仅增加了变压器的无功消耗,影响变压器的正常运行,引起继电保护误动,而且引起的谐波大幅升高也会对其他电气设备产生较大影响,从而直接影响到变电站、发电厂的安全运行。随着我国高压直流输电工程的日益增多,直流输电工程单极投运时间和每年直流输电线路的检修造成的单极大地运行总时间也越来越长,而且直流输电系统大地回线运行方式作为故障应急方式,基本上不可避免,因此,由直流输电引起的变压器直流偏磁的相关研究在近几年越来越受到重视。
     本文采用了场路结合的办法,将直流输电单极大地回路方式下地表电位(Earth Surface Potential,简称ESP)分布计算分为电网和地下两部分来计算;推导出了复镜像法在水平多层、垂直多层土壤模型上的计算公式;通过对海洋、山脉、湖泊、河流等地形单独存在时的仿真计算,分析了地形因素对接地极的接地性能和接地极附近的地表电位的影响;由于土壤结构对地表电位分布和流入变压器中性点直流电流影响很大,通过合理选择换流站站址的办法可减小直流接地极电流对交流电网的影响。
     本文从变压器的理论模型出发,研究和分析了变压器在直流偏励磁情况下,励磁电流和谐波分量的变化情况;建立变压器的有限元模型,通过有限元仿真分析了变压器发生偏磁的机理;并提出了一种实用的方法来检验变压器耐受直流偏磁电流的能力。
     本文设计了一种新型变压器中性点电容器隔直装置(Neutral DC Current Blocking Device,简称NCBD),与一般的电容器隔直装置相比,由于不需要额外的整流回路和晶闸管关断回路,主回路的拓扑结构得以大量简化,降低了装置的成本,同时该NCBD采用纯硬件的集成电路保护和微机保护的完全双重化冗余结构,提高了系统的可靠性和智能性。通过分析其拓扑结构和工作原理,讨论了装置的电容器保护和直流电流抑制能力。仿真结果、大电流试验以及装置在广东电网的应用,表明该NCBD能有效解决由直流输电单极大地回路运行方式下造成的接地变压器直流偏磁的问题。
As the development of High Voltage Direct Current Transmission (HVDC) technology in China, it plays an important role in power transmission and also brings some new problems.
     During Monopolar operations of the HVDC electrode, significant DC currents can be observed in the transformer neutrals of substations in the vicinity of the electrode of the HVDC converter. There are no doubts on the origin, cause and mechanisms of the DC currents that appear in the neutral of the high voltage transformers. A portion of the DC current that is flowing between the two HVDC electrodes is captured by the grounding systems of the transmission and distribution lines and substations located in zones where the earth potentials are high and is discharged back to soil by the grounding systems of the electric network at the locations where the earth potentials are lower. In other words, Part of the DC current injected into the electrode finds an easier return path through the AC system via the grounded neutrals of the transformers. This DC current through transformer neutrals may make the transformer DC bias and therefore, increases the noise of transformer. Furthermore, it can cause many problems due to excessive core vibration, overheating regarding the integrity and longevity of the transformers and other related instrumentation problems. So the abnormal operation of transformer will cause the unsafe operation of substation and power plant. The voltage total harmonic distortion of 220kV and 500kV AC transmission network will increase sharply and these will impact other equipments operation. Sequentially, it may damage the transformers and the whole network. In a word, the HVDC ground electrode current makes the transformer with earthed neutral point as a harmonic source.
     With the increasing of HVDC project of China, the total time of monopolar operations caused by new projects puting into operation and annual overhaul is getting longer. And as an emergency maintenance mode, monopolar operations mode is inevitable. Therefore, the research of transformer DC bias caused by the DC transmission in recent years has become a very active and important research topic.
     By using field-circuit coupled method, the distribution of the earth surface potential (ESP) calculations are divided into two parts, including the ground and power grid. The formulas of complex image method (CIM) in the horizontal multi-layer model and vertical multi-layer soil model are deduced. The simulation results of the seas, mountains, lakes and rivers in the vicinity of HVDC grounding electrode show that soil structures have a great impact on the surface potential distribution and the size of DC current through transformer neutral point. Selecting the converter station site is an effective way to reduce the impact of HVDC grounding electrode current on AC power grid.
     Proceeding from the theoretical model of the transformer, the excitation current and its harmonic components of transoformer in the DC bias case are analyzed. By using the finite element mothod (FEM), the model of the transformer in the DC bias case is established. The results show that the mechanism of transformer DC bias. A practical method to test the DC bias current withstanding capacity of transformer is proposed.
     In this paper, a novel transformer neutral DC current blocking device (NCBD) based on inverse parallel thyristors protection is proposed and developed to solve DC bias problem. Based on the analysis of the topology and operating principles of NCBD, the main circuit is simplified by removing the front-end rectifier circuit and the turn-off circuit of thyristor. Thus, the cost of the device can be cut down a lot. Moreover, the reliability and intelligence of NCBD are improved by its dual redundant structure, which is made up of a set of hardware integrated circuit and a set of microcomputer measure-controlling system. Simulation results, high current tests and field operation results confirm that the NCBD can resolve the demand of DC bias restraint effectively, and provide a practical based engineering solution.
引文
[1]浙江大学直流输电教研组.直流输电[M].北京:水利电力出版社,1985.1-24
    [2]刘振亚.特高压电网[M].北京:中国经济出版社,2005.1-40
    [3]赵畹君.高压直流输电工程技术[M].北京:中国电力出版社,2004.1-43
    [4]李兴源.高压直流输电系统的运行和控制[M].北京:科学出版社,1998.1-45
    [5]李立涅.直流输电技术的发展及其在我国电网中的作用[J].电力设备,2004,5(11):1-3
    [6]Andersen. B, Barker.C. A new era in HVDC[J]. IEE Review,2000,46(2):33-39, Mar 2000
    [7]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.1-34
    [8]王明新.现代新技术在高压直流输电中的应用[J].国际电力,2003,7(2):20-24
    [9]曾南超.高压直流输电在我国电网发展中的作用[J].高电压技术,2004,30(11):11-12
    [10]袁清云.特高压直流输电技术现状及在我国的应用前景[J].电网技术,2005,29(14):1-3
    [11]舒印彪.1000kV交流特高压输电技术的研究与应用.电网技术,2005,29(19):1-6
    [12]苏宏田,齐旭,吴云.我国特高压直流输电市场需求研究[J].电网技术,2005,29(24):1-4
    [13]黄莹,徐政,曾德文,张琳.西电东送纯直流输电方案研究[J].电网技术,2004,28(19):1-5
    [14]吴敬儒,徐永禧.我国特高压交流输电发展前景[J].电网技术,2005,29(3):1-4
    [15]王明新,张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术,2005,29(3):9-14
    [16]蒯狄正,万达,邹云.直流输电地中电流对电网设备影响的分析和处理[J].电力系统自动化,2005,29(2):81-82
    [17]蒯狄正.电网设备直流偏磁影响检测分析与抑制[D].博士学位论文,南京:南京理工大学,2004年
    [18]蒯狄正,万达,邹云.直流偏磁对变压器影响的研究[J].中国电力,2004,37(8): 41-43
    [19]广东省电力试验研究所.贵广直流单极大地方式对变压器的影响测试简报[Z].广州:广东省电力试验研究所,2004
    [20]Boteler D H, Boutilier S, Swatel D. Geomagnetic hazard assessment, Phase, Final Report [J]. Geological Survey of Canada and Canadian Electrical Association.1998
    [21]Medford L V, Lanzerotti L J, Kraus J S. Transatlantic earth potential variations during the March 1989 magnetic storms[J]. Geophys. Res. Lett.,1989:1145-1148
    [22]Albertson V D, Thorson J M. Power system disturbances during a K28 geomagnetic storm:August4,1972[J]. IEEE Transactions on Power Application and System,1974: 1025-1030
    [23]Karsberg A, Swedenborg G, Wyke K. The Influences of Earth Magnetic Currents on Telecommunication Lines [J]. Tele (English edition) Stokholm,1959:1-21
    [24]Zdenka K. Smith, Thomas R. Detman, Murray Dryer. A verification method for space weather forecasting models using solar data to predict arrivals of interplanetary shocks at earth [J]. IEEE Transactions on Plasma Science,2004,32(4): 1498-1505.
    [25]John G Kappenrnan. Geomagnetic storm & power system impacts:advanced storm forecasting for transmission system operations [J]. Power Engineering Society Summer Meeting, IEEE.1999:1187-1191
    [26]Medford L V, Lanzerotti L J, Kraus J S. Transatlantic earth potential variations during the March 1989 magnetic storms [J]. Geophys. Res. Lett.,1989:1145-1148
    [27]W. Chandrasena, P. G. Mclaren, U. D. Annakkage. Modeling GIC effects on power systems:the need to model magnetic status of transformers[C].2003 IEEE Bologna PowerTech Conference, Italy:2003.
    [28]Shu lu, Yilu Liu.Study of Power Transformer Excitation under GIC[C].Proceedings of the 36th Midwest Symposium on Circuits and Systems, Detroit,1993:879-882.
    [29]W.Chandrasena, P.GMclaren, U.D.Annakkage. Modeling GIC effects on power systems:the need to model magnetic status of transformers[C].2003 IEEE Bologna PowerTech Conference, Italy,2003
    [30]Ramisis S Girgis, Chung-Duck Ko. Calculation techniques and results of effects of GIC currents as applied to two large power transformers[J].IEEE Transactions on Power Delivery,1992,7(2):699-705
    [31]Nobuo.Takasu, Tetsuo Oshi.An experimental analysis of DC excitation of transformer by geomagnetically induced currents[J].IEEE Transactions on Power Delivery,1994, (9)2:1173-1182
    [32]Philip R.Price.Geomagnetically induced current effects on transformers[J].IEEE Transactions on Power Delivery,2002,17(4):1002-1008.
    [33]D. H. Boteler, R. M.Shier, T. Watanabe. Effects of geomagnetically induced currents in B.C.Hydro 500kV System [J]. IEEE Transactions on Power Delivery,1989, 4(1):818-823
    [34]R. A. Walling, A. H. Khan. Characteristics of transformer exciting-current during geomagnetic disturbances [J]. IEEE Transactions on Power Delivery,1991, 6(4):1707-1714
    [35]Shu Lu, Yilu Liu, Jaime De La Ree. Harmonics generated from a DC Biased transformer [J]. IEEE Transactions on Power Delivery,1993,8(2):725-731
    [36]P.Picher, L.Bolduc, A.Dutil. Study of the acceptable DC current limit in core form power transformers [J]. IEEE Transactions on Power Delivery,1997,12(1):257-265
    [37]Working Group K-11 of the Substation protection subcommittee of the power system relaying committee. The effects of GIC on protective relaying[J]. IEEE Transactions on Power Delivery,1996, 11(2):725-739
    [38]J. G. Kappenman, S. R. Norr, G. A. Sweezy. GIC mitigation:a neutral blocking/bypass device to prevent the flow of GIC in power systems [J]. IEEE Transactions on Power Delivery,1991,6(3):1271-1281
    [39]L.Bolduc.GIC observations and studies in the Hydro-Quebec Power system [J]. Journal of Atmospheric and Solar Terrestrial Physics,2002(64):1793-1802
    [40]Oliver. Method and means for suppressing Geomagnetically Induced Current. United States Patent, Patent Number:5179489.1993-01-12
    [41]Oliver.Method and Means for Suppressing Geomagnetically Induced Current.United States Patent, Patent Number:5136453.1992-08-04
    [42]李功新,王倩,刘连光.输电线路地磁感应电流常用算法分析与研究[J].现代电力,2005,22(5):42-46
    [43]刘春明.中低纬电网地磁感应电流及其评估方法研究[D].博士学位论文,北京:华北电力大学,2009年.
    [44]王倩.直流输电及磁暴引起的变压器直流偏磁问题的研究[D].硕士学位论文,北京:华北电力大学,2006年
    [45]张浩,高乃天,刘连光.地磁感应电流对我国电网影响及监测技术的研究[J].电力设备,2005,6(6):27-30.
    [46]Kovarsky D, Pinto L J, Caroli C E. Soil surface potentials induced by ITAIPU HVDC ground return current part Ⅰtheoretical evaluation[J]. IEEE Transactions on Power Deliveryt.1988,3(3):1204-1210
    [47]Jose E T V, Carlos M P. Calculation of electric field and potential distributions into soil and air media for a ground electrode of a HVDC system[J]. IEEE Transactions On Power Delivery,2003,18(3):867-873
    [48]马志强,黎小林,钟定珠.直流输电大地电流对交流系统影响的网络分析算法[J].广东电力,2003,18(12):4-8
    [49]曾连生.直流输电接地极电流对电力变压器的影响[J].电力建设,2004,25(12):22-24
    [50]赵杰,曾嵘,黎小林.HVDC输电系统中直流对交流系统的影响及防范措施研究[J].高压电器,2005,41(5):324-329
    [51]赵杰,张波.输电线路地线对流入变压器中性点直流电流的影响[J].电网技术,2005,29(19):60-64
    [52]张波,赵杰,曾嵘,何金良,崔翔.直流大地运行时交流系统直流电流分布的预测方法[J].中国电机工程学报2006,26(13):84-88
    [53]何俊佳.HVDC单极大地运行时土壤结构对地电位和地中电流分布的影响[J].南方电网技术,2007,1(1):26-31
    [54]陆继明,肖冬,毛承雄.直流输电接地极对地表电位分布的影响[J].高电压技术,2006,32(9):55-58
    [55]刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D]。博士学位论文,北京:清华大学,2007年
    [56]E.F.Fuchs, Y.You, and D. J. Roeslerl. Modeling and simulation and their validation of three-phase transformer with three legs uder DC bias[J] IEEE Transactions on Power Delivery,1999 14(2):443-449.
    [57]A. P. Sakis Meliopoulos, CHRISTOFORIDIS G. Effects of DC ground electrode on converter transformers[J]. IEEE Transactions on Power Delivery,1994,9(1):194-205
    [58]L. Bolduc, P. Langlois, D. Boteler and R. Pirjola. A study of geoelectromagnetic disturbances in Quebec,1. General results[J]. IEEE Transactions on Power Delivery, 1998 13(6):1251-1256
    [59]L. Bolduc, P. Langlois, D. Boteler and R. Pirjola. A study of geoelectromagnetic disturbances in Quebec,2. Detailed analysis of a large event[J]. IEEE Transactions on Power Delivery,2000,15(1):272-278
    [60]L. Bolduc and J. Aubin. Effects of direct currents in power transformers. Part Ⅰ. A general theoretical approach; Part Ⅱ. Simplified calculations for large transformers[J]. Electric Power Systems Research,1977 1(1):291-304
    [61]L. Bolduc, P. Kieffer, A. Dutil, M. Granger and Q. Bui-Van. Currents and harmonics generated in power transformers [J], Transactions engineering and operating division[J]. Canadian Electrical Association,1990,29(1):90-96
    [62]L. Bolduc, A. Gaudreau and A. Dutil. Saturation time of transformers under dc excitation[J] Electric Power Systems Research,2000,56(1):95-102
    [63]K. Preis, O. Biro, G. Buchgraber and I. Ticar. Thermal-electromagnetic coupling in the finite-element simulation of power transformers[J]. IEEE transactions on Magnetics,2006,42(4):999-1002
    [64]M. Lahtinen and J. Elovaara. G1C occurrences and GIC test for 400 kV system transformer [J]. IEEE Transactions on Power Delivery,2002,17(1):555-561
    [65]O. Biro and K. Preis. An efficient time domain method for nonlinear periodic eddy current problems[J]. IEEE Transactions on Magnetics,2006,42(4):695-698
    [66]N. Takahash, T. Sakura and Z.Cheng. Non-linear analysis of eddy current and hysteresis losses of 3-D stray-field loss model[J]. IEEE Transactions on Magnetics, 2001,37(5):3672-3675
    [67]王祥珩,徐伯雄.变压器的偏磁问题[J].变压器,1992
    [68]胡毅,李景录.直流接地极电流对中性点接地变压器的影响[J].变压器,1999,36(1):15-19
    [69]梅桂华,徐柏榆,王晓毛,邓志,刘春权.直流输电对交流系统变压器的影响[J].广东电力,2006,19(1):1-5
    [70]姚缨英.大型电力变压器直流偏磁现象的研究[D].博士学位论文,沈阳:沈阳工业大学,2000年
    [71]马志强.变压器直流偏磁的原理性仿真[J].广东电力,2004,17(2):5-9
    [72]李长益.直流单极运行对于交流变压器的影响[J].华东电力,2005,33(1):36-39
    [73]刘曲,郑健超,潘文,李立涅.变压器铁心承受直流偏磁能力的仿真和分析[J].变压器,2006,43(9):5-10
    [74]王永,刘硕.具有直流偏磁交流磁滞回线的测量[J].磁性材料及器件,2001,3(32):47-50
    [75]曹林,曾嵘,赵杰,何金良,张波.高压直流输电系统接地极电流对电力变压器运行影响的研究[J]高压电器.2006,42(5):346-354
    [76]钟连宏,陆培均,仇志成.直流接地极电流对中性点直接接地变压器影响[J].高电压技术,2003,29(8):12-13.
    [77]曾连生.直流输电接地极电流对电力变压器的影响[J].高电压技术,2005,31(4): 57-81.
    [78]EITZMANN M A, WALLING R A, HUYNH H. Alternatives for blocking direct current in AC system neutrals at the Radisson/LG2 Complex[J]. IEEE Transactions on Power Delivery,1992,7(3):1328-1337
    [79]J. G Kappenman, S. R. Norr, G A. Sweezy. GIC Mitigation:A neutral blocking/ bypass device to prevent the flow of GIC in power systems [J].IEEE Transactions on Power Delivery,1991,6(3):1271-1281
    [80]L. Bolduc, M. Granger, G. Pare. Development of a DC current blocking device for transformer neutrals [J]. IEEE Transactions on Power Delivery,2005,20(1):163-168
    [81]F. P. Dawalibi, Li Changyi, Li Yexu. Mitigation of transformer saturation due to neutral HVDC current[C]. IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian China,2005:1-6
    [82]赵杰,黎小林,吕金壮.抑制变压器直流偏磁的串接电阻措施[J].电力系统自动化,2006,30(12):88-91
    [83]Ben Niu, Rong Zeng, Bo Zhang, and Jinliang He. Research and Design of the Neutral Series Resistor to Restrain the HVDC Ground Current Flowing into Transformer[C] 2006 International Conference on Power System Technology, Chongqing China,2006:27-28
    [84]杜忠东,董晓辉,王建武.直流电位补偿法抑制变压器直流偏磁的研究[J].高电压技术,2006,32(8):69-72
    [85]马志强.消减变压器中性点直流电流抑制直流偏磁的电位补偿方法[J].广东电力2007 20(5):
    [86]朱艺颖,蒋卫平,曾昭华,印永华.抑制变压器中性点直流电流的措施研究[J].中国电机工程学报,2005,25(13):1-7
    [87]Yonghua Yin, Jinping Zhang, Hui Zhang, Dunwen Song and Min Xiong. Development of Transformer Neutrals DC Current Blocking Device in High Power System [C].2006 International Conference on Power System Technology, Chongqing China,2006:253-254
    [88]刘曲,李立涅,郑健超.考虑海洋影响的直流输电单极大地运行时变压器中性点直流电流研究[J].电网技术,2007,31(2):57-60
    [89]滕吉文.固体地球物理学概论[M].北京:地震出版社.2003:1-30
    [90]刘力,孙结中.等值复数镜像法在多层土壤接地计算中的应用[J].高电压技术,1998,24(3):57-60.
    [91]李中新,袁建生,张丽苹.变电站接地网模拟计算[J].中国电机工程学报,1999, 19(5):76-80.
    [92]Chow Y L, Yang J J, Srivastava K D. Complex image of a grounding electrode in layered soils[J]. Journal of Applied Physics,1992,15(1):1120-1125.
    [93]童莉.500kV自耦变压器直流偏磁的仿真研究[D].硕士学位论文,上海:上海交通大学,2008年.
    [94]肖东.直流输电和磁暴引起变压器直流偏磁的相关研究[D].硕士学位论文,武汉:华中科技大学,2007年.
    [95]李晓萍,文习山,陈慈萱.单相变压器直流偏磁励磁电流仿真分析[J].高电压技术,2005,31(9):8-10.
    [96]柴建云.大型变压器三维涡流漏磁场计算[D].博士学位论文,北京:清华大学,1989年.
    [97]杨俊友.大型电力器低压引线漏磁场及局部过热研究[D].博士学位论文,哈尔滨:哈尔滨工业大学,1993年.
    [98]李岩.大型电力变压器线圈电磁力和局部过热问题研究[D].博士学位论文,沈阳:沈阳工业大学,1995年.
    [99]周剑明.电磁场有限元综合模拟方法及大型变压器漏磁场的研究[D].博士学位论文,武汉:华中理工大学,1990年.
    [100]陈家平.电磁场有限元方法及变压器线圈电磁力与振动的研究[D].博士学位论文,武汉:华中理工大学,1993年.
    [101]潘丽珠.高压直流输电对交流系统电压稳定影响的研究[D].硕士学位论文,北京:华北电力大学,2006年.
    [102]马玉龙.高压直流输电系统的稳定性分析[D].博士学位论文,北京:华北电力大学,2006年.
    [103]皇甫成,阮江军,张宇.变压器直流偏磁的仿真研究及限制措施[J].高电压技术,2006,32(9):117-120
    [104]尚春.HVDC地中电流对交流变压器影响的抑制措施[J].高电压技术,2004,30(11):52-54
    [105]广东电网公司电力科学研究院,华中科技大学.变压器直流偏磁电流抑制措施的研究与应用[Z].广州:广东电网公司电力科学研究院,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700