用户名: 密码: 验证码:
基于时域场路耦合模型的变压器直流偏磁电磁特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高压直流输电单极大地系统和电网磁暴灾害中的变压器直流偏磁及其影响是高压电网和大型电力变压器研究中的重要内容。本论文结合国家国际科技合作项目(编号:2010DFA64680),重点研究了变压器直流偏磁时的电磁特性,提出时域场路耦合的方法,分析了直流扰动对变压器产生的影响,取得的主要研究成果如下:
     分析矢量磁位的不同有限元方法在变压器三维磁场计算中的适用性,提出了基于棱边有限元法的时域场路耦合模型。该模型将非线性磁场有限元法计算与时域电路龙格库塔法求解迭代耦合,为进一步开展直流扰动下变压器类设备的相关研究奠定了基础。结合变压器直流偏磁问题,研究了时域场路耦合模型迭代计算的稳定性。根据稳定性分析提出了时域场路耦合模型的一种变步长自适应迭代算法。
     基于时域场路耦合模型研究了变压器直流偏磁的电磁特性。对比不同直流注入方式下变压器绕组电流、铁心磁场以及漏磁场的分布与变化情况,研究了不同直流注入方式对变压器交流励磁的影响。计算变压器在不同运行方式下直流偏磁的电磁特性,获得了励磁电流、谐波含量和动态电感的变化规律。通过仿真计算与和实验测量对比,验证了直流偏磁情况下时域场路耦合模型及其计算方法的正确性。
     在计算变压器直流偏磁电磁特性的基础上,进一步研究了构件涡流损耗的分布情况。将时域场路耦合计算得到的瞬时电流作为输入量计算三维时域非线性涡流场,得到了变压器在空载和负载直流偏磁时箱体、拉板、屏蔽等构件涡流损耗的分布及变化规律。应用时域场路耦合模型进一步研究了变压器直流偏磁时的动态漏电感,分析了基于漏电感参数的变压器保护判据,为直流偏磁相关保护提供参考。
     本论文所开展的研究工作为变压器直流偏磁的进一步研究奠定了基础。
It is very important to take research of DC-biased transformer and its impacts in monopole-earth system of high voltage direct current (HVDC) or magnetic storm in power network. Supported by the National and International Technology Cooperation Projects under Grant No.2010DFA64680, the electromagnetic characteristics of DC bias is studied in detail. A new method called time-domain magnetic field-electrical circuit coupled method is proposed, which is used to analyze the affection from DC disturbance to transformer. The main research achievements are as follows:
     Three-dimensional magnetic computation of different finite element methods based on magnetic vector potential function is studied. A new time-domain magnetic field-electrical circuit coupled model based on the edge finite element method is proposed. By this method, the time-varying electromagnetic computation of transformer is devided into nonlinear magnetic and time-domain circuit. And it is valid for the related analysis for electromagnetic devices such as transformer. Then the stable problem of computation in DC bias, which is based on the time-domain field-circuit coupled method, has been concerned. On the basis of stability analysis, an adaptive algorithm is proposed.
     Based on the time-domain magnetic field-electrical circuit coupled model, the electromagnetic characteristics of DC-biased transformer are analyzed. Different patterns of DC injection, as DC current flowing through the primary winding or the secondary winding, have been considered. Under DC-inject ways, the exciting current, magnetic filed and leak magnetic are learned and compared. The impact of DC current on AC excitation is analyzed. Then this method is used for computing the electromagnetic characteristics in DC biasing, and the varying regularity of coupling parameters is studied. With experiments carried out, the time-domain magnetic field-electrical circuit coupled method is proved.
     The time-domain magnetic field-electrical circuit coupled method is applied in eddy-current computation and DC-bias protection. The transient current is computed, which is treated as input in the three-dimensional nonlinear eddy field. The magnetic and eddy current are computed for transformer with different operating conditions. Analysis is carried out about the eddy losses of tie plate, clamp, shield and tank with DC current inrushing. Then the time-domain coupled computation is applied to compute the dynamic leakage inductances when DC bias happens. Variation of the dynamic leakage inductance is learned to conclude its regularity. Evaluation about the protection criterion based on leakage inductance is brought out, and reference is provided for the transformer protection in DC bias.
     The research work in this dissertation lays the foundation for further study of DC-biased transformer.
引文
[1]尹克宁.变压器设计原理[M].北京:中国电力出版社,2003
    [2]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社,1995
    [3]张一中.电力谐波[M].成都:成都科技大学出版社,1992
    [4]Kappenman J G. Cuurent transformer and relay performance in the presence of gemagnetically-induced currents [J]. IEEE Transactions on Power Apparatus and Systems.1981,100(3):1078-1088
    [5]Botler D H, Pirjola R J, Nevanlinna H. The effects of geomagnetic disturbance on electrical systems at the Earth's surface[J]. Advances Space Research.1998,22: 17-27
    [6]Lianguang L, Chunming L, et al. Strong magnetic storm's influence on China's Guangdong power grid[J]. Chinese Journal of Geophysics,2008,51(4):976-981
    [7]Risto Pirjola, Chunming Liu, Lianguang Liu. Geomagnetically induced currents in electric power transmission networks at different latitudes[J].2010 Asia-Pacific International Symposium on Electromagnetic Compatibility: 699-702
    [8]Sakis Meliopoulos A P, Glytsis E N, Cokkinides G J. Comparison of SS-GIC and MHD-EMP-GIC effects on power system[J]. IEEE Transactions on Power Delivery.1994,9(1):194-207
    [9]Botler D H, Watanabe T, et al. Characteristics of geomagnetically induced currents in the B.C. hydro 500kV system[J]. IEEE Transactions on Power Apparatus and Systems,1982,101(6):1447-1456
    [10]Dickmander D L, Lee S Y, et al. AC/DC harmonic interactions in the presence of GIC for the Quebec-New England Phase II HVDC tansmission[J]. IEEE Transactions on Power Delivery,1994,9(1):68-78
    [1 l]Prabhakara F S, Ponder J Z, Towle J N. Computing GIC in large power systems[J]. IEEE Computer Applications in Power,1992,5(1):46-50
    [12]Chunming Liu, Lianguang Liu, Risto Pirjola. Geomagnetically induced currents in the high-voltage power grid in China[J]. IEEE Transactions on Power Delivery, 2010,24 (4):2368-2374
    [13]Pinto L M, Szczupak J, et al. A new threat to power systems security[J].2004 IEEE/PES Transmission & Distribution Conference & Exposition:Latin America
    [14]Koen Jacko, Gaunt Trevor. Geomagnetically induced current in the South African electricity transmission network[J].2003 IEEE Bologna PowerTech Conference, Bologna Italy,2003
    [15]刘玉林,谢学武.500kV主变压器异常声音分析[J].高电压技术,2005,31(4):85-87
    [16]张建平,潘星.500kV变压器异常噪声与振动的原因分析[J].浙江电力,2006,3:6-10
    [17]盘学南,玉小玲.变压器异常噪声的探讨[J].变压器,2006,43(8):43-44
    [18]刘振亚.特高压电网[M].北京:中国经济出版社,2005
    [19]赵婉君.高压直流输电工程技术[M].北京:中国电力出版社,2004
    [20]刘振亚,舒印彪,张文亮,等.直流输电系统电压等级序列研究[J].中国电机工程学报,2008,28(10):1-8
    [21]尚荣艳.新型换流变压器及其滤波系统对直流输电换相的影响研究[D].长沙:湖南大学,2008
    [22]蒯狄正,万达,邹云.直流输电地中电流对江苏电网设备影响的分析与处理[J].电力系统自动化,2005,29(2):81-82
    [23]刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D].北京:清华大学,2007
    [24]Towle J N, Prabhakara F S, Ponder J Z. Geomagnetic effects modeling for the PJM interconnection system Part I-Earth surface potential computation[J]. IEEE Transactions on Power System,1992,7(3):949-953
    [25]Sakis Meliopoulos A P. Effects of DC ground electrode on converter transformer[J]. IEEE Transactions on Power Delivery.1994,9(1):194-205
    [26]张保会,尹项根.电力系统继电保护[M].北京:中国电力出版社,2010
    [27]Nobuo Takasu, Tetsuo Oshi, et al. An experimental analysis of DC excitation of transformer by geomagnetically induced currents[J]. IEEE Transactions on Power Delivery,1994,9(2):1173-1179
    [28]Picher P, Bolduc L, Pham V O. Study of the acceptable DC current limit in core-form power transformer[J]. IEEE Transactions on Power System,1997, 12(1):23-38
    [29]钟连宏,陆培均,仇志成,等.直流接地极电流对中性点接地变压器影响[J].高电压技术,2003,(8):12-15
    [30]Walling R A, Khan A H. Characteristics of transformer exciting-current during geomagnetic disturbances[J]. IEEE Transactions on Power Delivery,1991,6(4): 1707-1714
    [31]Shu Lu, Yilu Liu. FEM analysis of DC saturation to assess transformer susceptibility to geomagnetically induced currents[J]. IEEE Transactions on Power Delivery,1993,8(3):1367-1376
    [32]Shu Lu, Yilu Liu, Jaime De La Ree. Harmonics generated from a DC biased transformer[J]. IEEE Transactions on Power Delivery,1993,8(2):725-731
    [33]Arun Narang, Brierley R H. Topology based magnetic model for steady-state and transient studies for three-phase core type transformers[J]. IEEE Transactions on Power System,1994,9(3):1337-1349
    [34]Xusheng Chen, Venkata S S. A three-phase three-winding core-type transformer model for low-frequency transient studies[J]. IEEE Transactions on Power Delivery,1997,12(2):775-782
    [35]Price P R.Geomagnetically induced current effects on transformers[J]. IEEE Transactions on Power Delivery,2002,17(4):1002-1008
    [36]Mohammed Elleuch, Michel Poloujadoff. Analytical model of iron losses in power transformers[J]. IEEE Transactions on Power Delivery,2003,39(2): 973-980
    [37]Chandrasena W, Mclaren P G, Annakkage U D. Modeling GIC effects on power systems:the need to model magnetic status of transformers[J].2003 IEEE Bologna PowerTech Conference, Bologna Italy,2003
    [38]Andreas D Theocharis, John Milias-Argitis, Thomas Zacharias. Three-phase transformer model including magnetic hysteresis and eddy currents effects[J]. IEEE Transactions on Power Delivery,2009,24(3):1284-1294
    [39]Mauricio Valencia Ferreira Da Luz, et al. Three-phase transformer modeling using a vector hysteresis model and including the eddy current and the anomalous losses[J]. IEEE Transactions on Magnetics,2010,46(8):3201-3204
    [40]刘连光,刘春明,张冰.磁暴对我国特高压电网的影响研究[J].电网技术,2009,33(11):1-5
    [41]王明新,张强.直流输电系统接地极电流对交流电网的影响分析[J].电网技术,2005,29(3):9-15
    [42]李长益.直流单极运行对交流变压器的影响[J].华东电力,2005,33(1):36-38
    [43]Guang C Z, et al. Analysis and measurements of iron loss and flux inside silicon steel laminations[J]. IEEE Transactions on Magnetics,2009,45(3):1222-1225
    [44]郭满生,梅桂华,等.直流偏磁条件下电力变压器铁心B-H曲线及非对称励磁电流[J].电工技术学报,2009,24(5):46-51
    [45]赵志刚,刘福贵,等.直流偏磁条件下变压器励磁电流的实验与分析[J].电工技术学报,2010,25(4):71-75
    [46]赵小军,李琳,等.应用谐波平衡有限元法的变压器直流偏磁现象分析[J].中国电机工程学报,2010,30(21):103-108
    [47]李泓志,崔翔,等.直流偏磁对三相电力变压器的影响[J].中国电机工程 学报,2010,25(5):88-96
    [48]李泓志,崔翔,等.大型电力变压器直流偏磁分析的磁路建模与应用[J].高电压技术,2010,36(4):1068-1076
    [49]刘连光,张冰,肖湘宁.采用电网直流等效模型评估地磁感应电流水平的影响因素[J].电网技术,2009,33(8):13-17
    [50]张冰,刘连光,肖湘宁.地磁感应电流对变压器振动、噪声的影响[J].高电压技术,2009,35(4):900-904
    [51]刘连光,张冰,肖湘宁.GIC和HVDC单极大地运行对变压器的影响[J].变压器,2009,46(11):32-35
    [52]刘春明.中低纬电网地磁感应电流机器评估方法研究[D].北京:华北电力大学,2009
    [53]张冰.大型电力变压器的GIC影响效应研究[D].北京:华北电力大学,2010
    [54]刘曲.高压直流输电系统单极大地运行时地中电流分布的研究[D].北京:清华大学,2007
    [55]张艳丽,何厚键,谢德馨,KOH Chang-seop.基于二维磁特性测量的电工钢片矢量磁滞模型[J].中国电机工程学报,2010,30(3):130-135
    [56]姚缨英.大型电力变压器直流偏磁现象的研究[D].沈阳:沈阳工业大学,2000
    [57]蒯狄正.电网设备直流偏磁影响检测分析与抑制[D].南京:南京理工大学,2008
    [58]薛向党,郭晖,等.在地磁感应电流作用时分析和计算电力变压器特性的一种新方法——时域和频域法[J].电工技术学报,2000,15(2):1-5
    [59]薛向党,文剑莹,等.地磁感应电流消除方法初探[J].电力系统自动化,2000,(7):58-60
    [60]陈泽军.三维弹性接触Taylor级数多极边界元法理论与应用研究[D].秦皇岛:燕山大学,2009
    [61]周平.电磁散射问题中有限元法和边界元法及其混合技术研究[D].南京:南京航空航天大学,2006
    [62]王泽忠,全玉生,卢斌先.工程电磁场[M].北京:清华大学出版社,2011
    [63]杨德全,赵忠生.边界元理论及应用[M].北京:北京理工大学出版社2002
    [64]班努杰,白脱费尔德.工程科学中的边界元方法[M].北京:国防工业出版社,1988
    [65]倪光正,杨仕友,等.工程电磁场数值计算[M].机械工业出版社,2004
    [66]姚振汉,王海涛.边界元法[M].北京:高等教育出版社,2010
    [67]金建铭.电磁场有限元方法[M].西安:西安电子科技大学出版社,2001
    [68]Silvester P P. A general high order finite element waveguide analysis program[J]. IEEE Transactions on Microwave Theory and Techniques,1969,17(4):204-210
    [69]Y Kanai, T Abe, et al. Further discussion on magnetic vector potential finite-element formulation for three-dimensional magnetostatic field analysis[J]. IEEE Transactions on Magnetics,1990,26(2):411-414
    [70]张秀敏,苑津莎,崔翔.用棱边法与节点有限元耦合的E-E-ψ法计算三维涡流场[J].中国电机工程学报,2003,23(5):70-74
    [71]Biro O, Preis K, et al. Performance of different vector potential formulations in solving mutiply connected 3D eddy current problems[J]. IEEE Transactions on Magnetics,1990,26(2):438-441
    [72]Nakata T, Fujiwara K. Recent progress in numerical analysis for electromagnetic devices[J]. IEEE Transactions on Magnetics,1991,27(2):4221-4226
    [73]Morisue T. Infinitely many formulations using the magnetic vector potential with the coulomb gauge for 3D field calculations[J]. IEEE Transactions on Magnetics, 1990,26(2):715-718
    [74]刘硕.棱边有限元法的理论研究及其在工程涡流计算中的应用[D].保定:华北电力大学,2003
    [75]周克定.工程电磁场数值计算的理论方法及应用[M].北京:高等教育出版社,1994
    [76]程志光,高桥则雄,等.电气工程电磁热场模拟与应用[M].北京:科学出版社,2009
    [77]Nakata T, Takahashi N, et al. Comparison of different finite elements for 3D eddy current analysis[J]. IEEE Transactions on Magnetics,1990,26(2):434-437
    [78]Nakata T, Takahashi N, et al. Investigation of effectiveness of various methods with different unknown variables for 3D eddy current analysis[J]. IEEE Transactions on Magnetics,1990,26(2):442-445
    [79]Nakata T, Takahashi N, et al. Comparison of various methods of analysis and finite elements in 3D magnetic field analysis[J]. IEEE Transactions on Magnetics, 1991,27(5):4073-4076
    [80]Takahashi N, Nakata T, et al. Investigation of effectiveness of edge elements[J]. IEEE Transactions on Magnetics,1992,28(2):1619-1622
    [81]Demerdash N A, Wang R. Theoretical and numerical difficulties in 3-D vector potential methods in finite element magnetostatic computations[J]. IEEE Transactions on Magnetics,1990,26(5):1656-1658
    [82]Demerdash N A, Mohammed O A, et al. Experimental Verification and Application of the Three Dimensional Finite Element Magnetic Vector Potential Method in Electrical Apparatus[J]. IEEE Transactions on Power Apparatus and Systems,1981,100(8):4112-4122
    [83]Demerdash N A, Nehl T W, et al. Solution of eddy current problems using three dimensional finite element complex magnetic vector potential [J]. IEEE Transactions on Power Apparatus and Systems,1982,101(11):4222-4229
    [84]X J Zhao, J W Lu, et al. Analysis of DC bias phenomenon by the harmonic Balance Finite-Element method[J]. IEEE Transactions on Power Delivery,2011, 26(1):475-485
    [85]X J Zhao, L Li, et al. Characteristic analysis of the square laminated core under dc-biased magnetization by the fixed-point harmonic-balanced FEM[J]. IEEE Transactions on Magnetics,2012,48(2):747-750
    [86]Yamada R, Biringer P P, et al. Calculation of nonlinear eddy-current problems by the harmonic balance finite element method[J]. Transactions on Magnetics,1991, 26(5):4122-4125
    [87]赵小军.基于谐波平衡有限元的变压器直流偏磁特性研究[D].保定:华北电力大学,2010
    [88]Yacamini R. The calculation of inrush current in three phase transformers[J]. IEE Proceedings on Electric Power Applications,1986,133(1):31-40
    [89]Stuehm D L, Mork A B, Mairs D D. Five-legged core transformer equivalent circuit[J]. IEEE Transactions on Power Delivery,1989,4(3):1786-1793
    [90]Philip R.Price.Geomagnetically induced current effects on transformers [J]. IEEE Transactions on Power Delivery,2002,17(4):1002-1008
    [91]李慧奇,崔翔,等.直流偏磁下变压器励磁电流的实验研究及计算[J].华北电力大学学报,2007,34(4):1-6
    [92]李晓萍,文习山,等.单相变压器直流偏磁试验与仿真[J].中国电机工程学报,2007,27(9):33-40
    [93]李晓萍,文习山,等.三相五柱变压器直流偏磁计算研究[J].中国电机工程学报,2010,30(1):127-131
    [94]李泓志,崔翔,等.变压器直流偏磁的电路-磁路模型[J].中国电机工程学报,2009,29(27):119-125
    [95]郭健,林鹤云,等.单螺旋绕组变压器支路电流的场路耦合计算及分析[J].电工技术学报,2010,25(4):65-70
    [96]X S Li, Q F Chen. Numerical analysis on magnetic field of HTS transformer with different geometry[J]. IEEE Transactions on Magnetics,2006,42(4):1343-1346
    [97]梁振光,唐任远.三相电力变压器的场路耦合模型及突发短路过程计算 [J].电工技术学报,2004,19(3):46-51
    [98]王胜辉.大型变压器场路耦合瞬态涡流场及螺旋线圈轴向电流效应研究[D].沈阳:沈阳工业大学,1999
    [99]T. Dreher, G. Meunier.3D modeling of electromagnets fed by alternating voltage sources[J]. IEEE Transactions on Magnetics,1993,29(2):1341-1344
    [100]Rodger D, Allen N. Calculation of transient 3D eddy currents in nonlinear media verification using a rotational test Rig[J]. IEEE Transactions on Magnetics,1994,30(5):2988-2991
    [101]Mohammed O A, Fuat G U. A state space approach and formulation for the solution of nonlinear 3D transient eddy current problems[J]. IEEE Transactions on Magnetics,1992,28(2):1111-1114
    [102]Shi Z W, Rajanathan C B. A method of approach to transient eddy current problems coupled with voltage sources[J]. IEEE Transactions on Magnetics, 1996,32(3):1082-1085
    [103]Ho S L, Niu S X, et al. A power-balanced time-stepping finite element method for transient magnetic field computation[J]. IEEE Transactions on Magnetics, 2012,48(2):291-294
    [104]郭满生,梅佳华,等.直流偏磁条件下单相三柱电力变压器的损耗计算[J].电工技术学报,2010,25(7):67-71
    [105]Cheng Z, Takahashi N, et al. Analysis and measurements of iron loss and flux inside silicon steel laminations[J]. IEEE Transactions on Magnetics,2009,45(3): 1222-1225
    [106]Mauricio V F, Jean V L, Benabou A, Sadowski N. Three-phase transformer modeling using a vector hysteresis model and including the eddy current and the anomalous losses[J]. IEEE Transactions on Magnetics,2010,46(8):3201-3204
    [107]焦在滨.基于励磁支路参数的变压器保护新原理[D].西安:西安交通大学,2008
    [108]索南加乐,张健康,等.交直流混联系统对变压器保护性能的影响及解决措施[J].电力系统自动化,2010,34(3):101-106
    [109]郝治国,张保会,等.漏电感参数识别技术在线监测变压器绕组变形[J].高电压技术,2006,32(11):67-70
    [110]王增平,马静.基于等效瞬时漏感与回路方程的变压器保护原理[J].中国电机工程学报,2007,27(19):39-44
    [111]杨浩,曾鑫,罗建.基于约束最小二乘法的变压器三相漏电感辨识算法[J].电力系统自动化,2009,30(13):68-72
    [112]索南加乐,焦在滨,等.Y/△接线变压器漏感参数的识别方法[J].中国电 机工程学报,2008,28(13):84-90
    [113]索南加乐,王志恩,等.基于变压器T形等效电路的漏电感参数特性分析[J].电力系统自动化,2010,34(11):38-42
    [114]谢冰若,陈桥夫,等.基于组合式场路耦合法的多绕组变压器建模与阻抗参数设计[J].中国电机工程学报,2009,29(9):104-111
    [115]梁振光,唐任远.采用场路耦合的三维有限元法分析变压器突发短路过程[J].中国电机工程学报,2003,23(3):137-140
    [116]马静,王增平.基于等效瞬时漏电感的变压器保护原理[J].电力系统自动化,2006,30(23):64-68
    [117]王雪,王增平.基于有限元法的变压器电感参数计算方法研究[J].电力系统保护与控制,2009,37(24):11-14
    [118]DL/T 437-1991,高压直流接地极技术导则[s].北京:中国电力出版社,1991
    [119]DL/T 437-2012,高压直流接地极技术导则[S].北京:中国电力出版社,2012
    [120]辛文彤,李志尊,等.ANSYS13.0热力学有限元分析[M].北京:机械工业出版社,2011
    [121]张倩,胡仁喜,等.ANSYS12.0电磁学有限元分析[M].北京:机械工业出版社,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700